Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.338
Filter
1.
Int J Mol Med ; 54(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38940355

ABSTRACT

The ubiquitin (Ub)­proteasome system (UPS) plays a pivotal role in maintaining protein homeostasis and function to modulate various cellular processes including skeletal cell differentiation and bone homeostasis. The Ub ligase E3 promotes the transfer of Ub to the target protein, especially transcription factors, to regulate the proliferation, differentiation and survival of bone cells, as well as bone formation. In turn, the deubiquitinating enzyme removes Ub from modified substrate proteins to orchestrate bone remodeling. As a result of abnormal regulation of ubiquitination, bone cell differentiation exhibits disorder and then bone homeostasis is affected, consequently leading to osteoporosis. The present review discussed the role and mechanism of UPS in bone remodeling. However, the specific mechanism of UPS in the process of bone remodeling is still not fully understood and further research is required. The study of the mechanism of action of UPS can provide new ideas and methods for the prevention and treatment of osteoporosis. In addition, the most commonly used osteoporosis drugs that target ubiquitination processes in the clinic are discussed in the current review.


Subject(s)
Osteoporosis , Ubiquitin , Ubiquitination , Humans , Osteoporosis/metabolism , Osteoporosis/pathology , Animals , Ubiquitin/metabolism , Proteasome Endopeptidase Complex/metabolism , Bone Remodeling , Ubiquitin-Protein Ligases/metabolism
2.
Cell Mol Life Sci ; 81(1): 260, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878096

ABSTRACT

The pathological advancement of osteoporosis is caused by the uneven development of bone marrow-derived mesenchymal stem cells (BMSCs) in terms of osteogenesis and adipogenesis. While the role of EEF1B2 in intellectual disability and tumorigenesis is well established, its function in the bone-fat switch of BMSCs is still largely unexplored. During the process of osteogenic differentiation, we observed an increase in the expression of EEF1B2, while a decrease in its expression was noted during adipogenesis. Suppression of EEF1B2 hindered the process of osteogenic differentiation and mineralization while promoting adipogenic differentiation. On the contrary, overexpression of EEF1B2 enhanced osteogenesis and strongly inhibited adipogenesis. Furthermore, the excessive expression of EEF1B2 in the tibias has the potential to mitigate bone loss and decrease marrow adiposity in mice with osteoporosis. In terms of mechanism, the suppression of ß-catenin activity occurred when EEF1B2 function was suppressed during osteogenesis. Our collective findings indicate that EEF1B2 functions as a regulator, influencing the differentiation of BMSCs and maintaining a balance between bone and fat. Our finding highlights its potential as a therapeutic target for diseases related to bone metabolism.


Subject(s)
Adipogenesis , Cell Differentiation , Mesenchymal Stem Cells , Osteogenesis , Osteoporosis , Wnt Signaling Pathway , beta Catenin , Animals , Male , Mice , Adipogenesis/genetics , beta Catenin/metabolism , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , Cells, Cultured , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mice, Inbred C57BL , Osteogenesis/genetics , Osteoporosis/metabolism , Osteoporosis/pathology , Peptide Elongation Factor 1/metabolism , Guanine Nucleotide Exchange Factors/metabolism
3.
J Nanobiotechnology ; 22(1): 361, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38910236

ABSTRACT

Recently, environmental temperature has been shown to regulate bone homeostasis. However, the mechanisms by which cold exposure affects bone mass remain unclear. In our present study, we observed that exposure to cold temperature (CT) decreased bone mass and quality in mice. Furthermore, a transplant of exosomes derived from the plasma of mice exposed to cold temperature (CT-EXO) can also impair the osteogenic differentiation of BMSCs and decrease bone mass by inhibiting autophagic activity. Rapamycin, a potent inducer of autophagy, can reverse cold exposure or CT-EXO-induced bone loss. Microarray sequencing revealed that cold exposure increases the miR-25-3p level in CT-EXO. Mechanistic studies showed that miR-25-3p can inhibit the osteogenic differentiation and autophagic activity of BMSCs. It is shown that inhibition of exosomes release or downregulation of miR-25-3p level can suppress CT-induced bone loss. This study identifies that CT-EXO mediates CT-induced osteoporotic effects through miR-25-3p by inhibiting autophagy via targeting SATB2, presenting a novel mechanism underlying the effect of cold temperature on bone mass.


Subject(s)
Autophagy , Cold Temperature , Exosomes , Mice, Inbred C57BL , MicroRNAs , Osteogenesis , Animals , Autophagy/drug effects , Mice , Exosomes/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Osteogenesis/drug effects , Mesenchymal Stem Cells/metabolism , Osteoporosis/pathology , Cell Differentiation/drug effects , Bone and Bones/metabolism , Female , Bone Density , Sirolimus/pharmacology
4.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928460

