Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.740
Filter
1.
Genes (Basel) ; 15(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38927610

ABSTRACT

Pathogenic variants in the FKBP10 gene lead to a spectrum of rare autosomal recessive phenotypes, including osteogenesis imperfecta (OI) Type XI, Bruck syndrome Type I (BS I), and the congenital arthrogryposis-like phenotype (AG), each with variable clinical manifestations that are crucial for diagnosis. This study analyzed the clinical-genetic characteristics of patients with these conditions, focusing on both known and newly identified FKBP10 variants. We examined data from 15 patients, presenting symptoms of OI and joint contractures. Diagnostic methods included genealogical analysis, clinical assessments, radiography, whole exome sequencing, and direct automated Sanger sequencing. We diagnosed 15 patients with phenotypes due to biallelic FKBP10 variants-4 with OI Type XI, 10 with BS I, and 1 with the AG-like phenotype-demonstrating polymorphism in disease severity. Ten pathogenic FKBP10 variants were identified, including three novel ones, c.1373C>T (p.Pro458Leu), c.21del (p.Pro7fs), and c.831_832insCG (p.Gly278Argfs), and a recurrent variant, c.831dup (p.Gly278Argfs). Variant c.1490G>A (p.Trp497Ter) was found in two unrelated patients, causing OI XI in one and BS I in the other. Additionally, two unrelated patients with BS I and epidermolysis bullosa shared identical homozygous FKBP10 and KRT14 variants. This observation illustrates the diversity of FKBP10-related pathology and the importance of considering the full spectrum of phenotypes in clinical diagnostics.


Subject(s)
Arthrogryposis , Osteogenesis Imperfecta , Phenotype , Tacrolimus Binding Proteins , Humans , Tacrolimus Binding Proteins/genetics , Male , Female , Arthrogryposis/genetics , Arthrogryposis/pathology , Arthrogryposis/diagnosis , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/pathology , Child , Child, Preschool , Pedigree , Exome Sequencing , Adolescent , Mutation , Infant , Adult , Nervous System Malformations/genetics
2.
Biomed Pharmacother ; 175: 116725, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744219

ABSTRACT

Qualitative alterations in type I collagen due to pathogenic variants in the COL1A1 or COL1A2 genes, result in moderate and severe Osteogenesis Imperfecta (OI), a rare disease characterized by bone fragility. The TGF-ß signaling pathway is overactive in OI patients and certain OI mouse models, and inhibition of TGF-ß through anti-TGF-ß monoclonal antibody therapy in phase I clinical trials in OI adults is rendering encouraging results. However, the impact of TGF-ß inhibition on osteogenic differentiation of mesenchymal stem cells from OI patients (OI-MSCs) is unknown. The following study demonstrates that pediatric skeletal OI-MSCs have imbalanced osteogenesis favoring the osteogenic commitment. Galunisertib, a small molecule inhibitor (SMI) that targets the TGF-ß receptor I (TßRI), favored the final osteogenic maturation of OI-MSCs. Mechanistically, galunisertib downregulated type I collagen expression in OI-MSCs, with greater impact on mutant type I collagen, and concomitantly, modulated the expression of unfolded protein response (UPR) and autophagy markers. In vivo, galunisertib improved trabecular bone parameters only in female oim/oim mice. These results further suggest that type I collagen is a tunable target within the bone ECM that deserves investigation and that the SMI, galunisertib, is a promising new candidate for the anti-TGF-ß targeting for the treatment of OI.


Subject(s)
Collagen Type I , Down-Regulation , Mesenchymal Stem Cells , Osteogenesis Imperfecta , Osteogenesis , Pyrazoles , Quinolines , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/drug therapy , Osteogenesis/drug effects , Osteogenesis/genetics , Animals , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Down-Regulation/drug effects , Collagen Type I/genetics , Collagen Type I/metabolism , Female , Quinolines/pharmacology , Mice , Child , Pyrazoles/pharmacology , Male , Cell Differentiation/drug effects , Mutation , Disease Models, Animal , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Child, Preschool , Cells, Cultured , Transforming Growth Factor beta/metabolism , Unfolded Protein Response/drug effects , Signal Transduction/drug effects
3.
Genet Sel Evol ; 56(1): 39, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773368

