Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.374
Filter
1.
J Cell Mol Med ; 28(10): e18400, 2024 May.
Article in English | MEDLINE | ID: mdl-38780513

ABSTRACT

Osteosarcoma is the most common primary bone malignancy in children and adolescents. Overexpression of polo-like kinase 1 (PLK1) is frequent in osteosarcoma and drives disease progression and metastasis, making it a promising therapeutic target. In this study, we explored PLK1 knockdown in osteosarcoma cells using RNA interference mediated by high-fidelity Cas13d (hfCas13d). PLK1 was found to be significantly upregulated in osteosarcoma tumour tissues compared to normal bone. sgRNA-mediated PLK1 suppression via hfCas13d transfection inhibited osteosarcoma cell proliferation, induced G2/M cell cycle arrest, promoted apoptosis, reduced cell invasion and increased expression of the epithelial marker E-cadherin. Proximity labelling by TurboID coupled with co-immunoprecipitation identified novel PLK1 interactions with Smad3, a key intracellular transducer of TGF-ß signalling. PLK1 knockdown impaired Smad2/3 phosphorylation and modulated TGF-ß/Smad3 pathway inactivation. Finally, in vivo delivery of hfCas13d vectors targeting PLK1 substantially attenuated osteosarcoma xenograft growth in nude mice. Taken together, this study highlights PLK1 as a potential therapeutic target and driver of disease progression in osteosarcoma. It also demonstrates the utility of hfCas13d-mediated gene knockdown as a strategy for targeted therapy. Further optimization of PLK1 suppression approaches may ultimately improve clinical outcomes for osteosarcoma patients.


Subject(s)
Apoptosis , Cell Cycle Proteins , Cell Proliferation , Mice, Nude , Osteosarcoma , Polo-Like Kinase 1 , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins , RNA Interference , Signal Transduction , Smad3 Protein , Transforming Growth Factor beta , Osteosarcoma/pathology , Osteosarcoma/genetics , Osteosarcoma/metabolism , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Animals , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Smad3 Protein/metabolism , Smad3 Protein/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Line, Tumor , Transforming Growth Factor beta/metabolism , Mice , Apoptosis/genetics , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Disease Progression , Gene Expression Regulation, Neoplastic , Xenograft Model Antitumor Assays , Female
2.
PeerJ ; 12: e17397, 2024.
Article in English | MEDLINE | ID: mdl-38784391

ABSTRACT

Background: Osteosarcoma is the most common primary malignant bone tumor, but its pathogenesis remains unclear. Ubiquitin-specific processing peptidase 22 (USP22) is reported to be highly expressed and associated with tumor malignancy and prognosis in cancers. However, the role and mechanism of USP22 in osteosarcoma is not fully understood. This study aims to investigate the function and potential mechanism of USP22 in osteosarcoma using bioinformatics analysis combined with experimental validation. Methods: We first integrated transcriptomic datasets and clinical information of osteosarcoma from GEO and TCGA databases to assess the expression and prognostic value of USP22 in osteosarcoma. Then, differential expression analysis and weighted gene co-expression network analysis (WGCNA) were conducted to identify USP22-related co-expressed genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to explore the biological functions and signaling pathways of USP22 co-expressed genes. To validate the accuracy of bioinformatics analyses, we downregulated USP22 expression in osteosarcoma cell line Sao-2 using siRNA and assessed its effect on cell proliferation, migration, invasion, apoptosis, and regulation of key signaling pathways. Results: We found that USP22 was highly expressed in osteosarcoma tissues and correlated with poor prognosis in osteosarcoma patients. USP22 also showed potential as a diagnostic marker for osteosarcoma. In addition, 344 USP22-related co-expressed genes were identified, mainly involved in signaling pathways such as glycolysis, oxidative phosphorylation, spliceosome, thermogenesis, and cell cycle. The in vitro experiments confirmed the accuracy and reliability of bioinformatics analyses. We found that downregulation of USP22 could inhibit Sao-2 cell proliferation, migration, invasion, and induce apoptosis. Furthermore, downregulation of USP22 significantly reduced aerobic glycolysis levels in Sao-2 cells and inhibited the expression of key enzymes and transporters in aerobic glycolysis pathways such as HK2, PKM2, and GLUT1. Conclusions: USP22 plays a critical role in the occurrence, development, and prognosis of osteosarcoma. USP22 could influence Sao-2 cell proliferation, apoptosis, migration, and invasion by regulating the glycolysis pathway, thereby promoting osteosarcoma progression. Therefore, USP22 may be a potential therapeutic target for the treatment of osteosarcoma.