ABSTRACT

Osteoporosis, a prevalent chronic health issue among the elderly, is a global bone metabolic disease. Flavonoids, natural active compounds widely present in vegetables, fruits, beans, and cereals, have been reported for their anti-osteoporotic properties. Onion is a commonly consumed vegetable rich in flavonoids with diverse pharmacological activities. In this study, the trabecular structure was enhanced and bone mineral density (BMD) exhibited a twofold increase following oral administration of onion flavonoid extract (OFE). The levels of estradiol (E2), calcium (Ca), and phosphorus (P) in serum were significantly increased in ovariectomized (OVX) rats, with effects equal to alendronate sodium (ALN). Alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) levels in rat serum were reduced by 35.7% and 36.9%, respectively, compared to the OVX group. In addition, the effects of OFE on bone health were assessed using human osteoblast-like cells MG-63 and osteoclast precursor RAW 264.7 cells in vitro as well. Proliferation and mineralization of MG-63 cells were promoted by OFE treatment, along with increased ALP activity and mRNA expression of osteoprotegerin (OPG)/receptor activator of nuclear factor-kappaB ligand (RANKL). Additionally, RANKL-induced osteoclastogenesis and osteoclast activity were inhibited by OFE treatment through decreased TRAP activity and down-regulation of mRNA expression-related enzymes in RAW 264.7 cells. Overall findings suggest that OFE holds promise as a natural functional component for alleviating osteoporosis.


Subject(s)
Cell Differentiation , Cell Proliferation , Flavonoids , Onions , Osteoblasts , Osteogenesis , Osteoporosis , Plant Extracts , RANK Ligand , Animals , Osteoblasts/drug effects , Osteoblasts/metabolism , RANK Ligand/metabolism , Osteoporosis/drug therapy , Osteoporosis/metabolism , Osteoporosis/pathology , Flavonoids/pharmacology , Mice , Onions/chemistry , Cell Differentiation/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Rats , Cell Proliferation/drug effects , RAW 264.7 Cells , Osteogenesis/drug effects , Humans , Female , Osteoclasts/drug effects , Osteoclasts/metabolism , Bone Density/drug effects , Ovariectomy , Rats, Sprague-Dawley , Osteoprotegerin/metabolism , Osteoprotegerin/genetics
5.
Front Endocrinol (Lausanne) ; 15: 1378291, 2024.
Article in English | MEDLINE | ID: mdl-38868747

ABSTRACT

Introduction: Liraglutide (Lrg), a novel anti-diabetic drug that mimics the endogenous glucagon-like peptide-1 to potentiate insulin secretion, is observed to be capable of partially reversing osteopenia. The aim of the present study is to further investigate the efficacy and potential anti-osteoporosis mechanisms of Lrg for improving bone pathology, bone- related parameters under imageology, and serum bone metabolism indexes in an animal model of osteoporosis with or without diabetes. Methods: Eight databases were searched from their inception dates to April 27, 2024. The risk of bias and data on outcome measures were analyzed by the CAMARADES 10-item checklist and Rev-Man 5.3 software separately. Results: Seventeen eligible studies were ultimately included in this review. The number of criteria met in each study varied from 4/10 to 8/10 with an average of 5.47. The aspects of blinded induction of the model, blinding assessment of outcome and sample size calculation need to be strengthened with emphasis. The pre-clinical evidence reveals that Lrg is capable of partially improving bone related parameters under imageology, bone pathology, and bone maximum load, increasing serum osteocalcin, N-terminal propeptide of type I procollagen, and reducing serum c-terminal cross-linked telopeptide of type I collagen (P<0.05). Lrg reverses osteopenia likely by activating osteoblast proliferation through promoting the Wnt signal pathway, p-AMPK/PGC1α signal pathway, and inhibiting the activation of osteoclasts by inhibiting the OPG/RANKL/RANK signal pathway through anti-inflammatory, antioxidant and anti-autophagic pathways. Furthermore, the present study recommends that more reasonable usage methods of streptozotocin, including dosage and injection methods, as well as other types of osteoporosis models, be attempted in future studies. Discussion: Based on the results, this finding may help to improve the priority of Lrg in the treatment of diabetes patients with osteoporosis.


Subject(s)
Disease Models, Animal , Glucagon-Like Peptide-1 Receptor , Liraglutide , Osteoporosis , Liraglutide/therapeutic use , Liraglutide/pharmacology , Animals , Osteoporosis/drug therapy , Osteoporosis/etiology , Osteoporosis/pathology , Glucagon-Like Peptide-1 Receptor/agonists , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Bone Density/drug effects
6.
Front Endocrinol (Lausanne) ; 15: 1394785, 2024.
Article in English | MEDLINE | ID: mdl-38883597

ABSTRACT

Osteoporosis (OP) is a chronic systemic bone metabolism disease characterized by decreased bone mass, microarchitectural deterioration, and fragility fractures. With the demographic change caused by long lifespans and population aging, OP is a growing health problem. The role of miRNA in the pathogenesis of OP has also attracted widespread attention from scholars in recent years. Type H vessels are unique microvessels of the bone and have become a new focus in the pathogenesis of OP because they play an essential role in osteogenesis-angiogenesis coupling. Previous studies found some miRNAs regulate type H vessel formation through the regulatory factors, including platelet-derived growth factor-BB (PDGF-BB), hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor (VEGF), and so on. These findings help us gain a more in-depth understanding of the relationship among miRNAs, type H vessels, and OP to find a new perspective on treating OP. In the present mini-review, we will introduce the role of type H vessels in the pathogenesis of OP and the regulation of miRNAs on type H vessel formation by affecting regulatory factors to provide some valuable insights for future studies of OP treatment.


