Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.494
Filter
1.
Life Sci Space Res (Amst) ; 41: 127-135, 2024 May.
Article in English | MEDLINE | ID: mdl-38670639

ABSTRACT

Understanding how skeletal tissues respond to microgravity is ever more important with the increased interest in human space travel. Here, we exposed larval Danio rerio at 3.5 dpf to simulated microgravity (SMG) using a 3D mode of rotation in a ground-based experiment and then studied different cellular, molecular, and morphological bone responses both immediately after exposure and one week later. Our results indicate an overall decrease in ossification in several developing skeletal elements immediately after SMG exposure with the exception of the otoliths, however ossification returns to normal levels seven days after exposure. Coincident with the reduction in overall ossification tnfsf11 (RANKL) expression is highly elevated after 24 h of SMG exposure and also returns to normal levels seven days after exposure. We also show that genes associated with osteoblasts are unaffected immediately after SMG exposure. Thus, the observed reduction in ossification is primarily the result of a high level of bone resorption. This study sheds insight into the nuances of how osteoblasts and osteoclasts in the skeleton of a vertebrate organism respond to an external environmental disturbance, in this case simulated microgravity.


Subject(s)
Larva , Osteogenesis , Weightlessness Simulation , Zebrafish , Animals , Larva/growth & development , Larva/physiology , Osteoblasts/physiology , Osteoclasts/physiology , RANK Ligand/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Weightlessness/adverse effects
2.
J Chin Med Assoc ; 87(6): 615-626, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38651853

ABSTRACT

BACKGROUND: Mori Radicis Cortex (MRC) is the root bark of the mulberry family as Morus alba L. In Korea, it is known as "Sangbaegpi". Although MRC has demonstrated anti-inflammatory and antioxidant effects, its specific mechanisms of action and impact on osteoporosis remain poorly understood. METHODS: To investigate the antiosteoporosis effect of MRC, we examined the level of osteoclast differentiation inhibition in receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced-RAW 264.7 cells and animal models of ovariectomy (OVX) with MRC. Serum analysis in OVX animals was investigated by enzyme-linked immunosorbent assay (ELISA), and bone density analysis was confirmed by micro-computed tomography (micro-CT). The expression analysis of nuclear factor of activated T cells 1 (NFATc1) was confirmed by immunohistochemistry (IHC) in femur tissue. In addition, osteoclast differentiation inhibition was measured using tartrate-resistant acid phosphatase (TRAP). mRNA analysis was performed using reverse transcription-polymerase chain reaction (RT-PCR), and the protein expression analysis was investigated by western blot. RESULTS: Micro-CT analysis showed that MRC effectively inhibited bone loss in the OVX-induced rat model. MRC also inhibited the expression of alkaline phosphatase (ALP) and TRAP in serum. Histological analysis showed that MRC treatment increased bone density and IHC analysis showed that MRC significantly inhibited the expression of NFATc1. In RANKL-induced-RAW 264.7 cells, MRC significantly reduced TRAP activity and actin ring formation. In addition, MRC significantly inhibited the expression of NFATc1 and c-Fos, and suppressed the mRNA expression. CONCLUSION: Based on micro-CT, serum and histological analysis, MRC effectively inhibited bone loss in an OVX-induced rat model. In addition, MRC treatment suppressed the expression of osteoclast differentiation, fusion, and bone resorption markers through inhibition of NFATc1/c-Fos expression in RANKL-induced RAW 264.7 cells, ultimately resulting in a decrease in osteoclast activity. These results demonstrate that MRC is effective in preventing bone loss through inhibiting osteoclast differentiation and activity.


Subject(s)
Bone Resorption , Cell Differentiation , Morus , NFATC Transcription Factors , Osteoclasts , Proto-Oncogene Proteins c-fos , Signal Transduction , Animals , Osteoclasts/drug effects , Osteoclasts/physiology , NFATC Transcription Factors/metabolism , Cell Differentiation/drug effects , Mice , Proto-Oncogene Proteins c-fos/metabolism , RAW 264.7 Cells , Morus/chemistry , Female , Rats , Rats, Sprague-Dawley , RANK Ligand
3.
Ann Anat ; 254: 152244, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38492654