ABSTRACT

BACKGROUND: Nine male and eight female calves born to a Normande artificial insemination bull named "Ly" were referred to the French National Observatory of Bovine Abnormalities for multiple fractures, shortened gestation, and stillbirth or perinatal mortality. RESULTS: Using Illumina BovineSNP50 array genotypes from affected calves and 84 half-sib controls, the associated locus was mapped to a 6.5-Mb interval on chromosome 19, assuming autosomal inheritance with germline mosaicism. Subsequent comparison of the whole-genome sequences of one case and 5116 control genomes, followed by genotyping in the affected pedigree, identified a de novo missense substitution within the NC1 domain of the COL1A1 gene (Chr19 g.36,473,965G > A; p.D1412N) as unique candidate variant. Interestingly, the affected residue was completely conserved among 243 vertebrate orthologs, and the same substitution in humans has been reported to cause type II osteogenesis imperfecta (OI), a connective tissue disorder that is characterized primarily by bone deformity and fragility. Moreover, three COL1A1 mutations have been described to cause the same syndrome in cattle. Necropsy, computed tomography, radiology, and histology confirmed the diagnosis of type II OI, further supporting the causality of this variant. In addition, a detailed analysis of gestation length and perinatal mortality in 1387 offspring of Ly and more than 160,000 progeny of 63 control bulls allowed us to statistically confirm in a large pedigree the association between type II OI and preterm delivery, which is probably due to premature rupture of fetal membranes and has been reported in several isolated cases of type II OI in humans and cattle. Finally, analysis of perinatal mortality rates and segregation distortion supported a low level of germ cell mosaicism in Ly, with an estimate of 4.5% to 7.7% of mutant sperm and thus 63 to 107 affected calves born. These numbers contrast with the 17 cases reported and raise concerns about the underreporting of congenital defects to heredo-surveillance platforms, even for textbook genetic syndromes. CONCLUSIONS: In conclusion, we describe a large animal model for a recurrent substitution in COL1A1 that is responsible for type II OI in humans. More generally, this study highlights the utility of such datasets and large half-sib families available in livestock species to characterize sporadic genetic defects.


Subject(s)
Collagen Type I, alpha 1 Chain , Collagen Type I , Mutation, Missense , Osteogenesis Imperfecta , Animals , Cattle/genetics , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/veterinary , Collagen Type I/genetics , Male , Female , Cattle Diseases/genetics , Premature Birth/genetics , Premature Birth/veterinary , Pedigree , Pregnancy
4.
Med Sci Monit ; 30: e944364, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38807347

ABSTRACT

BACKGROUND This retrospective study aimed to evaluate the presentation, diagnosis, management, and outcomes of 27 patients diagnosed with osteogenesis imperfecta at a single center in Türkiye between January 2011 and January 2020. MATERIAL AND METHODS We analyzed data from the medical records of 27 patients with osteogenesis imperfecta admitted to Çukurova University Faculty of Medicine, Department of Orthopedics and Traumatology, between January 2011 and January 2020. The data included the clinical examination notes of the cases classified according to the Sillence and Shapiro systems, age, sex, parental consanguinity, genetic analysis (DNA isolation) results, the number and localization of past fractures, treatment methods, complications, hypermobility, and ambulation scoring. RESULTS The mean age of the patients (n=13 male, n=14 female) was 10.4±7.4 years, ranging from 3 to 39 years. Almost half (n=15, 55.6%) had consanguineous parents. The patients had 131 fractures during the 9 years between January 2011 and January 2020, with the femur being the most commonly fractured bone; 13 patients (48.15%) received surgical and conservative treatments, while the remaining 14 underwent only conservative treatments. The results revealed a strong association between the number of fractures and the types of genetic mutations (P=0.004). CONCLUSIONS Study findings indicate that the type of genetic mutation was not significantly correlated with the risk of treatment complications in osteogenesis imperfecta cases. Nevertheless, the study reveals a noteworthy association between the type of mutation and the number of surgeries required. Specifically, patients with the COL1A1 mutation needed more surgeries.


Subject(s)
Osteogenesis Imperfecta , Humans , Osteogenesis Imperfecta/diagnosis , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/therapy , Male , Female , Retrospective Studies , Child , Child, Preschool , Adult , Adolescent , Young Adult , Fractures, Bone/therapy , Fractures, Bone/diagnosis , Collagen Type I/genetics , Collagen Type I, alpha 1 Chain , Treatment Outcome , Consanguinity , Mutation/genetics
5.
Adv Rheumatol ; 64(1): 32, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664779

ABSTRACT

Hereditary connective tissue disorders include more than 200 conditions affecting different organs and tissues, compromising the biological role of the extracellular matrix through interference in the synthesis, development, or secretion of collagen and/or its associated proteins. The clinical phenotype includes multiple signs and symptoms, usually nonspecific but of interest to rheumatologists because of musculoskeletal involvement. The patient´s journey to diagnosis is long, and physicians should include these disorders in their differential diagnoses of diseases with systemic involvement. In this review, insights for the diagnosis and treatment of osteogenesis imperfecta, hypermobility spectrum disorder/Ehlers-Danlos syndrome, Marfan, Loeys-Dietz, and Stickler syndromes are presented.