Subject(s)
MicroRNAs , Osteoporosis , Animals , Humans , Bone and Bones/blood supply , Bone and Bones/metabolism , Bone and Bones/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Microvessels/pathology , Microvessels/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Osteogenesis/genetics , Osteogenesis/physiology , Osteoporosis/genetics , Osteoporosis/metabolism , Osteoporosis/pathology
7.
Sci Rep ; 14(1): 13441, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862780

ABSTRACT

The present study aims to explore the etiology of Diabetic osteoporosis (DOP), a chronic complication associated with diabetes mellitus. Specifically, the research seeks to identify potential miRNA biomarkers of DOP and investigated role in regulating osteoblasts. To achieve this, an animal model of DOP was established through the administration of a high-sugar and high-fat diet, and then injection of streptozotocin. Bone microarchitecture and histopathology analysis were analyzed. Rat calvarial osteoblasts (ROBs) were stimulated with high glucose (HG). MiRNA profiles of the stimulated osteoblasts were compared to control osteoblasts using sequencing. Proliferation and mineralization abilities were assessed using MTT assay, alkaline phosphatase, and alizarin red staining. Expression levels of OGN, Runx2, and ALP were determined through qRT-PCR and Western blot. MiRNA-sequencing results revealed increased miRNA-702-5p levels. Luciferase reporter gene was utilized to study the correlation between miR-702-5p and OGN. High glucose impaired cell proliferation and mineralization in vitro by inhibiting OGN, Runx2, and ALP expressions. Interference with miR-702-5p decreased OGN, Runx2, and ALP levels, which were restored by OGN overexpression. Additionally, downregulation of OGN and Runx2 in DOP rat femurs was confirmed. Therefore, the miRNA-702-5p/OGN/Runx2 signaling axis may play a role in DOP, and could be diagnostic biomarker and therapeutic target for not only DOP but also other forms of osteoporosis.


Subject(s)
Glucose , MicroRNAs , Osteoblasts , Osteoporosis , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Osteoblasts/metabolism , Osteoporosis/genetics , Osteoporosis/metabolism , Osteoporosis/pathology , Osteoporosis/etiology , Rats , Glucose/metabolism , Glucose/pharmacology , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Cell Proliferation , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/genetics , Male , Rats, Sprague-Dawley
8.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 155-163, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836666

ABSTRACT

Osteoporosis is a condition with reduced bone mass and disrupted architecture. Osteoporosis affects the Temporomandibular disorders (TMD) by changing bone density and quality. This study aims to determine the nature and extent of temporomandibular joint (TMJ) involvement in osteoporotic patients by correlating TMJ morphological changes detected by CBCT with systemic bone health indicated by BMD T-scores from DEXA and analyzing BTMs in serum and saliva. This study was a cross-sectional study conducted from May 2021 to December 2022. It involved 50 participants divided into two groups (N=25). One group was healthy male, while the other group had osteoporosis male. Saliva and blood samples were collected, and diagnostic imaging was conducted. The prevalence of various bone changes in the condyle was examined using CBCT. Erosion was found to be the most common, followed by Flattening, Osteophyte, and Subchondral cysts. The study group had significantly higher rates of smooth condyle, erosive lesions, and osteophytes compared to the control group. Pseudocyst decreased on the right side but increased on the left side. Pain on the right side increased more in the study group, and the T score for osteoporosis was higher in the study group. Joint spaces, condyle diameter, and glenoid cavity measurements differed significantly between sick and healthy people, as shown by CBCT (P≤0.001). Only the ALP parameter in the serum showed a significant increase in the study group compared to the control group. Saliva analysis revealed higher levels of calcium, osteocalcin, and ALP in the case group compared to the control group. The results of this study showed that CBCT as a specialized technique in imaging by providing detailed images can be used to evaluate osteoporosis and be used as an accurate diagnostic tool.


Subject(s)
Biomarkers , Osteoporosis , Temporomandibular Joint , Humans , Male , Cross-Sectional Studies , Osteoporosis/diagnostic imaging , Osteoporosis/pathology , Temporomandibular Joint/diagnostic imaging , Temporomandibular Joint/pathology , Middle Aged , Biomarkers/blood , Saliva/metabolism , Cone-Beam Computed Tomography/methods , Bone Density , Aged , Adult , Temporomandibular Joint Disorders/diagnostic imaging , Temporomandibular Joint Disorders/pathology
9.
Sci Rep ; 14(1): 12967, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839844