ABSTRACT

The knowledge of bone biology has undergone major advances in recent decades. In bone, resorbing osteoclasts have classically been described as tissue-resident macrophages, however, it is currently known that a new subtype of macrophages, called OsteoMacs, are specialised bone-resident macrophages, which, depending on certain conditions, may play an important role not only in bone homeostasis, but also in promoting pro-anabolic functions or in creating an inflammatory environment. There is growing evidence that these osteal macrophages may influence the development of bone-loss diseases. It is essential to understand the biological bases underlying bone physiological processes to search for new therapeutic targets for bone-loss diseases, such as osteoporosis, rheumatoid arthritis, or even periodontal disease. This narrative review provides an update on the origin, characterisation, and possible roles of osteoMacs in bone biology. Finally, the potential clinical applications of this new cell in bone-loss disorders are discussed.


Subject(s)
Bone and Bones , Macrophages , Humans , Bone and Bones/physiology , Animals , Macrophages/physiology , Osteoclasts/physiology , Bone Diseases/pathology , Osteoporosis/pathology
4.
Immunol Med ; 47(1): 6-11, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37309864

ABSTRACT

Osteoclasts, derived from the monocyte/macrophage line of bone marrow hematopoietic stem cell progenitors, are the sole bone-resorbing cells of the body. Conventional osteoclast differentiation requires macrophage colony-stimulating factor and receptor activator of nuclear factor kappa-B ligand (RANKL) signaling. Rheumatoid arthritis (RA) is the most prevalent systemic autoimmune disease and inflammatory arthritis characterized by bone destruction. Increased levels of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), in the serum and joints, cause excessive bone destruction. We have recently reported that stimulation of human peripheral blood monocytes with TNF-α and IL-6 induces the differentiation of osteoclasts with bone resorption activity. This review presents the functional differences between representative osteoclasts, conventional RANKL-induced osteoclasts, and recently identified proinflammatory cytokine (TNF-α and IL-6)-induced osteoclasts in RA patients. We believe novel pathological osteoclasts associated with RA will be identified, and new therapeutic strategies will be developed to target these osteoclasts and prevent the progression of bone destruction.


Subject(s)
Arthritis, Rheumatoid , Bone Resorption , Humans , Osteoclasts/pathology , Osteoclasts/physiology , Tumor Necrosis Factor-alpha , Interleukin-6 , Bone Resorption/etiology , Bone Resorption/pathology , Cytokines
5.
Semin Arthritis Rheum ; 64: 152345, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38103486

ABSTRACT

INTRODUCTION: Axial spondyloarthritis (axSpA) presents a complex scenario where both new bone formation in entheseal tissues and significant trabecular bone loss coexist, emphasizing the intricate nature of bone dynamics in this context. METHODS: A search of the literature was conducted to compose a narrative review exploring the pathogenesis, possible assessment methods, and potential management options for axSpA. RESULTS: While chronic systemic and local inflammation contribute to bone loss, the mechanisms behind axSpA-associated bone loss exhibit distinct characteristics influenced by factors like mechanical stress and the gut microbiome. These factors directly or indirectly stimulate osteoclast differentiation and activation through the RANK-RANKL axis, while simultaneously impeding osteoblast differentiation via negative regulation of bone anabolic pathways, including the Wnt signaling pathway. This disruption in the balance between bone-resorbing osteoclasts and bone-forming osteoblasts contributes to overall bone loss in axSpA. Early evaluation at diagnosis is prudent for detecting bone changes. While traditional dual x-ray absorptiometry (DXA) has limitations due to potential overestimation from spinal new bone formation, alternative methods like trabecular bone score (TBS), quantitative CT (QCT), and quantitative ultrasound (QUS) show promise. However, their integration into routine clinical practice remains limited. In addition to approved anti-inflammatory drugs, lifestyle adjustments like regular exercise play a key role in preserving bone health. Tailoring interventions based on individual risk profiles holds potential for mitigating bone loss progression. CONCLUSION: Recognizing the pivotal role of bone loss in axSpA underscores the importance of integrating regular assessments and effective management strategies into clinical practice. Given the multifaceted contributors to bone loss in axSpA, a multidisciplinary approach is essential.