Subject(s)
Connective Tissue Diseases , Humans , Arthritis , Collagen/genetics , Connective Tissue Diseases/genetics , Connective Tissue Diseases/therapy , Ehlers-Danlos Syndrome/genetics , Ehlers-Danlos Syndrome/diagnosis , Hearing Loss, Sensorineural , Joint Instability/genetics , Loeys-Dietz Syndrome/genetics , Loeys-Dietz Syndrome/diagnosis , Marfan Syndrome/genetics , Marfan Syndrome/diagnosis , Osteogenesis Imperfecta/genetics , Retinal Detachment
6.
J Bone Miner Res ; 39(2): 177-189, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38477760

ABSTRACT

Bone histomorphometry is a well-established approach to assessing skeletal pathology, providing a standard evaluation of the cellular components, architecture, mineralization, and growth of bone tissue. However, it depends in part on the subjective interpretation of cellular morphology by an expert, which introduces bias. In addition, diseases like osteogenesis imperfecta (OI) and fibrous dysplasia are accompanied by changes in the morphology and function of skeletal tissue and cells, hindering consistent evaluation of some morphometric parameters and interpretation of the results. For instance, traditional histomorphometry combined with collagen turnover markers suggested that reduced bone formation in classical OI is accompanied by increased bone resorption. In contrast, the well-documented postpubertal reduction in fractures would be easier to explain by reduced bone resorption after puberty, highlighting the need for less ambiguous measurements. Here we propose an approach to histomorphometry based on in situ mRNA hybridization, which uses Col1a1 as osteoblast and Ctsk as osteoclast markers. This approach can be fully automated and eliminates subjective identification of bone surface cells. We validate these markers based on the expression of Bglap, Ibsp, and Acp5. Comparison with traditional histological and tartrate-resistant acid phosphatase staining of the same sections suggests that mRNA-based analysis is more reliable. Unlike inconclusive traditional histomorphometry of mice with α2(I)-Gly610 to Cys substitution in the collagen triple helix, mRNA-based measurements reveal reduced osteoclastogenesis in 11-wk-old animals consistent with the postpubertal catch-up osteogenesis observed by microCT. We optimize the technique for cryosections of mineralized bone and sections of paraffin-embedded decalcified tissue, simplifying and broadening its applications. We illustrate the application of the mRNA-based approach to human samples using the example of a McCune-Albright syndrome patient. By eliminating confounding effects of altered cellular morphology and the need for subjective morphological evaluation, this approach may provide a more reproducible and accessible evaluation of bone pathology.


Subject(s)
Bone and Bones , Collagen Type I , Disease Models, Animal , Osteogenesis Imperfecta , Osteogenesis Imperfecta/pathology , Osteogenesis Imperfecta/metabolism , Osteogenesis Imperfecta/genetics , Animals , Mice , Bone and Bones/pathology , Bone and Bones/metabolism , Collagen Type I/metabolism , Collagen Type I/genetics , Collagen Type I, alpha 1 Chain , RNA, Messenger/metabolism , RNA, Messenger/genetics , Osteoclasts/metabolism , Osteoclasts/pathology , Puberty , Osteoblasts/metabolism , Osteoblasts/pathology , Biomarkers/metabolism , Osteogenesis
7.
Mol Biol Rep ; 51(1): 449, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536562

ABSTRACT

BACKGROUND: Osteogenesis imperfecta (OI) is a heritable connective tissue disorder characterized by bone deformities, fractures and reduced bone mass. OI can be inherited as a dominant, recessive, or X-linked disorder. The mutational spectrum has shown that autosomal dominant mutations in the type I collagen-encoding genes are responsible for OI in 85% of the cases. Apart from collagen genes, mutations in more than 20 other genes, such as CRTAP, CREB3L1, MBTPS2, P4HB, SEC24D, SPARC, FKBP10, LEPRE1, PLOD2, PPIB, SERPINF1, SERPINH1, SP7, WNT1, BMP1, TMEM38B, and IFITM5 have been reported in OI. METHODS AND RESULTS: To understand the genetic cause of OI in four cases, we conducted whole exome sequencing, followed by Sanger sequencing. In case #1, we identified a novel c.506delG homozygous mutation in the WNT1 gene, resulting in a frameshift and early truncation of the protein at the 197th amino acid. In cases #2, 3 and 4, we identified a heterozygous c.838G > A mutation in the COL1A2 gene, resulting in a p.Gly280Ser substitution. The clinvar frequency of this mutation is 0.000008 (GnomAD-exomes). This mutation has been identified by other studies as well and appears to be a mutational hot spot. These pathogenic mutations were found to be absent in 96 control samples analyzed for these sites. The presence of these mutations in the cases, their absence in controls, their absence or very low frequency in general population, and their evaluation using various in silico prediction tools suggested their pathogenic nature. CONCLUSIONS: Mutations in the WNT1 and COL1A2 genes explain these cases of osteogenesis imperfecta.