ABSTRACT

Osteoporosis is a common skeletal disease affecting millions of individuals world-wide, with an increased risk of fracture, and a decreased quality of life. Despite its well-known consequences, the etiology of osteoporosis and optimal treatment methods are not fully understood. Human genetic studies have identified genetic variants within the FMN2/GREM2 locus to be associated with trabecular volumetric bone mineral density (vBMD) and vertebral and forearm fractures, but not with cortical bone parameters. GREM2 is a bone morphogenetic protein (BMP) antagonist. In this study, we employed Grem2-deficient mice to investigate whether GREM2 serves as the plausible causal gene for the fracture signal at the FMN2/GREM2 locus. We observed that Grem2 is moderately expressed in bone tissue and particularly in osteoblasts. Complete Grem2 gene deletion impacted mouse survival and body growth. Partial Grem2 inactivation in Grem2+/- female mice led to increased trabecular BMD of femur and increased trabecular bone mass in tibia due to increased trabecular thickness, with an unchanged cortical thickness, as compared with wildtype littermates. Furthermore, Grem2 inactivation stimulated osteoblast differentiation, as evidenced by higher alkaline phosphatase (Alp), osteocalcin (Bglap), and osterix (Sp7) mRNA expression after BMP-2 stimulation in calvarial osteoblasts and osteoblasts from the long bones of Grem2-/- mice compared to wildtype littermates. These findings suggest that GREM2 is a possible target for novel osteoporotic treatments, to increase trabecular bone mass and prevent osteoporotic fractures.


Subject(s)
Bone Density , Cancellous Bone , Osteoblasts , Animals , Female , Mice , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/genetics , Cancellous Bone/metabolism , Cancellous Bone/pathology , Cell Differentiation , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Mice, Knockout , Osteoblasts/metabolism , Osteogenesis/genetics , Osteoporosis/genetics , Osteoporosis/pathology , Osteoporosis/metabolism
10.
Nat Commun ; 15(1): 5094, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877020

ABSTRACT

Interactions between osteolineage cells and myeloid cells play important roles in maintaining skeletal homeostasis. Herein, we find that osteolineage cells transfer mitochondria to myeloid cells. Impairment of the transfer of mitochondria by deleting MIRO1 in osteolineage cells leads to increased myeloid cell commitment toward osteoclastic lineage cells and promotes bone resorption. In detail, impaired mitochondrial transfer from osteolineage cells alters glutathione metabolism and protects osteoclastic lineage cells from ferroptosis, thus promoting osteoclast activities. Furthermore, mitochondrial transfer from osteolineage cells to myeloid cells is involved in the regulation of glucocorticoid-induced osteoporosis, and glutathione depletion alleviates the progression of glucocorticoid-induced osteoporosis. These findings reveal an unappreciated mechanism underlying the interaction between osteolineage cells and myeloid cells to regulate skeletal metabolic homeostasis and provide insights into glucocorticoid-induced osteoporosis progression.


Subject(s)
Bone Resorption , Ferroptosis , Mitochondria , Myeloid Cells , Osteoclasts , Osteoporosis , Animals , Mitochondria/metabolism , Bone Resorption/metabolism , Bone Resorption/pathology , Osteoclasts/metabolism , Myeloid Cells/metabolism , Osteoporosis/metabolism , Osteoporosis/pathology , Mice , Glucocorticoids/metabolism , Glutathione/metabolism , Mice, Inbred C57BL , Cell Differentiation , Mice, Knockout , Humans , Male
11.
Eur J Med Res ; 29(1): 315, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849933

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) are involved in the progression of osteoporosis; however, their impact on osteogenic differentiation has yet to be fully elucidated. In this study, we identified a novel circRNA known as circZfp644-205 and investigated its effect on osteogenic differentiation and apoptosis in osteoporosis. METHODS: CircZfp644-205, miR-445-3p, and SMAD2 levels were measured using quantitative real-time polymerase chain reaction (qRT-PCR). MC3T3-E1 cells were subjected to microgravity (MG) to establish a cell model. Osteogenic differentiation was assessed using qRT-PCR, Alizarin Red S staining, alkaline phosphatase staining, and western blot. The apoptosis was evaluated using flow cytometry. The relationship between miR-445-3p and circZfp644-205 or SMAD2 was determined using bioinformatics, RNA pull-down, and luciferase reporter assay. Moreover, a hindlimb unloading mouse model was generated to investigate the role of circZfp644-205 in vivo using Micro-CT. RESULTS: CircZfp644-205 expression was up-regulated significantly in HG-treated MC3T3-E1 cells. Further in vitro studies confirmed that circZfp644-205 knockdown inhibited the osteogenic differentiation and induced apoptosis of pre-osteoblasts. CircZfp644-205 acted as a sponge for miR-455-3p, which reversed the effects of circZfp644-205 on pre-osteoblasts. Moreover, miR-455-3p directly targeted SMAD2, thus inhibiting the expression of SMAD2 to regulate cellular behaviors. Moreover, circZfp644-205 alleviated the progression of osteoporosis in mice. CONCLUSIONS: This study provides a novel circRNA that may serve as a potential therapeutic target for osteoporosis and expands our understanding of the molecular mechanism underlying the progression of osteoporosis.