Subject(s)
Bone Neoplasms , Cell Proliferation , Computational Biology , Glycolysis , Osteosarcoma , Ubiquitin Thiolesterase , Osteosarcoma/genetics , Osteosarcoma/metabolism , Osteosarcoma/pathology , Humans , Glycolysis/genetics , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Line, Tumor , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Cell Proliferation/genetics , Prognosis , Gene Expression Regulation, Neoplastic , Apoptosis/genetics , Cell Movement/genetics , Signal Transduction/genetics
3.
Mol Cell Biol ; 44(5): 178-193, 2024.
Article in English | MEDLINE | ID: mdl-38767243

ABSTRACT

Transcription factor 12 (TCF12) is a known oncogene in many cancers. However, whether TCF12 can regulate malignant phenotypes and angiogenesis in osteosarcoma is not elucidated. In this study, we demonstrated increased expression of TCF12 in osteosarcoma tissues and cell lines. High TCF12 expression was associated with metastasis and poor survival rate of osteosarcoma patients. Knockdown of TCF12 reduced the proliferation, migration, and invasion of osteosarcoma cells. TCF12 was found to bind to the promoter region of sphingosine kinase 1 (SPHK1) to induce transcriptional activation of SPHK1 expression and enhance the secretion of sphingosine-1-phosphate (S1P), which eventually resulted in the malignant phenotypes of osteosarcoma cells. In addition, S1P secreted by osteosarcoma cells promoted the angiogenesis of HUVECs by targeting S1PR4 on the cell membrane to activate the STAT3 signaling pathway. These findings suggest that TCF12 may induce transcriptional activation of SPHK1 to promote the synthesis and secretion of S1P. This process likely enhances the malignant phenotypes of osteosarcoma cells and induces angiogenesis via the S1PR4/STAT3 signaling pathway.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Lysophospholipids , Neovascularization, Pathologic , Osteosarcoma , Phosphotransferases (Alcohol Group Acceptor) , STAT3 Transcription Factor , Signal Transduction , Sphingosine , Humans , Osteosarcoma/genetics , Osteosarcoma/metabolism , Osteosarcoma/pathology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Lysophospholipids/metabolism , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Cell Line, Tumor , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Bone Neoplasms/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Transcriptional Activation/genetics , Sphingosine-1-Phosphate Receptors/metabolism , Sphingosine-1-Phosphate Receptors/genetics , Receptors, Lysosphingolipid/metabolism , Receptors, Lysosphingolipid/genetics , Cell Movement/genetics , Male , Animals , Female , Angiogenesis
4.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791381

ABSTRACT

Osteosarcoma is a type of bone cancer that primarily affects children and young adults. The overall 5-year survival rate for localized osteosarcoma is 70-75%, but it is only 20-30% for patients with relapsed or metastatic tumors. To investigate potential glycan-targeting structures for immunotherapy, we stained primary osteosarcomas with recombinant C-type lectin CD301 (MGL, CLEC10A) and observed moderate to strong staining on 26% of the tumors. NK92 cells expressing a CD301-CAR recognized and eliminated osteosarcoma cells in vitro. Cytotoxic activity assays correlated with degranulation and cytokine release assays. Combination with an inhibitory antibody against the immune checkpoint TIGIT (T-cell immunoreceptor with lg and ITIM domains) showed promising additional effects. Overall, this study showed, for the first time, the expression of CD301 ligands in osteosarcoma tissue and demonstrated their use as potential target structures for lectin-based immunotherapy.