Subject(s)
Collagen Type I , Osteogenesis Imperfecta , Wnt1 Protein , Humans , Collagen Type I/genetics , Exome Sequencing , Mutation/genetics , Osteogenesis Imperfecta/genetics , Wnt1 Protein/genetics
9.
Int J Mol Sci ; 25(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38542391

ABSTRACT

(1) Mesenchymal stem cells (MSCs) are a valuable cell model to study the bone pathology of Osteogenesis Imperfecta (OI), a rare genetic collagen-related disorder characterized by bone fragility and skeletal dysplasia. We aimed to generate a novel OI induced mesenchymal stem cell (iMSC) model from induced pluripotent stem cells (iPSCs) derived from human dermal fibroblasts. For the first time, OI iMSCs generation was based on an intermediate neural crest cell (iNCC) stage. (2) Skin fibroblasts from healthy individuals and OI patients were reprogrammed into iPSCs and subsequently differentiated into iMSCs via iNCCs. (3) Successful generation of iPSCs from acquired fibroblasts was confirmed with changes in cell morphology, expression of iPSC markers SOX2, NANOG, and OCT4 and three germ-layer tests. Following differentiation into iNCCs, cells presented increased iNCC markers including P75NTR, TFAP2A, and HNK-1 and decreased iPSC markers, shown to reach the iNCC stage. Induction into iMSCs was confirmed by the presence of CD73, CD105, and CD90 markers, low expression of the hematopoietic, and reduced expression of the iNCC markers. iMSCs were trilineage differentiation-competent, confirmed using molecular analyses and staining for cell-type-specific osteoblast, adipocyte, and chondrocyte markers. (4) In the current study, we have developed a multipotent in vitro iMSC model of OI patients and healthy controls able to differentiate into osteoblast-like cells.


Subject(s)
Induced Pluripotent Stem Cells , Mesenchymal Stem Cells , Osteogenesis Imperfecta , Humans , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/metabolism , Cell Differentiation , Collagen/metabolism , Skin , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics
10.
Differentiation ; 136: 100757, 2024.
Article in English | MEDLINE | ID: mdl-38437764

ABSTRACT

Collagen is a highly abundant protein in the extracellular matrix of humans and mammals, and it plays a critical role in maintaining the body's structural integrity. Type I collagen is the most prevalent collagen type and is essential for the structural integrity of various tissues. It is present in nearly all connective tissues and is the main constituent of the interstitial matrix. Mutations that affect collagen fiber formation, structure, and function can result in various bone pathologies, underscoring the significance of collagen in sustaining healthy bone tissue. Studies on type 1 collagen have revealed that mutations in its encoding gene can lead to diverse bone diseases, such as osteogenesis imperfecta, a disorder characterized by fragile bones that are susceptible to fractures. Knowledge of collagen's molecular structure, synthesis, assembly, and breakdown is vital for comprehending embryonic and foetal development and several aspects of human physiology. In this review, we summarize the structure, molecular biology of type 1 collagen, its biomineralization and pathologies affecting bone.


Subject(s)
Collagen Type I , Osteogenesis Imperfecta , Animals , Humans , Collagen Type I/genetics , Collagen Type I/metabolism , Calcification, Physiologic/genetics , Collagen/metabolism , Osteogenesis Imperfecta/genetics , Bone and Bones , Mutation , Mammals/metabolism
11.
Hum Cell ; 37(3): 817-831, 2024 May.
Article in English | MEDLINE | ID: mdl-38379122

ABSTRACT

Van der Hoeve's syndrome, also known as osteogenesis imperfecta (OI), is a genetic connective tissue disorder characterized by fragile, fracture-prone bone and hearing loss. The disease is caused by a gene mutation in one of the two type I collagen genes COL1A1 or COL1A2. In this study, we identified a novel frameshift mutation of the COL1A1 gene (c.1607delG) in a family with OI using whole-exome sequencing, bioinformatics analysis and Sanger sequencing. This mutation may lead to the deletion of a portion of exon 23 and the generation of a premature stop codon in the COL1A1 gene. To further investigate the impact of this mutation, we established two induced pluripotent stem cell (iPSC) lines from peripheral blood mononuclear cells of OI patients carrying a novel mutation in the COL1A1 gene. Osteoblasts (OB) derived from OI-iPSCs exhibited reduced production of type I collagen and diminished ability to differentiate into osteoblasts. Using a CRISPR-based homology-directed repair strategy, we corrected the OI disease-causing COL1A1 novel mutations in iPSCs generated from an affected individual. Our results demonstrated that the diminished expression of type I collagen and osteogenic potential were enhanced in OB induced from corrected OI-iPSCs compared to those from OI-iPSCs. Overall, our results provide new insights into the genetic basis of Van der Hoeve's syndrome and highlight the potential of iPSC technology for disease modeling and therapeutic development.