Subject(s)
Apoptosis , Cell Differentiation , MicroRNAs , Osteoblasts , Osteogenesis , RNA, Circular , Smad2 Protein , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , RNA, Circular/genetics , Apoptosis/genetics , Osteoblasts/metabolism , Cell Differentiation/genetics , Mice , Smad2 Protein/metabolism , Smad2 Protein/genetics , Osteogenesis/genetics , Osteoporosis/genetics , Osteoporosis/metabolism , Osteoporosis/pathology
12.
Bone ; 185: 117123, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38735373

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) regulate osteogenic differentiation processes and influence the development of osteoporosis (OP). This study aimed to investigate the potential role of miR-466 l-3p in OP. METHODS: The expression levels of miR-466 l-3p and fibroblast growth factor 23 (FGF23) were quantified in the trabeculae of the femoral neck of 40 individuals with or without OP using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The impact of miR-466 l-3p or FGF23 expression on cell proliferation and the expression levels of runt-related transcription factor 2 (RUNX2), type I collagen (Col1), osteocalcin (OCN), osterix (OSX) and dentin matrix protein 1 (DMP1) was quantified in human bone marrow mesenchymal stem cells (hBMSCs) overexpressing miR-466 l-3p. Furthermore, alkaline phosphatase (ALP) staining and alizarin red staining were performed to measure ALP activity and the levels of calcium deposition, respectively. In addition, bioinformatics analysis, luciferase reporter assays, and RNA pull-down assays were conducted to explore the molecular mechanisms underlying the effects of miR-466 l-3p and FGF23 in osteogenic differentiation of hBMSCs. RESULTS: The expression levels of miR-466 l-3p were significantly lower in femoral neck trabeculae of patients with OP than in the control cohort, whereas FGF23 levels exhibited the opposite trend. Furthermore, miR-466 l-3p levels were upregulated and FGF23 levels were downregulated in hBMSCs during osteogenic differentiation. Moreover, the high miR-466 l-3p expression enhanced the mRNA expression of RUNX2, Col1, OCN, OSX and DMP1, as well as cell proliferation, ALP activity, and calcium deposition in hBMSCs. FGF23 was found to be a direct target of miR-466 l-3p. FGF23 overexpression downregulated the expression of osteoblast markers and inhibited the osteogenic differentiation induced by miR-466 l-3p overexpression. qRT-PCR and Western blot assays showed that miR-466 l-3p overexpression decreased the expression levels of mRNAs and proteins associated with the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway, whereas FGF23 upregulation exhibited the opposite trend. CONCLUSION: In conclusion, these findings suggest that miR-466 l-3p enhances the osteogenic differentiation of hBMSCs by suppressing FGF23 expression, ultimately preventing OP.


Subject(s)
Cell Differentiation , Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Mesenchymal Stem Cells , MicroRNAs , Osteogenesis , Humans , Osteogenesis/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Differentiation/genetics , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Female , Male , Cell Proliferation/genetics , Middle Aged , Signal Transduction/genetics , Osteoporosis/genetics , Osteoporosis/metabolism , Osteoporosis/pathology , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , Base Sequence
13.
Stem Cell Res Ther ; 15(1): 144, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764077

ABSTRACT

BACKGROUND: The aim of this study was to evaluate potential synergistic effects of a single, local application of human umbilical cord MSC-derived sEVs in combination with a low dose of recombinant human rhBMP-2 to promote the regeneration of a metaphyseal femoral defect in an osteoporotic rat model. METHODS: 6 weeks after induction of osteoporosis by bilateral ventral ovariectomy and administration of a special diet, a total of 64 rats underwent a distal femoral metaphyseal osteotomy using a manual Gigli wire saw. Defects were stabilized with an adapted Y-shaped mini-locking plate and were subsequently treated with alginate only, or alginate loaded with hUC-MSC-sEVs (2 × 109), rhBMP-2 (1.5 µg), or a combination of sEVs and rhBMP-2 (n = 16 for each group). 6 weeks post-surgery, femora were evaluated by µCT, descriptive histology, and biomechanical testing. RESULTS: Native radiographs and µCT analysis confirmed superior bony union with callus formation after treatment with hUC-MSC-sEVs in combination with a low dose of rhBMP-2. This finding was further substantiated by histology, showing robust defect consolidation 6 weeks after treatment. Torsion testing of the explanted femora revealed increased stiffness after application of both, rhBMP-2 alone, or in combination with sEVs, whereas torque was only significantly increased after treatment with rhBMP-2 together with sEVs. CONCLUSION: The present study demonstrates that the co-application of hUC-MSC-sEVs can improve the efficacy of rhBMP-2 to promote the regeneration of osteoporotic bone defects.


Subject(s)
Bone Morphogenetic Protein 2 , Extracellular Vesicles , Femur , Osteoporosis , Recombinant Proteins , Umbilical Cord , Animals , Bone Morphogenetic Protein 2/pharmacology , Bone Morphogenetic Protein 2/genetics , Recombinant Proteins/pharmacology , Recombinant Proteins/genetics , Osteoporosis/pathology , Rats , Female , Humans , Femur/pathology , Femur/drug effects , Femur/diagnostic imaging , Umbilical Cord/cytology , Extracellular Vesicles/metabolism , Bone Regeneration/drug effects , Rats, Sprague-Dawley , Transforming Growth Factor beta/pharmacology , Disease Models, Animal , X-Ray Microtomography , Mesenchymal Stem Cells/metabolism
14.
Connect Tissue Res ; 65(3): 253-264, 2024 May.
Article in English | MEDLINE | ID: mdl-38753365