Subject(s)
Axial Spondyloarthritis , Osteoclasts , Humans , Osteoclasts/physiology , Osteoblasts/metabolism , Absorptiometry, Photon , Inflammation
6.
J Pharmacol Sci ; 153(4): 197-207, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37973217

ABSTRACT

Osteoclasts are multinucleated, specializes bone-resorbing cells that are derived from the monocyte/macrophage lineage. Excessive resorbing activities of osteoclasts are involved in destructive bone diseases. The detailed mechanism of acidification at the bone adhesion surface during the bone resorption process of osteoclasts remains to be defined. During glycolysis, pyruvate proceeds to the tricarboxylic cycle under aerobic conditions and pyruvate is converted to lactate via lactate dehydrogenase A (LDHA) under anaerobic conditions. However, tumor cells produce ATP during aerobic glycolysis and large amounts of pyruvate are converted to lactate and H+ by LDHA. Lactate and H+ are excreted outside the cell, whereby they are involved in invasion of tumor cells due to the pH drop around the cell. In this study, we focused on aerobic glycolysis and investigated the production of lactate by LDHA in osteoclasts. Expression of LDHA and monocarboxylate transporter 4 (MCT4) was upregulated during osteoclast differentiation. Intracellular and extracellular lactate levels increased with upregulation of LDHA and MCT4, respectively. FX11 (an LDHA inhibitor) inhibited osteoclast differentiation and suppressed the bone-resorbing activity of osteoclasts. We propose that inhibition of LDHA may represent a novel therapeutic strategy for controlling excessive bone resorption in osteoporosis and rheumatoid arthritis.


Subject(s)
Bone Resorption , Osteogenesis , Humans , Lactate Dehydrogenase 5/metabolism , Osteoclasts/physiology , Bone Resorption/prevention & control , Bone Resorption/metabolism , Lactates/metabolism , Glycolysis , Pyruvates/metabolism , L-Lactate Dehydrogenase/metabolism
7.
Cells ; 12(21)2023 11 05.
Article in English | MEDLINE | ID: mdl-37947654

ABSTRACT

This review focuses on understanding the macroscopic and microscopic characteristics of bone tissue and reviews current knowledge of its physiology. It explores how these features intricately collaborate to maintain the balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, which plays a pivotal role in shaping not only our physical framework but also overall health. In this work, a comprehensive exploration of microscopic and macroscopic features of bone tissue is presented.


Subject(s)
Bone Resorption , Osteoclasts , Humans , Osteoclasts/physiology , Bone and Bones , Osteoblasts/physiology , Cell Differentiation/physiology
8.
Clin Oral Investig ; 27(10): 5853-5863, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37775586

ABSTRACT

OBJECTIVE: To investigate the functional changes of PDL fibroblasts in the presence of mechanical force, inflammation, or a combination of force and inflammation. MATERIALS AND METHODS: Inflammatory supernatants were prepared by inoculating human neutrophils with Porphyromonas gingivalis. Primary human PDL fibroblasts (PDLF), gingival fibroblasts (GFs), and osteoblasts (Saos2) were then exposed to the inflammatory supernatants. Orthodontic force on the PDLFs was simulated by centrifugation. Analyses included cell proliferation, cell viability, cell cycle, and collagen expression, as well as osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-Β ligand (RANKL) expression. RESULTS: Mechanical force did not affect PDLF viability, but it increased the metabolic rate compared to resting cells. Force application shifted the PDLF cell cycle to the G0/G1 phase, arresting cell proliferation and leading to elevated collagen production, mild OPG level elevation, and robust RANKL level elevation. Including an inflammatory supernatant in the presence of force did not affect PDLF viability, proliferation, or cytokine expression. By contrast, the inflammatory supernatant increased RANKL expression in GFs, but not in Saos2 cells. CONCLUSION: Applying mechanical force significantly affects PDLF function. Although inflammation had no effect on PDLF or Saos2 cells, it promoted RANKL expression in GF cells. Within the limitations of the in vitro model, the results suggest that periodontal inflammation and mechanical forces could affect bone catabolism through effects on different cell types, which may culminate in synergistic bone resorption.