Subject(s)
Induced Pluripotent Stem Cells , Osteogenesis Imperfecta , Humans , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/therapy , Collagen Type I/genetics , Leukocytes, Mononuclear , CRISPR-Cas Systems/genetics , Collagen Type I, alpha 1 Chain , Mutation
12.
Eur J Med Genet ; 68: 104926, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38369057

ABSTRACT

Osteogenesis imperfecta (OI) is a rare phenotypically and genetically heterogeneous group of inherited skeletal dysplasias. The hallmark features of OI include bone fragility and susceptibility to fractures, bone deformity, and diminished growth, along with a plethora of associated secondary features (both skeletal and extraskeletal). The diagnosis of OI is currently made on clinical grounds and may be confirmed by genetic testing. However, imaging remains pivotal in the evaluation of this disease. The aim of this article is to review the current role played by the various radiologic techniques in the diagnosis and monitoring of OI in the postnatal setting as well as to discuss recent advances and future perspectives in OI imaging. Conventional Radiography and Dual-energy X-ray Absorptiometry (DXA) are currently the two most used imaging modalities in OI. The cardinal radiographic features of OI include generalized osteopenia/osteoporosis, bone deformities, and fractures. DXA is currently the most available technique to assess Bone Mineral Density (BMD), specifically areal BMD (aBMD). However, DXA has important limitations and cannot fully characterize bone fragility in OI based on aBMD. Novel DXA-derived parameters, such as Trabecular Bone Score (TBS), may provide further insight into skeletal changes induced by OI, but evidence is still limited. Techniques like Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) can be useful as problem-solvers or in specific settings, including the evaluation of cranio-cervical abnormalities. Recent evidence supports the use of High-Resolution peripheral Quantitative Computed Tomography (HR-pQCT) as a promising tool to improve the characterization of bone fragility in OI. However, HR-pQCT remains a primarily research technique at present. Quantitative Computed Tomography (QCT) is an alternative to DXA for the determination of BMD at central sites, with distinct advantages but considerably higher radiation exposure. Quantitative Ultrasound (QUS) is a portable, inexpensive, and radiation-free modality that may complement DXA evaluation, providing information on bone quality. However, evidence of usefulness of QUS in OI is poor. Radiofrequency Echographic Multi Spectrometry (REMS) is an emerging non-ionizing imaging method that holds promise for the diagnosis of low BMD and for the prediction of fracture risk, but so far only one published study has investigated its role in OI. To conclude, several different radiologic techniques have proven to be effective in the diagnosis and monitoring of OI, each with their own specificities and peculiarities. Clinicians should be aware of the strategic role of the various modalities in the different phases of the patient care process. In this scenario, the development of international guidelines including recommendations on the role of imaging in the diagnosis and monitoring of OI, accompanied by continuous active research in the field, could significantly improve the standardization of patient care.


Subject(s)
Fractures, Bone , Osteogenesis Imperfecta , Osteoporosis , Humans , Osteogenesis Imperfecta/diagnostic imaging , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/pathology , Bone Density , Absorptiometry, Photon/methods , Fractures, Bone/diagnostic imaging
13.
Fetal Diagn Ther ; 51(3): 285-299, 2024.
Article in English | MEDLINE | ID: mdl-38346409

ABSTRACT

INTRODUCTION: Counseling osteogenesis imperfecta (OI) pregnancies is challenging due to the wide range of onsets and clinical severities, from perinatal lethality to milder forms detected later in life. METHODS: Thirty-eight individuals from 36 families were diagnosed with OI through prenatal ultrasonography and/or postmortem clinical and radiographic findings. Genetic analysis was conducted on 26 genes associated with OI in these subjects that emerged over the past 20 years; while some genes were examined progressively, all 26 genes were examined in the group where no pathogenic variations were detected. RESULTS: Prenatal and postnatal observations both consistently showed short limbs in 97%, followed by bowing of the long bones in 89%. Among 32 evaluated cases, all exhibited cranial hypomineralization. Fractures were found in 29 (76%) cases, with multiple bones involved in 18 of them. Genetic associations were disclosed in 27 families with 22 (81%) autosomal dominant and five (19%) autosomal recessive forms, revealing 25 variants in six genes (COL1A1, COL1A2, CREB3L1, P3H1, FKBP10, and IFITM5), including nine novels. Postmortem radiological examination showed variability in intrafamily expression of CREBL3- and P3H1-related OI. CONCLUSION: Prenatal diagnosis for distinguishing OI and its subtypes relies on factors such as family history, timing, ultrasound, genetics, and postmortem evaluation.