ABSTRACT

OBJECTIVE: Osteoporosis, a skeletal ailment marked by bone metabolism imbalance and disruption of bone microarchitecture, Neferine, a bisbenzylisoquinoline alkaloid with diverse pharmacological activities, has received limited attention in the context of osteoporosis treatment. METHODS: We employed a bilateral ovariectomy (OVX) rat model to induce osteoporosis and subsequently administered Neferine treatment for four weeks following successful model establishment. Throughout the modeling and treatment phases, we closely monitored rat body weights. We assessed alterations in bone tissue microstructure through micro-CT, HE staining, and safranin O-fast green staining. Levels of bone formation and resorption markers in serum were evaluated using ELISA assay. Western blot analysis was employed to determine the expression levels of p38MAPK, p-p38MAPK, and bone formation-related genes in bone tissue. We isolated and cultured OVX rat BMSCs (OVX-BMSCs) and induced osteogenic differentiation while simultaneously introducing Neferine and the p38MAPK inhibitor SB203580 for intervention. RESULTS: Neferine treatment effectively curbed the rapid weight gain in OVX rats, ameliorated bone loss, and decreased serum levels of TRAP, CTX-I, PINP, and BALP. Most notably, Neferine promoted the expression of bone formation-related factors in bone tissue of OVX rats, while concurrently activating the p38MAPK signaling pathway. In in vitro experiments, Neferine facilitated the expression of bone formation-related factors in OVX-BMSCs, increased the osteogenic differentiation potential of OVX-BMSCs, and activated the p38MAPK signaling pathway. Nevertheless, SB203580 partially reversed Neferine's promotive effect. CONCLUSION: Neferine can boost the osteoblastic differentiation of BMSCs and alleviate OVX-induced osteoporosis in rats by activating the p38MAPK signaling pathway.


Subject(s)
Benzylisoquinolines , Cell Differentiation , MAP Kinase Signaling System , Mesenchymal Stem Cells , Osteogenesis , Osteoporosis , Ovariectomy , Rats, Sprague-Dawley , p38 Mitogen-Activated Protein Kinases , Animals , Benzylisoquinolines/pharmacology , Osteogenesis/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Female , Cell Differentiation/drug effects , Osteoporosis/pathology , Osteoporosis/drug therapy , Osteoporosis/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , MAP Kinase Signaling System/drug effects , Rats
15.
Cell Rep Med ; 5(5): 101574, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38776873

ABSTRACT

The existing suite of therapies for bone diseases largely act to prevent further bone loss but fail to stimulate healthy bone formation and repair. We describe an endogenous osteopeptide (PEPITEM) with anabolic osteogenic activity, regulating bone remodeling in health and disease. PEPITEM acts directly on osteoblasts through NCAM-1 signaling to promote their maturation and formation of new bone, leading to enhanced trabecular bone growth and strength. Simultaneously, PEPITEM stimulates an inhibitory paracrine loop: promoting osteoblast release of the decoy receptor osteoprotegerin, which sequesters RANKL, thereby limiting osteoclast activity and bone resorption. In disease models, PEPITEM therapy halts osteoporosis-induced bone loss and arthritis-induced bone damage in mice and stimulates new bone formation in osteoblasts derived from patient samples. Thus, PEPITEM offers an alternative therapeutic option in the management of diseases with excessive bone loss, promoting an endogenous anabolic pathway to induce bone remodeling and redress the imbalance in bone turnover.


Subject(s)
Bone Resorption , Osteoblasts , Osteogenesis , Animals , Humans , Osteoblasts/metabolism , Osteoblasts/drug effects , Osteogenesis/drug effects , Mice , Bone Resorption/pathology , Bone Resorption/metabolism , Anabolic Agents/pharmacology , Anabolic Agents/therapeutic use , Bone Remodeling/drug effects , Osteoporosis/pathology , Osteoporosis/metabolism , Osteoporosis/drug therapy , RANK Ligand/metabolism , Osteoclasts/metabolism , Osteoclasts/drug effects , Bone Development/drug effects , Osteoprotegerin/metabolism , Female , Signal Transduction/drug effects , Peptides/pharmacology , Male , Mice, Inbred C57BL , Bone and Bones/drug effects , Bone and Bones/metabolism , Bone and Bones/pathology
16.
Bone ; 185: 117114, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38723878

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) may contribute to osteoporosis. Berberine is a traditional Chinese medicine and was recently shown to be beneficial in NAFLD. However, little is known about its impact on bone loss induced by NAFLD. AIM: We aimed to explore the role of berberine in bone loss and determine its underlying mechanisms in NAFLD. METHODS: C57BL/6 mice were fed a high-fat high-fructose high-glucose diet (HFFGD) for 16 weeks to establish a NAFLD mouse model. The mice were administered berberine (300 mg/kg/d) by gavage, and fatty liver levels and bone loss indicators were tested. RESULTS: Berberine significantly improved HFFGD-induced weight gain, hepatic lipid accumulation and increases in serum liver enzymes, thereby alleviating NAFLD. Berberine increased trabecular number (Tb. N), trabecular thickness (Tb. Th), bone volume to tissue volume ratio (BV/TV), and decreased trabecular separation (Tb. Sp) and restored bone loss in NAFLD. Mechanistically, berberine significantly inhibited ferroptosis and 4-hydroxynonenal (4-HNE), prostaglandin-endoperoxide synthase 2 (PTGS2), and transferrin (TF) levels and increased ferritin heavy chain (FTH) levels in the femurs of HFFGD-fed mice. Moreover, berberine also activated the solute carrier family 7 member 11 (SLC7A11)/glutathione (GSH)/glutathione peroxidase 4 (GPX4) signaling pathway. CONCLUSION: Berberine significantly ameliorates bone loss induced by NAFLD by activating the SLC7A11/GSH/GPX4 signaling pathway and inhibiting ferroptosis. Therefore, berberine may serve as a therapeutic agent for NAFLD-induced bone loss.