Subject(s)
Osteogenesis , Periodontal Ligament , Humans , Osteoprotegerin/metabolism , Cytokines/metabolism , Inflammation/metabolism , Collagen/metabolism , RANK Ligand/metabolism , Fibroblasts/metabolism , Cells, Cultured , Osteoclasts/physiology
9.
Curr Osteoporos Rep ; 21(6): 842-853, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37759135

ABSTRACT

PURPOSE OF REVIEW: The purpose of this article is to review the current understanding of inflammatory processes on bone, including direct impacts of inflammatory factors on bone cells, the effect of senescence on inflamed bone, and the critical role of inflammation in bone pain and healing. RECENT FINDINGS: Advances in osteoimmunology have provided new perspectives on inflammatory bone loss in recent years. Characterization of so-called inflammatory osteoclasts has revealed insights into physiological and pathological bone loss. The identification of inflammation-associated senescent markers in bone cells indicates that therapies that reduce senescent cell burden may reverse bone loss caused by inflammatory processes. Finally, novel studies have refined the role of inflammation in bone healing, including cross talk between nerves and bone cells. Except for the initial stages of fracture healing, inflammation has predominately negative effects on bone and increases fracture risk. Eliminating senescent cells, priming the osteo-immune axis in bone cells, and alleviating pro-inflammatory cytokine burden may ameliorate the negative effects of inflammation on bone.


Subject(s)
Bone Density , Bone Diseases , Humans , Bone and Bones/pathology , Osteoclasts/physiology , Bone Diseases/pathology , Inflammation
10.
Int J Mol Sci ; 24(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37628864

ABSTRACT

Myocyte enhancement factor 2C (MEF2C) is a transcription factor studied in the development of skeletal and smooth muscles. Bone resorption studies have exhibited that the reduced expression of MEF2C contributes to osteopetrosis and the dysregulation of pathological bone remodeling. Our current study aims to determine how MEF2C contributes to osteoclast differentiation and to analyze the skeletal phenotype of Mef2c-cKO mice (Cfms-cre; Mef2cfl/fl). qRT-PCR and Western blot demonstrated that Mef2c expression is highest during the early days of osteoclast differentiation. Osteoclast genes, including c-Fos, c-Jun, Dc-stamp, Cathepsin K, and Nfatc1, had a significant reduction in expression, along with a reduction in osteoclast size. Despite reduced CTX activity, female Mef2c cKO mice were osteopenic, with decreased bone formation as determined via a P1NP ELISA, and a reduced number of osteoblasts. There was no difference between male WT and Mef2c-cKO mice. Our results suggest that Mef2c is critical for osteoclastogenesis, and that its dysregulation leads to a sex-specific osteopenic phenotype.


Subject(s)
Bone Diseases, Metabolic , MEF2 Transcription Factors , Osteogenesis , Animals , Female , Male , Mice , Osteoclasts/physiology , Osteogenesis/genetics , Bone Diseases, Metabolic/genetics , MEF2 Transcription Factors/genetics , Cell Differentiation/genetics
11.
Genomics ; 115(5): 110696, 2023 09.
Article in English | MEDLINE | ID: mdl-37558013

ABSTRACT

OBJECTIVE: To investigate EGR1-mediated METTL3/m6A/CHI3L1 axis in osteoporosis. METHODS: Ovariectomy (OVX) was performed on mice to induce osteoporosis, followed by µ-CT scanning of femurs, histological staining, immunohistochemistry analysis of MMP9 and NFATc1, and ELISA of serum BGP, ALP, Ca, and CTXI. The isolated mouse bone marrow mononuclear macrophages (BMMs) were differentiated into osteoclasts under cytokine stimulation. TRAP staining was performed to quantify osteoclasts. The levels of Nfatc1, c-Fos, Acp5, and Ctsk in osteoclasts, m6A level, and the relationships among EGR1, METTL3, and CHI3L1 were analyzed. RESULTS: The EGR1/METTL3/CHI3L1 levels and m6A level were upregulated in osteoporotic mice and the derived BMMs. EGR1 was a transcription factor of METTL3. METTL3 promoted the post-transcriptional regulation of CHI3L1 by increasing m6A methylation. EGR1 downregulation reduced BMMs-differentiated osteoclasts and alleviated OVX-induced osteoporosis by regulating the METTL3/m6A/CHI3L1 axis. CONCLUSION: EGR1 promotes METTL3 transcription and increases m6A-modified CHI3L1 level, thereby stimulating osteoclast differentiation and osteoporosis development.