Subject(s)
Osteogenesis Imperfecta , Humans , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/diagnostic imaging , Female , Pregnancy , Ultrasonography, Prenatal , Collagen Type I, alpha 1 Chain , Tacrolimus Binding Proteins/genetics , Male , Collagen Type I/genetics , Autopsy , Prolyl Hydroxylases/genetics , Adult , Membrane Glycoproteins , Membrane Proteins , Proteoglycans
14.
J Clin Endocrinol Metab ; 109(7): 1873-1882, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38181430

ABSTRACT

CONTEXT: The comparative effectiveness of denosumab and zoledronic acid for adult patients with osteogenesis imperfecta (OI) has not been established. OBJECTIVE: To evaluate the efficacy and safety of denosumab and zoledronic acid in adult patients with OI. METHODS: This was a prospective, open-label study. Patients were randomized to receive denosumab 60 mg every 6 months or zoledronic acid 5 mg once for 12 months. Pathogenic mutations of OI were identified by next-generation sequencing and confirmed by Sanger sequencing. Percentage changes in the areal bone mineral density (aBMD), trabecular bone score (TBS), and bone turnover biomarkers (BTMs) from baseline to 6 and 12 months of treatment, as well as safety, were evaluated. RESULTS: A total of 51 adults with OI (denosumab: 25, zoledronic acid: 26) were included, of whom 49 patients had identified pathogenic mutations. At 12 months, aBMD at the lumbar spine and total hip significantly increased by 4.34% (P = .005) and 1.45% (P = .023) in the denosumab group and by 4.92% (P = .006) and 2.02% (P = .016) in the zoledronic acid group, respectively. TBS showed an increasing trend by 1.39% and 2.70% in denosumab and zoledronic acid groups, respectively. Serum levels of ß-isomerized carboxy-telopeptide of type I collagen and alkaline phosphatase markedly decreased after denosumab treatment. Percentage changes in aBMD, TBS, and BTMs during the treatment were similar between the 2 groups. Patients with OI with milder phenotypes showed a significantly higher increase in the TBS after 12 months of denosumab treatment than those with more severe phenotypes (P = .030). During the study period, the denosumab group had fewer adverse events than the zoledronic acid group. CONCLUSION: Denosumab effectively increases aBMD in adults with OI, with similar efficacy to zoledronic acid. Long-term and large-sample studies are needed to confirm the antifracture efficacy and safety of denosumab in adult patients with OI.


Subject(s)
Bone Density Conservation Agents , Bone Density , Denosumab , Osteogenesis Imperfecta , Zoledronic Acid , Humans , Denosumab/therapeutic use , Denosumab/adverse effects , Denosumab/administration & dosage , Zoledronic Acid/therapeutic use , Zoledronic Acid/administration & dosage , Zoledronic Acid/adverse effects , Female , Male , Adult , Bone Density Conservation Agents/therapeutic use , Bone Density Conservation Agents/administration & dosage , Bone Density Conservation Agents/adverse effects , Osteogenesis Imperfecta/drug therapy , Osteogenesis Imperfecta/genetics , Bone Density/drug effects , Prospective Studies , Treatment Outcome , Bone Remodeling/drug effects , Young Adult , Middle Aged
15.
Calcif Tissue Int ; 114(3): 210-221, 2024 03.
Article in English | MEDLINE | ID: mdl-38243143

ABSTRACT

Osteogenesis imperfecta (OI) is a rare genetic disorder caused by abnormal collagen type I production. While OI is primarily characterized by bone fragility and deformities, patients also have extraskeletal manifestations, including an increased risk of cardiovascular disease. This review provides a comprehensive overview of the literature on cardiovascular diseases in OI patients in order to raise awareness of this understudied clinical aspect of OI and support clinical guidelines. In accordance with the PRISMA guidelines, a systematic literature search in PubMed, Embase, Web of Science and Scopus was conducted that included articles from the inception of these databases to April 2023. Valvular disease, heart failure, atrial fibrillation, and hypertension appear to be more prevalent in OI than in control individuals. Moreover, a larger aortic root was observed in OI compared to controls. Various cardiovascular diseases appear to be more prevalent in OI than in controls. These cardiovascular abnormalities are observed in all types of OI and at all ages, including young children. As there are insufficient longitudinal studies, it is unknown whether these abnormalities are progressive in nature in OI patients. Based on these findings, we would recommend referring individuals with OI to a cardiologist with a low-threshold.