Subject(s)
Berberine , Ferroptosis , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Animals , Berberine/pharmacology , Berberine/therapeutic use , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/metabolism , Ferroptosis/drug effects , Male , Mice , Diet, High-Fat/adverse effects , Liver/drug effects , Liver/pathology , Liver/metabolism , Disease Models, Animal , Osteoporosis/drug therapy , Osteoporosis/pathology
17.
FASEB J ; 38(9): e23657, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38713087

ABSTRACT

The pathogenesis of osteoporosis (OP) is closely associated with the disrupted balance between osteogenesis and adipogenesis in bone marrow-derived mesenchymal stem cells (BMSCs). We analyzed published single-cell RNA sequencing (scRNA-seq) data to dissect the transcriptomic profiles of bone marrow-derived cells in OP, reviewing 56 377 cells across eight scRNA-seq datasets from femoral heads (osteoporosis or osteopenia n = 5, osteoarthritis n = 3). Seventeen genes, including carboxypeptidase M (CPM), were identified as key osteogenesis-adipogenesis regulators through comprehensive gene set enrichment, differential expression, regulon activity, and pseudotime analyses. In vitro, CPM knockdown reduced osteogenesis and promoted adipogenesis in BMSCs, while adenovirus-mediated CPM overexpression had the reverse effects. In vivo, intraosseous injection of CPM-overexpressing BMSCs mitigated bone loss in ovariectomized mice. Integrated scRNA-seq and bulk RNA sequencing analyses provided insight into the MAPK/ERK pathway's role in the CPM-mediated regulation of BMSC osteogenesis and adipogenesis; specifically, CPM overexpression enhanced MAPK/ERK signaling and osteogenesis. In contrast, the ERK1/2 inhibitor binimetinib negated the effects of CPM overexpression. Overall, our findings identify CPM as a pivotal regulator of BMSC differentiation, which provides new clues for the mechanistic study of OP.


Subject(s)
Adipogenesis , Carboxypeptidases , MAP Kinase Signaling System , Mesenchymal Stem Cells , Osteogenesis , Single-Cell Analysis , Animals , Female , Humans , Mice , Carboxypeptidases/metabolism , Carboxypeptidases/genetics , Cell Differentiation , GPI-Linked Proteins , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Metalloendopeptidases , Mice, Inbred C57BL , Osteogenesis/physiology , Osteogenesis/genetics , Osteoporosis/genetics , Osteoporosis/metabolism , Osteoporosis/pathology , Transcriptome
18.
Commun Biol ; 7(1): 548, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719881

ABSTRACT

Hyperthyroidism is a well-known trigger of high bone turnover that can lead to the development of secondary osteoporosis. Previously, we have shown that blocking bone morphogenetic protein (BMP) signaling systemically with BMPR1A-Fc can prevent bone loss in hyperthyroid mice. To distinguish between bone cell type-specific effects, conditional knockout mice lacking Bmpr1a in either osteoclast precursors (LysM-Cre) or osteoprogenitors (Osx-Cre) were rendered hyperthyroid and their bone microarchitecture, strength and turnover were analyzed. While hyperthyroidism in osteoclast precursor-specific Bmpr1a knockout mice accelerated bone resorption leading to bone loss just as in wildtype mice, osteoprogenitor-specific Bmpr1a deletion prevented an increase of bone resorption and thus osteoporosis with hyperthyroidism. In vitro, wildtype but not Bmpr1a-deficient osteoblasts responded to thyroid hormone (TH) treatment with increased differentiation and activity. Furthermore, we found an elevated Rankl/Opg ratio with TH excess in osteoblasts and bone tissue from wildtype mice, but not in Bmpr1a knockouts. In line, expression of osteoclast marker genes increased when osteoclasts were treated with supernatants from TH-stimulated wildtype osteoblasts, in contrast to Bmpr1a-deficient cells. In conclusion, we identified the osteoblastic BMP receptor BMPR1A as a main driver of osteoporosis in hyperthyroid mice promoting TH-induced osteoblast activity and potentially its coupling to high osteoclastic resorption.