Subject(s)
Osteogenesis , Osteoporosis , Animals , Female , Mice , Cell Differentiation , Macrophages , NFATC Transcription Factors , Osteoclasts/metabolism , Osteoclasts/physiology , Osteogenesis/genetics , Osteogenesis/physiology , Osteoporosis/genetics , Osteoporosis/metabolism , Proto-Oncogene Proteins c-fos
12.
Rev. ADM ; 80(4): 220-227, jul.-ago. 2023. ilus, tab
Article in Spanish | LILACS | ID: biblio-1527184

ABSTRACT

Introducción: el hueso está en remodelación constante para mantener la estructura del esqueleto, tener un ciclo de resorción por los osteoclastos y formación de hueso nuevo a cargo de los osteoblastos; el hueso también es susceptible a enfermedades sistémicas, traumas, edad y trastornos genéticos que afectarán el remodelado óseo, produciendo una pérdida masiva de masa ósea regulado por hormonas, citocinas, enzimas, etcétera. El objetivo es realizar una revisión sistemática de artículos que muestren cambio o alteración al utilizar tratamientos con microvibraciones y farmacológicos sobre la catepsina K en el hueso alveolar. Material y métodos: para realizar una comparación entre la efectividad del tratamiento a base de microvibraciones y con inhibidores de la catepsina K, se realizó una revisión sistemática en nueve bases de datos (Wiley Online Library, PubMed, Google Academic, Scopus, ScienceDirect, SciELO, Medline, EBSCO y Springer Link). La población de estudio fueron ratas y ratones. Resultados: en este estudio se incluyeron 20 artículos cuya investigación se realizó en estudios clínicos. En los resultados podemos observar cómo todos los tratamientos de alguna forma mejoran el proceso de remodelado óseo. Es difícil comparar cuál de los tratamientos dentro de cada grupo es mejor que otro, debido a que los resultados expresados son cualitativos. Conclusión: acorde a los resultados expresados se opta por realizar un tratamiento con microvibraciones debido a que el uso de inhibidores de la catepsina K aún no se encuentra completamente desarrollado y no se comprenden sus consecuencias debido a su manera sistémica de actuar (AU)


Introduction: the bone is in constant remodeling to maintain the skeletal structure, having a cycle of resorption by osteoclasts and formation of new bone by osteoblasts, the bone is also susceptible to systemic diseases, trauma, age and genetic disorders that affect bone remodeling, producing a massive loss of bone mass regulated by hormones, cytokines, enzymes, etcetera. The objective is to perform a systematic review of articles that show a change or alteration when using micro-vibration and pharmacological treatments on cathepsin K in the alveolar bone. Material and methods: in order to make a comparison between the effectiveness of micro-vibration and cathepsin K inhibitor treatments, a systemic review was carried out in nine databases (Wiley Online Library, PubMed, Google Academic, Scopus, ScienceDirect, SciELO, Medline, EBSCO and Springer Link). The study population was rats and mice. Results: this study included 20 articles whose research was carried out in clinical studies. In the results we can see how all the treatments in some way improve the bone remodeling process, it is difficult to compare which treatment within each group is better than the other, because the results expressed are qualitative. Conclusion: according to the results expressed, it is decided that it is better to perform a treatment with micro vibrations because the use of cathepsin K inhibitors are not yet fully developed and their consequences are not understood due to their systemic way of acting (AU)


Subject(s)
Humans , Animals , Mice , Bone Regeneration/physiology , Cathepsin K/physiology , Osteoclasts/physiology , Tooth Movement Techniques , Databases, Bibliographic , Bone Remodeling/physiology
13.
Chin Med J (Engl) ; 136(14): 1642-1652, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37166215

ABSTRACT

ABSTRACT: Cellular immune responses as well as generalized and periarticular bone loss are the key pathogenic features of rheumatoid arthritis (RA). Under the pathological conditions of RA, dysregulated inflammation and immune processes tightly interact with skeletal system, resulting in pathological bone damage via inhibition of bone formation or induction of bone resorption. Single-cell omics technologies are revolutionary tools in the field of modern biological research.They enable the display of the state and function of cells in various environments from a single-cell resolution, thus making it conducive to identify the dysregulated molecular mechanisms of bone destruction in RA as well as the discovery of potential therapeutic targets and biomarkers. Here, we summarize the latest findings of single-cell omics technologies in osteoimmunology research in RA. These results suggest that single-cell omics have made significant contributions to transcriptomics and dynamics of specific cells involved in bone remodeling, providing a new direction for our understanding of cellular heterogeneity in the study of osteoimmunology in RA.