Subject(s)
Cardiovascular Abnormalities , Cardiovascular Diseases , Osteogenesis Imperfecta , Child , Humans , Child, Preschool , Osteogenesis Imperfecta/genetics , Cardiovascular Diseases/complications , Cardiovascular Abnormalities/complications , Collagen Type I , Longitudinal Studies
16.
J Clin Endocrinol Metab ; 109(7): 1803-1813, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38214665

ABSTRACT

OBJECTIVE: Deficiency of cartilage-associated protein (CRTAP) can cause extremely rare autosomal recessive osteogenesis imperfecta (OI) type VII. We investigated the pathogenic mechanisms of CRTAP variants through functional studies on bones of patients with OI. METHODS: Two nonconsanguineous families with CRTAP mutations were included and their phenotypes and genotypes were evaluated. Bone specimens were obtained from 1 patient with OI and a normal control during orthopedic surgery. The impacts of the novel variant on the CRTAP transcript were confirmed. The expression levels of CRTAP mRNA and CRTAP protein were analyzed. The quantification of prolyl 3-hydroxylation in the α1 chain of type I collagen was evaluated. RESULTS: Patients with OI type VII had early-onset recurrent fractures, severe osteoporosis, and bone deformities. The c.621 + 1G > A and c.1153-3C > G mutations were identified in CRTAP in the patients with OI. The c.621 + 1G > A variant was a novel mutation that could impair mRNA transcription, leading to a truncated CRTAP protein. In a patient with c.621 + 1G > A and c.1153-3C > G mutations in CRTAP, the mRNA and protein levels of CRTAP in osteoblasts were significantly decreased and the osteoid volume and osteoblast numbers were markedly reduced compared with those in the normal control individual. This was simultaneously accompanied by significantly reduced prolyl 3-hydroxylation at Pro986 in the α1 chain of type I collagen and invisible active bone formation in bone. CONCLUSION: The novel c.621 + 1G > A mutation in CRTAP expands the genotypic spectrum of type VII OI. Biallelic mutations of c.621 + 1G > A and c.1153-3C > G in CRTAP can lead to reduced CRTAP mRNA and deficient CRTAP protein in osteoblasts, which reduces 3-hydroxylation in Pro986 of the α1 chain of type I collagen and impairs bone formation, thus contributing to severe OI type VII.


Subject(s)
Extracellular Matrix Proteins , Molecular Chaperones , Osteogenesis Imperfecta , Phenotype , Humans , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/pathology , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Male , Female , Molecular Chaperones/genetics , Mutation , Child , Pedigree , Child, Preschool , Collagen Type I/genetics , Collagen Type I/metabolism , Genotype , Osteoblasts/metabolism , Osteoblasts/pathology , Collagen Type I, alpha 1 Chain , Adult , Adolescent
17.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(1): 38-41, 2024 Jan 10.
Article in Chinese | MEDLINE | ID: mdl-38171557

ABSTRACT

OBJECTIVE: To obtain skin-derived induced pluripotent stem cells (iPSCs) from an Osteogenesis imperfecta (OI) patient carrying WNT1c.677C>T mutation in order to provide a new cell model for investigating the underlying molecular mechanism and stem cell therapy for OI. METHODS: The pathogenic variant of the patient was identified by Sanger sequencing. With informed consent from the patient, skin tissue was biopsied, and primary skin fibroblasts were cultured. Skin fibroblasts were induced into iPSCs using Sendai virus-mediated non-genomic integration reprogramming method. The iPSC cell lines were characterized for pluripotency, differentiation capacity, and karyotyping assay. RESULTS: The patient was found to carry homozygous missense c.677C>T (p.Ser226Leu) mutation of the WNT1 gene. The established iPSC lines possessed self-renewal and capacity for in vitro differentiation. It also has a diploid karyotype (46,XX). CONCLUSION: A patient-specific WNT1 gene mutation (WNT1c.677C>T) iPSC line was established, which can provide a cell model for the study of OI caused by the mutation.


Subject(s)
Induced Pluripotent Stem Cells , Osteogenesis Imperfecta , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Osteogenesis Imperfecta/genetics , Mutation , Cell Differentiation/genetics , Cell Line
18.
Anat Rec (Hoboken) ; 307(3): 600-610, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37638385

ABSTRACT

Osteogenesis imperfecta (OI), a disorder of type I collagen, causes skeletal deformities as well as defects in dental tissues, which lead to increased enamel wear and smaller teeth with shorter roots. Mice with OI exhibit similar microstructural dentin changes, including reduced dentin tubule density and dentin cross-sectional area. However, the effects of these mutations on gross dental morphology and dental tissue volumes have never been characterized in the osteogenesis imperfecta murine (OIM) mouse model. Here we compare mineralized dental tissue measurements of OIM mice and unaffected wild type (WT) littermates at the juvenile and adult stages. The maxillary and mandibular incisors and first molars were isolated from microCT scans, and tissue volumes and root length were measured. OIM mice have smaller teeth with shorter roots relative to WT controls. Maxillary incisor volumes differed significantly between OIM and WT mice at both the juvenile and young adult stage, perhaps due to shortening of the maxilla itself in OIM mice. Additionally, adult OIM mice have significantly less crown enamel volume than do juveniles, potentially due to loss through wear. Thus, OIM mice demonstrate a dental phenotype similar to humans with OI, with decreased tooth size, decreased root length, and accelerated enamel wear. Further investigation of dental development in the OIM mouse may have important implications for the development and treatment of dental issues in OI patients.