Subject(s)
Bone Morphogenetic Protein Receptors, Type I , Bone Resorption , Hyperthyroidism , Osteoblasts , Animals , Male , Mice , Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Protein Receptors, Type I/metabolism , Bone Resorption/metabolism , Bone Resorption/genetics , Cell Differentiation , Hyperthyroidism/metabolism , Hyperthyroidism/genetics , Hyperthyroidism/complications , Mice, Knockout , Osteoblasts/metabolism , Osteoclasts/metabolism , Osteoporosis/metabolism , Osteoporosis/genetics , Osteoporosis/etiology , Osteoporosis/pathology
19.
Mol Med Rep ; 30(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38818814

ABSTRACT

C1q/tumor necrosis factor­related protein 3 (CTRP3) expression is markedly reduced in the serum of patients with osteoporosis. The present study aimed to investigate whether CTRP3 reduces bone loss in oophorectomy (OVX)­induced mice via the AMP­activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/nuclear factor E2­related factor 2 (Nrf2) signaling pathway. Female C57BL/6J mice and MC3T3­E1 cells were used to construct in vivo and in vitro models of osteoporosis, respectively. The left femurs of mice were examined using micro­computed tomography scans and bone­related quantitative morphological evaluation was performed. Pathological changes and the number of osteoclasts in the left femurs of mice were detected using hematoxylin and eosin, and tartrate­resistant acid phosphatase (TRAP) staining. Runt­related transcription factor­2 (RUNX2) expression in the left femurs was detected using immunofluorescence analysis, and the serum levels of bone resorption markers (C­telopeptide of type I collagen and TRAP) and bone formation markers [osteocalcin (OCN) and procollagen type 1 N­terminal propeptide] were detected. In addition, osteoblast differentiation and calcium deposits were examined in MC3T3­E1 cells using alkaline phosphatase (ALP) and Alizarin red staining, respectively. Moreover, RUNX2, ALP and OCN expression levels were detected using reverse transcription­quantitative PCR, and the expression levels of proteins associated with the AMPK/SIRT1/Nrf2 signaling pathway were detected using western blot analysis. The results revealed that globular CTRP3 (gCTRP3) alleviated bone loss and promoted bone formation in OVX­induced mice. gCTRP3 also facilitated the osteogenic differentiation of MC3T3­E1 cells through the AMPK/SIRT1/Nrf2 signaling pathway. The addition of an AMPK inhibitor (Compound C), SIRT1 inhibitor (EX527) or Nrf2 inhibitor (ML385) reduced the osteogenic differentiation of MC3T3­E1 cells via inhibition of gCTRP3. In conclusion, gCTRP3 inhibits OVX­induced osteoporosis by activating the AMPK/SIRT1/Nrf2 signaling pathway.


Subject(s)
AMP-Activated Protein Kinases , NF-E2-Related Factor 2 , Osteoporosis , Ovariectomy , Signal Transduction , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Sirtuin 1/genetics , Female , Mice , Osteoporosis/metabolism , Osteoporosis/etiology , Osteoporosis/pathology , NF-E2-Related Factor 2/metabolism , Ovariectomy/adverse effects , AMP-Activated Protein Kinases/metabolism , Mice, Inbred C57BL , Osteoblasts/metabolism , Cell Line , Osteoclasts/metabolism , Disease Models, Animal , Femur/metabolism , Femur/pathology , Femur/diagnostic imaging , Osteogenesis/drug effects
20.
Aging (Albany NY) ; 16(10): 8965-8979, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38787373

ABSTRACT

BACKGROUND: Bone formation and homeostasis are greatly dependent on the osteogenic differentiation of human bone marrow stem cells (BMSCs). Therefore, revealing the mechanisms underlying osteogenic differentiation of BMSCs will provide new candidate therapeutic targets for osteoporosis. METHODS: The osteogenic differentiation of BMSCs was measured by analyzing ALP activity and expression levels of osteogenic markers. Cellular Fe and ROS levels and cell viability were applied to evaluate the ferroptosis of BMSCs. qRT-PCR, Western blotting, and co-immunoprecipitation assays were harnessed to study the molecular mechanism. RESULTS: The mRNA level of CRYAB was decreased in the plasma of osteoporosis patients. Overexpression of CRYAB increased the expression of osteogenic markers including OCN, OPN, RUNX2, and COLI, and also augmented the ALP activity in BMSCs, on the contrary, knockdown of CRYAB had opposite effects. IP-MS technology identified CRYAB-interacted proteins and further found that CRYAB interacted with ferritin heavy chain 1 (FTH1) and maintained the stability of FTH1 via the proteasome mechanism. Mechanically, we unraveled that CRYAB regulated FTH1 protein stability in a lactylation-dependent manner. Knockdown of FTH1 suppressed the osteogenic differentiation of BMSCs, and increased the cellular Fe and ROS levels, and eventually promoted ferroptosis. Rescue experiments revealed that CRYAB suppressed ferroptosis and promoted osteogenic differentiation of BMSCs via regulating FTH1. The mRNA level of FTH1 was decreased in the plasma of osteoporosis patients. CONCLUSIONS: Downregulation of CRYAB boosted FTH1 degradation and increased cellular Fe and ROS levels, and finally improved the ferroptosis and lessened the osteogenic differentiation of BMSCs.


Subject(s)
Cell Differentiation , Ferroptosis , Osteogenesis , Osteoporosis , Humans , Osteogenesis/drug effects , Osteoporosis/metabolism , Osteoporosis/pathology , Mesenchymal Stem Cells/metabolism , alpha-Crystallin B Chain/metabolism , alpha-Crystallin B Chain/genetics , Ferritins/metabolism , Protein Stability , Reactive Oxygen Species/metabolism , Cells, Cultured , Bone Marrow Cells/metabolism , Female , Oxidoreductases
SELECTION OF CITATIONS
SEARCH DETAIL
...