Subject(s)
Arthritis, Rheumatoid , Bone Resorption , Humans , Osteoclasts/pathology , Osteoclasts/physiology , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/pathology , Inflammation/pathology , Bone and Bones/pathology , Bone Resorption/pathology
14.
Article in English | MEDLINE | ID: mdl-37037204

ABSTRACT

Osteoclasts are the cells responsible for the bone resorption process during bone remodeling. In a healthy situation, this process results from an equilibrium between new matrix formation by osteoblast and matrix resorption by osteoclast. Osteoporosis (OP) is a systemic bone disease characterized by a decreased bone mass density and alterations in bone microarchitecture, increasing fracture predisposition. Despite the variety of available therapies for OP management there is a growing gap in its treatment associated to the low patients' adherence owing to concerns related with long-term efficacy or safety. This makes the development of new and safe treatments necessary. Among the newly developed strategies, the use of synthetic and natural nanoparticles to modulate osteoclasts differentiation, activity, apoptosis or crosstalk with osteoblasts have arisen. Synthetic nanoparticles exert their therapeutic effect either by loading antiresorptive drugs or including molecules for osteoclasts gene regulation. Moreover, this control over osteoclasts can be improved by their targeting to bone extracellular matrix or osteoclast membranes. Furthermore, natural nanoparticles, also known as extracellular vesicles, have been identified to play a key role in bone homeostasis. Consequently, these systems have been widely studied to control osteoblasts and osteoclasts under variable environments. Additionally, the ability to bioengineer extracellular vesicles has allowed to obtain biomimetic systems with desirable characteristics as drug carriers for osteoclasts. The analyzed information reveals the possibility of modulating osteoclasts by different mechanisms through nanoparticles decreasing bone resorption. These findings suggest that controlling osteoclast activity using nanoparticles has the potential to improve osteoporosis management. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Subject(s)
Bone Resorption , Nanoparticles , Osteoporosis , Humans , Osteoclasts/physiology , Bone Resorption/drug therapy , Osteoblasts/physiology , Osteoporosis/drug therapy , Nanoparticles/therapeutic use , Cell Differentiation
15.
Wound Repair Regen ; 31(1): 17-27, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36177656

ABSTRACT

Humans and mice have the ability to regenerate the distal digit tip, the terminal phalanx (P3) in response to amputation. What distinguishes P3 regeneration from regenerative failure is formation of the blastema, a proliferative structure that undergoes morphogenesis to regenerate the amputated tissues. P3 regeneration is characterised by the phases of inflammation, tissue histolysis and expansive bone degradation with simultaneous blastema formation, wound closure and finally blastemal differentiation to restore the amputated structures. While each regenerating digit faithfully progresses through all phases of regeneration, phase progression has traditionally been delineated by time, that is, days postamputation (DPA), yet there is widespread variability in the timing of the individual phases. To diminish variability between digits during tissue histolysis and blastema formation, we have established an in-vivo method using microcomputed tomography (micro CT) scanning to identify five distinct stages of the early regeneration response based on anatomical changes of the digit stump. We report that categorising the initial phases of digit regeneration by stage rather than time greatly diminishes the variability between digits with respect to changes in bone volume and length. Also, stages correlate with the levels of cell proliferation, osteoclast recruitment and osteoprogenitor cell recruitment. Importantly, micro CT staging provides a means to estimate open versus closed digit wounds. We demonstrate two spatially distinct and stage specific bone repair/regeneration responses that occur during P3 regeneration. Collectively, these studies showcase the utility of micro CT imaging to infer the composition of radiolucent soft tissues during P3 blastema formation. Specifically, the staging system identifies the onset of cell proliferation, osteoclastogenesis, osteoprogenitor recruitment, the spatial initiation of de novo bone formation and epidermal closure.