Subject(s)
Bone Neoplasms , Immunotherapy , Lectins, C-Type , Osteosarcoma , Polysaccharides , Receptors, Chimeric Antigen , Osteosarcoma/therapy , Osteosarcoma/immunology , Osteosarcoma/metabolism , Osteosarcoma/pathology , Humans , Bone Neoplasms/immunology , Bone Neoplasms/therapy , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Immunotherapy/methods , Lectins, C-Type/metabolism , Polysaccharides/metabolism , Polysaccharides/chemistry , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Cell Line, Tumor , Female , Male , Child , Adolescent , Receptors, Immunologic/metabolism
5.
Clin Transl Med ; 14(5): e1670, 2024 May.
Article in English | MEDLINE | ID: mdl-38689429

ABSTRACT

BACKGROUND: Treatment for osteosarcoma, a paediatric bone cancer with no therapeutic advances in over three decades, is limited by a lack of targeted therapies. Osteosarcoma frequently metastasises to the lungs, and only 20% of patients survive 5 years after the diagnosis of metastatic disease. We found that WNT5B is the most abundant WNT expressed in osteosarcoma tumours and its expression correlates with metastasis, histologic subtype and reduced survival. METHODS: Using tumor-spheroids to model cancer stem-like cells, we performed qPCR, immunoblotting, and immunofluorescence to monitor changes in gene and protein expression. Additionally, we measured sphere size, migration and forming efficiency to monitor phenotypic changes. Therefore, we characterised WNT5B's relevance to cancer stem-like cells, metastasis, and chemoresistance and evaluated its potential as a therapeutic target. RESULTS: In osteosarcoma cell lines and patient-derived spheres, WNT5B is enriched in stem cells and induces the expression of the stemness gene SOX2. WNT5B promotes sphere size, sphere-forming efficiency, and cell proliferation, migration, and chemoresistance to methotrexate (but not cisplatin or doxorubicin) in spheres formed from conventional cell lines and patient-derived xenografts. In vivo, WNT5B increased osteosarcoma lung and liver metastasis and inhibited the glycosaminoglycan hyaluronic acid via upregulation of hyaluronidase 1 (HYAL1), leading to changes in the tumour microenvironment. Further, we identified that WNT5B mRNA and protein correlate with the receptor ROR1 in primary tumours. Targeting WNT5B through inhibition of WNT/ROR1 signalling with an antibody to ROR1 reduced stemness properties, including chemoresistance, sphere size and SOX2 expression. CONCLUSIONS: Together, these data define WNT5B's role in driving osteosarcoma cancer stem cell expansion and methotrexate resistance and provide evidence that the WNT5B pathway is a promising candidate for treating osteosarcoma patients. KEY POINTS: WNT5B expression is high in osteosarcoma stem cells leading to increased stem cell proliferation and migration through SOX2. WNT5B expression in stem cells increases rates of osteosarcoma metastasis to the lungs and liver in vivo. The hyaluronic acid degradation enzyme HYAL1 is regulated by WNT5B in osteosarcoma contributing to metastasis. Inhibition of WNT5B with a ROR1 antibody decreases osteosarcoma stemness.


Subject(s)
Drug Resistance, Neoplasm , Osteosarcoma , Wnt Proteins , Osteosarcoma/pathology , Osteosarcoma/metabolism , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Humans , Drug Resistance, Neoplasm/genetics , Wnt Proteins/metabolism , Wnt Proteins/genetics , Animals , Mice , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/drug therapy , Neoplasm Metastasis/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/drug effects , Cell Line, Tumor
6.
Cell Rep Med ; 5(5): 101519, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38692271

ABSTRACT

Osteosarcoma (OS) is the most common malignant bone tumor with a poor prognosis. Here, we show that the nuclear receptor RORγ may serve as a potential therapeutic target in OS. OS exhibits a hyperactivated oxidative phosphorylation (OXPHOS) program, which fuels the carbon source to promote tumor progression. We found that RORγ is overexpressed in OS tumors and is linked to hyperactivated OXPHOS. RORγ induces the expression of PGC-1ß and physically interacts with it to activate the OXPHOS program by upregulating the expression of respiratory chain component genes. Inhibition of RORγ strongly inhibits OXPHOS activation, downregulates mitochondrial functions, and increases ROS production, which results in OS cell apoptosis and ferroptosis. RORγ inverse agonists strongly suppressed OS tumor growth and progression and sensitized OS tumors to chemotherapy. Taken together, our results indicate that RORγ is a critical regulator of the OXPHOS program in OS and provides an effective therapeutic strategy for this deadly disease.