Subject(s)
Osteogenesis Imperfecta , Mice , Humans , Animals , Osteogenesis Imperfecta/genetics , Collagen Type I , Phenotype , Mutation , Incisor , Disease Models, Animal
19.
Anat Rec (Hoboken) ; 307(3): 581-591, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37638403

ABSTRACT

Osteogenesis imperfecta (OI) is a disorder of type I collagen characterized by abnormal bone formation. The OI craniofacial phenotype includes midfacial underdevelopment, as well as neurocranial changes (e.g., macrocephaly and platybasia) that may also affect underlying nervous tissues. This study aims to better understand how OI affects the integrated development of the neurocranium and the brain. Juvenile and adult mice with OI (OIM) and unaffected wild type (WT) littermates were imaged using in vivo micro-computed tomography (microCT). Virtual endocast models were used to measure brain volume, and 3D landmarks were collected from the cranium and brain endocasts. Geometric morphometric analyses were used to compare brain shape and integration between the genotypes. OIM mice had increased brain volumes (relative to cranial centroid size) only at the juvenile stage. No significant difference was seen in cranial base angle (CBA) between OIM and WT mice. However, CBA was higher in juvenile than in adult OIM mice. Brain shape was significantly different between OIM and WT mice at both stages, with OIM mice having more globular brains than WT mice. Neurocranial and brain morphology were strongly integrated within both genotypes, while adult OIM mice tended to have lower levels of skull-brain integration than WT mice. These results suggest that neurocranial dysmorphologies in OI may be more severe at earlier stages of postnatal development. Decreased skull-brain integration in adult mice suggests that compensatory mechanisms may exist during postnatal growth to maintain neurological function despite significant changes in neurocranial morphology.


Subject(s)
Osteogenesis Imperfecta , Mice , Animals , Osteogenesis Imperfecta/diagnostic imaging , Osteogenesis Imperfecta/genetics , X-Ray Microtomography , Collagen Type I , Skull/diagnostic imaging , Phenotype , Disease Models, Animal , Osteogenesis
20.
Orthod Craniofac Res ; 27(2): 237-243, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37642979

ABSTRACT

INTRODUCTION: Cranio-cervical anomalies are significant complications of osteogenesis imperfecta (OI), a rare bone fragility disorder that is usually caused by mutations in collagen type I encoding genes. OBJECTIVE: To assess cranio-cervical anomalies and associated clinical findings in patients with moderate-to-severe OI using 3D cone beam computed tomography (CBCT) scans. METHODS: Cross-sectional analysis of CBCT scans in 52 individuals with OI (age 10-37 years; 32 females) and 40 healthy controls (age 10-32 years; 26 females). Individuals with a diagnosis of OI type III (severe, n = 11), type IV (moderate, n = 33) and non-collagen OI (n = 8) were recruited through the Brittle Bone Disorders Consortium. Controls were recruited through the orthodontic clinic of the University of Missouri-Kansas City (UMKC). RESULTS: OI and control groups were similar in mean age (OI: 18.4 [SD: 7.2] years, controls: 18.1 [SD: 6.3] years). The cranial base angle was increased in the OI group (OI: mean 148.6° [SD: 19.3], controls: mean 130.4° [SD: 5.7], P = .001), indicating a flatter cranial base. Protrusion of the odontoid process into the foramen magnum (n = 7, 14%) and abnormally located odontoid process (n = 19, 37%) were observed in the OI group but not in controls. Low stature, expressed as height z-score (P = .01), presence of DI (P = .04) and being male (P = .04) were strong predictors of platybasia, whereas height z-score (P = .049) alone was found as positive predictor for basilar impression as per the Chamberlain measurement. CONCLUSION: The severity of the phenotype in OI, as expressed by the height z-score, correlates with the severity of cranial base anomalies such as platybasia and basilar impression in moderate-to-severe OI. Screening for cranial base anomalies is advisable in individuals with moderate-to-severe OI, with special regards to the individuals with a shorter stature and DI.


Subject(s)
Osteogenesis Imperfecta , Platybasia , Female , Humans , Male , Adolescent , Child , Young Adult , Adult , Osteogenesis Imperfecta/diagnostic imaging , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/complications , Platybasia/complications , Cross-Sectional Studies , Genotype , Phenotype , Mutation , Collagen Type I/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...