Subject(s)
Osteogenesis , Wound Healing , Mice , Animals , Humans , X-Ray Microtomography , Wound Healing/physiology , Osteogenesis/physiology , Osteoclasts/physiology , Bone Regeneration/physiology
16.
Chinese Medical Journal ; (24): 1642-1652, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-980931

ABSTRACT

Cellular immune responses as well as generalized and periarticular bone loss are the key pathogenic features of rheumatoid arthritis (RA). Under the pathological conditions of RA, dysregulated inflammation and immune processes tightly interact with skeletal system, resulting in pathological bone damage via inhibition of bone formation or induction of bone resorption. Single-cell omics technologies are revolutionary tools in the field of modern biological research.They enable the display of the state and function of cells in various environments from a single-cell resolution, thus making it conducive to identify the dysregulated molecular mechanisms of bone destruction in RA as well as the discovery of potential therapeutic targets and biomarkers. Here, we summarize the latest findings of single-cell omics technologies in osteoimmunology research in RA. These results suggest that single-cell omics have made significant contributions to transcriptomics and dynamics of specific cells involved in bone remodeling, providing a new direction for our understanding of cellular heterogeneity in the study of osteoimmunology in RA.


Subject(s)
Humans , Osteoclasts/physiology , Arthritis, Rheumatoid/pathology , Inflammation/pathology , Bone and Bones/pathology , Bone Resorption/pathology
17.
Front Endocrinol (Lausanne) ; 13: 969481, 2022.
Article in English | MEDLINE | ID: mdl-36387889

ABSTRACT

Efforts to understand the morphogenesis of complex craniofacial structures have largely focused on the role of chondrocytes and osteoblasts. Along with these bone-creating cells, bone-resorbing osteoclasts are critical in homeostasis of adult skeletal structures, but there is currently limited information on their role in the complex morphogenetic events of craniofacial development. Fundamental aspects of skull formation and general skeletal development are conserved from zebrafish to mammals. Using a cathepsinK reporter, we documented osteoclast location in the developing zebrafish skull over several weeks, from 5.18 mm to 9.6 mm standard length (approximately 15 to 34 days post fertilization). While broad distribution of osteoclasts is consistent across individuals, they are sparse and the exact locations vary among fish and across developmental time points. Interestingly, we observed osteoclasts concentrating at areas associated with neuromasts and their associated nerves, in particular the hyomandibular foramina and around the supraorbital lateral line. These are areas of active remodeling. In contrast, other areas of rapid bone growth, such as the osteogenic fronts of the frontal and parietal bones, show no particular concentration of osteoclasts, suggesting that they play a special role in shaping bone near neuromasts and nerves. In csf1ra mutants lacking functional osteoclasts, the morphology of the cranial bone was disrupted in both areas. The hyomandibular foramen is present in the initial cartilage template, but after the initiation of ossification, the diameter of the canal is significantly smaller in the absence of osteoclasts. The diameter of the supraorbital lateral line canals was also reduced in the mutants, as was the number of pores associated with neuromasts, which allow for the passage of associated nerves through the bone. Our findings define important and previously unappreciated roles for osteoclast activity in shaping craniofacial skeletal structures with a particular role in bone modeling around peripheral cranial nerves, providing a scaffold for wiring the sensioneural system during craniofacial development. This has important implications for the formation of the evolutionarily diverse lateral line system, as well understanding the mechanism of neurologic sequelae of congenital osteoclast dysfunction in human craniofacial development.


Subject(s)
Osteoclasts , Zebrafish , Animals , Humans , Osteoclasts/physiology , Zebrafish/physiology , Skull , Head , Bone Development , Mammals
18.
Int J Nanomedicine ; 17: 5375-5389, 2022.
Article in English | MEDLINE | ID: mdl-36419718

ABSTRACT

The maintenance of bone homeostasis includes both bone resorption by osteoclasts and bone formation by osteoblasts. These two processes are in dynamic balance to maintain a constant amount of bone for accomplishing its critical functions in daily life. Multiple cell type communications are involved in these two complex and continuous processes. In recent decades, an increasing number of studies have shown that osteogenic and osteoclastic extracellular vesicles play crucial roles in regulating bone homeostasis through paracrine, autosecretory and endocrine signaling. Elucidating the functional roles of extracellular vesicles in the maintenance of bone homeostasis may contribute to the design of new strategies for bone regeneration. Hence, we review the recent understandings of the classification, production process, extraction methods, structure, contents, functions and applications of extracellular vesicles in bone homeostasis. We highlight the contents of various bone-derived extracellular vesicles and their interactions with different cells in the bone microenvironment during bone homeostasis. We also summarize the recent advances in EV-loaded biomaterial scaffolds for bone regeneration and repair.