Subject(s)
Bone Neoplasms , Mitochondria , Nuclear Receptor Subfamily 1, Group F, Member 3 , Osteosarcoma , Oxidative Phosphorylation , Osteosarcoma/metabolism , Osteosarcoma/pathology , Osteosarcoma/genetics , Humans , Oxidative Phosphorylation/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Cell Line, Tumor , Animals , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Bone Neoplasms/drug therapy , Mice , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Gene Expression Regulation, Neoplastic , Ferroptosis/genetics , Ferroptosis/drug effects , Mice, Nude , Male , Cell Proliferation , RNA-Binding Proteins
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124389, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38710137

ABSTRACT

Over the years, osteosarcoma therapy has had a significative improvement with the use of a multidrug regime strategy, increasing the survival rates from less than 20 % to circa 70 %. Different types of development of new antineoplastic agents are critical to achieve irreversible damage to cancer cells, while preserving the integrity of their healthy counterparts. In the present study, complexes with two and three Pd(II) centres linked by the biogenic polyamines: spermine (Pd2SpmCl4) and spermidine (Pd3Spd2Cl6) were tested against non-malignant (osteoblasts, HOb) and cancer (osteosarcoma, MG-63) human cell lines. Either alone or in combination according to the EURAMOS-1 protocol, they were used versus cisplatin as a drug reference. By evaluating the cytotoxic effects of both therapeutic approaches (single and drug combination) in HOb and MG-63 cell lines, the selective anti-tumoral potential is assessed. To understand the different treatments at a molecular level, Synchrotron Radiation Fourier Transform Infrared and Raman microspectroscopies were applied. Principal component analysis and hierarchical cluster analysis are applied to the vibrational data, revealing the major metabolic changes caused by each drug, which were found to rely on DNA, lipids, and proteins, acting as biomarkers of drug-to-cell impact. The main changes were observed for the B-DNA native conformation to either Z-DNA (higher in the presence of polynuclear complexes) or A-DNA (preferably after cisplatin exposure). Additionally, a higher effect upon variation in proteins content was detected in drug combination when compared to single drug administration proving the efficacy of the EURAMOS-1 protocol with the new drugs tested.


Subject(s)
Antineoplastic Agents , Osteosarcoma , Spectrum Analysis, Raman , Humans , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Osteosarcoma/metabolism , Spectrum Analysis, Raman/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Spectroscopy, Fourier Transform Infrared/methods , Vibration , Spermine/pharmacology , Spermine/chemistry , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Spermidine/pharmacology , Spermidine/chemistry , Principal Component Analysis , Cell Survival/drug effects
8.
Aging (Albany NY) ; 16(9): 8155-8170, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38747739

ABSTRACT

BACKGROUND: Osteosarcoma (OS) is a primary malignant bone tumor arising from mesenchymal cells. The standard clinical treatment for OS involves extensive tumor resection combined with neoadjuvant chemotherapy or radiotherapy. OS's invasiveness, lung metastasis, and drug resistance contribute to a low cure rate and poor prognosis with this treatment. Metallothionein 1G (MT1G), observed in various cancers, may serve as a potential therapeutic target for OS. METHODS: OS samples in GSE33382 and TARGET datasets were selected as the test cohorts. As the external validation cohort, 13 OS tissues and 13 adjacent cancerous tissues from The Second Affiliated Hospital of Nanchang University were collected. Patients with OS were divided into high and low MT1G mRNA-expression groups; differentially expressed genes (DEGs) were identified as MT1G-related genes. The biological function of MT1G was annotated using Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO) and gene set enrichment analysis (GSEA). Gene expression correlation analysis and competing endogenous RNA (ceRNA) regulatory network construction were used to determine potential biological regulatory relationships of DEGs. Survival analysis assessed the prognostic value of MT1G. RESULTS: MT1G expression increased in OS samples and presented higher in metastatic OS compared with non-metastatic OS. Functional analyses indicated that MT1G was mainly associated with spliceosome. A ceRNA network with DEGs was constructed. MT1G is an effective biomarker predicting survival and correlated with increased recurrence rates and poorer survival. CONCLUSIONS: This research identified MT1G as a potential biomarker for OS prognosis, highlighting its potential as a therapy target.


Subject(s)
Bone Neoplasms , Computational Biology , Gene Expression Regulation, Neoplastic , Mesenchymal Stem Cells , Metallothionein , Osteosarcoma , Female , Humans , Male , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Bone Neoplasms/mortality , Gene Expression Profiling , Gene Regulatory Networks , Mesenchymal Stem Cells/metabolism , Metallothionein/genetics , Metallothionein/metabolism , Osteosarcoma/genetics , Osteosarcoma/pathology , Prognosis
9.
Int J Biol Macromol ; 269(Pt 2): 132019, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729498

ABSTRACT

The clinical use of chemotherapy for refractory osteosarcoma (OS) is limited due to its multiorgan toxicity. To overcome this challenge, new dosage forms and combination treatments, such as phototherapy, are being explored to improve targeted delivery and cytocompatibility of chemotherapeutic agents. In addition, inducing ferroptosis in iron-rich tumors could be a promising strategy to enhance OS therapy. In this study, a novel formulation was developed using natural biological H-ferritin (HFn) encapsulating the photosensitizer IR-780 and the chemotherapy drug gemcitabine (Gem) for OS-specific targeted therapy (HFn@Gem/IR-780 NPs). HFn@Gem/IR-780 NPs were designed to specifically bind and internalize into OS cells by interacting with transferrin receptor 1 (TfR1) which is overexpressed on the surface of OS cell membranes. The Gem and IR-780 were then released responsively under mildly acidic conditions in tumors. HFn@Gem/IR-780 NPs achieved cascaded antitumor therapeutic efficacy through the combination of chemotherapy and phototherapy under near-infrared irradiation in vitro and in vivo. Importantly, HFn@Gem/IR-780 NPs demonstrated excellent safety profile with significantly decreased drug exposure to normal organs, indicating its potential for reducing systemic toxicity. Thus, utilizing HFn as a vehicle to encapsulate highly effective antitumor drugs provides a promising approach for the treatment of OS metastasis and relapse.


Subject(s)
Deoxycytidine , Ferroptosis , Gemcitabine , Nanoparticles , Osteosarcoma , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Osteosarcoma/metabolism , Ferroptosis/drug effects , Animals , Humans , Cell Line, Tumor , Mice , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Nanoparticles/chemistry , Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Neoplasm Metastasis , Xenograft Model Antitumor Assays , Indoles
10.
J Cell Mol Med ; 28(10): e18395, 2024 May.
Article in English | MEDLINE | ID: mdl-38774995

ABSTRACT

Tumour-associated macrophages (TAMs), encompassing M1 and M2 subtypes, exert significant effects on osteosarcoma (OS) progression and immunosuppression. However, the impacts of TAM-derived biomarkers on the progression of OS remains limited. The GSE162454 profile was subjected to single-cell RNA (scRNA) sequencing analysis to identify crucial mediators between TAMs and OS cells. The clinical features, effects and mechanisms of these mediators on OS cells and tumour microenvironment were evaluated via biological function experiments and molecular biology experiments. Phosphodiesterase 4C (PDE4C) was identified as a pivotal mediator in the communication between M2 macrophages and OS cells. Elevated levels of PDE4C were detected in OS tissues, concomitant with M2 macrophage level, unfavourable prognosis and metastasis. The expression of PDE4C was observed to increase during the conversion process of THP-1 cells to M2 macrophages, which transferred the PDE4C mRNA to OS cells through exosome approach. PDE4C increased OS cell proliferation and mobility via upregulating the expression of collagens. Furthermore, a positive correlation was observed between elevated levels of PDE4C and increased TIDE score, decreased response rate following immune checkpoint therapy, reduced TMB and diminished PDL1 expression. Collectively, PDE4C derived from M2 macrophages has the potential to enhance the proliferation and mobility of OS cells by augmenting collagen expression. PDE4C may serve as a valuable biomarker for prognosticating patient outcomes and response rates following immunotherapy.