Subject(s)
Bone and Bones , Extracellular Vesicles , Extracellular Vesicles/metabolism , Osteoclasts/physiology , Osteoblasts/physiology , Homeostasis
19.
Bone ; 165: 116576, 2022 12.
Article in English | MEDLINE | ID: mdl-36195243

ABSTRACT

Osteoclasts are the only cells that can efficiently resorb bone. They do so by sealing themselves on to bone and removing the mineral and organic components. Osteoclasts are essential for bone homeostasis and are involved in the development of diseases associated with decreased bone mass, like osteoporosis, or abnormal bone turnover, like Paget's disease of bone. In addition, compromise of their development or resorbing machinery is pathogenic in multiple types of osteopetrosis. However, osteoclasts also have functions other than bone resorption. Like cells of the innate immune system, they are derived from myeloid precursors and retain multiple immune cell properties. In addition, there is now strong evidence that osteoclasts regulate osteoblasts through a process known as coupling, which coordinates rates of bone resorption and bone formation during bone remodeling. In this article we review the non-resorbing functions of osteoclasts and highlight their importance in health and disease.


Subject(s)
Bone Resorption , Osteoclasts , Humans , Osteoclasts/physiology , Osteoblasts , Bone Remodeling , Bone and Bones
20.
Mediators Inflamm ; 2022: 5255935, 2022.
Article in English | MEDLINE | ID: mdl-36091665

ABSTRACT

Objective: Activation of toll-like receptor 9 (TLR9) has been proposed to play an inhibitory role in RANKL-induced osteoclastogenesis. A20 deubiquitinase has been found to be related to bone loss. This study investigated the role of CpG oligodeoxynucleotides (CpG-ODNs) through regulation of A20 deubiquitinase in RANKL-induced osteoclast formation. Methods: RAW 264.7 cells, a murine monocyte-macrophage cell line, were incubated with or without CpG-ODN in the presence of RANKL. Osteoclast-specific genes and their related signaling molecules were measured by real-time quantitative polymerase chain reaction and Western blot assay. Morphological assessment for osteoclast formation was performed using tartrate-resistant acid phosphatase (TRAP) staining and F-actin ring formation staining. Results: RANKL-induced osteoclast-related genes and proteins, c-Fos, NFATc1, TRAP, cathepsin K, and carbonic anhydrase II were significantly inhibited in RAW 264.7 cells stimulated with CpG-ODN. CpG-ODN attenuated TNF receptor-associated factor 6 (TRAF6), p-IκBα, and p-NF-κB expression in RAW 264 cells mediated by RANKL. CpG-ODN increased A20 gene and proteins in time-dependent manner. A20 expression under costimulation with CpG-ODN and RANKL was more decreased than under stimulation with RANKL alone. Cells transfected with A20 siRNA augmented expression of osteoclast-related genes and proteins. Number of TRAP-positive cells transfected with A20 siRNA was higher than those transfected with NC siRNA. A20 expression in cells transfected with IL-1ß siRNA in the presence of both RANKL and CpG-ODN was more decreased than those with NC siRNA. Conclusion: This study showed that CpG-ODN suppressed RANKL-induced osteoclast formation through regulation of the A20-TRAF6 axis in RAW 264.7 cells.


Subject(s)
CpG Islands , Deubiquitinating Enzymes , Oligodeoxyribonucleotides , Osteoclasts , RANK Ligand , Animals , Cell Differentiation/genetics , CpG Islands/genetics , Deubiquitinating Enzymes/genetics , Deubiquitinating Enzymes/metabolism , Mice , Oligodeoxyribonucleotides/metabolism , Oligodeoxyribonucleotides/pharmacology , Osteoclasts/metabolism , Osteoclasts/physiology , RANK Ligand/genetics , RANK Ligand/metabolism , RANK Ligand/pharmacology , RAW 264.7 Cells , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...