Subject(s)
Bone Neoplasms , Cyclic Nucleotide Phosphodiesterases, Type 4 , Immunotherapy , Macrophages , Osteosarcoma , Tumor Microenvironment , Osteosarcoma/pathology , Osteosarcoma/immunology , Osteosarcoma/genetics , Osteosarcoma/metabolism , Osteosarcoma/therapy , Humans , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Prognosis , Immunotherapy/methods , Tumor Microenvironment/immunology , Bone Neoplasms/immunology , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Macrophages/metabolism , Macrophages/immunology , Cell Line, Tumor , Cell Proliferation , Male , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Female , Neoplasm Metastasis , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Cell Movement
11.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 311-318, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38710515

ABSTRACT

Objective To investigate the effects of mitochondrial transcription factor A (TFAM) on mitochondrial function, autophagy, proliferation, invasion, and migration in cervical cancer HeLa cells and osteosarcoma U2OS cells. Methods TFAM small-interfering RNA (si-TFAM) was transfected to HeLa and U2OS cells for downregulating TFAM expression. Mito-Tracker Red CMXRos staining combined with laser confocal microscopy was used to detect mitochondrial membrane potential (MMP). MitoSOXTM Red labeling was used to test mitochondrial reactive oxygen species (mtROS) levels. The expression of mitochondrial DNA (mtDNA) was detected by real-time quantitative PCR. Changes in the number of autophagosomes were detected by immunofluorescence cytochemistry. Western blot analysis was used to detect the expressions of TFAM, autophagy microtubule associated protein 1 light chain 3A/B (LC3A/B), autophagy associated protein 2A (ATG2A), ATG2B, ATG9A, zinc finger transcription factor Snail, matrix metalloproteinase 2 (MMP2) and MMP9. CCK-8 assay and plate clony formation assay were used to detect cell proliferation, while TranswellTM assay and scratch healing assay were used to detect changes in cell invasion and migration. Results The downregulation of TFAM expression resulted in a decrease in MMP and mtDNA copy number, but an increase in mtROS production. The protein content of LC3A/B decreased significantly compared to the control group and the number of autophagosomes in the cytoplasm decreased significantly. The expressions of ATG2B and ATG9A in the early stage of autophagy were significantly reduced. The expressions of Snail, MMP2 and MMP9 proteins in HeLa and U2OS cells were also decreased. The proliferation, invasion and migration ability of HeLa and U2OS cells were inhibited after being interfered with TFAM expression. Conclusion Downregulation of TFAM expression inhibits mitochondrial function, delays autophagy process and reduces the proliferation, invasion and migration ability of cervical cancer cells and osteosarcoma cells.


Subject(s)
Autophagy , Cell Movement , Cell Proliferation , DNA-Binding Proteins , Mitochondrial Proteins , Neoplasm Invasiveness , Osteosarcoma , Transcription Factors , Uterine Cervical Neoplasms , Humans , Cell Movement/genetics , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/metabolism , Cell Proliferation/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Autophagy/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Female , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Cell Line, Tumor , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Membrane Potential, Mitochondrial/genetics , Reactive Oxygen Species/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Mitochondria/metabolism , Mitochondria/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , HeLa Cells , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics
12.
Folia Neuropathol ; 62(1): 96-101, 2024.
Article in English | MEDLINE | ID: mdl-38741436

ABSTRACT

Gliosarcoma (GS) is a rare variant of IDH-wildtype glioblastoma. It is classified as grade 4 in the latest WHO CNS classification of both glial and mesenchymal components. Gliosarcoma may arise de novo or secondary from glioblastoma. It occurs in up to 2% of patients diagnosed with glioblastoma. We present a case report of a 51-year-old patient who was initially diagnosed with glioblastoma multiforme, which transformed into secondary gliosarcoma with an osteosarcoma component 16 months after the initial diagnosis. We believe that increasing reporting of secondary gliosarcoma (sGS) will be helpful in understanding, diagnosing and providing more effective treatment for this cancer.


Subject(s)
Brain Neoplasms , Glioblastoma , Gliosarcoma , Isocitrate Dehydrogenase , Osteosarcoma , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Gliosarcoma/genetics , Gliosarcoma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Osteosarcoma/genetics , Osteosarcoma/pathology , Middle Aged , Isocitrate Dehydrogenase/genetics , Male
13.
BMC Cancer ; 24(1): 580, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735973

ABSTRACT

BACKGROUND: SRSF1, a member of Serine/Arginine-Rich Splicing Factors (SRSFs), has been observed to significantly influence cancer progression. However, the precise role of SRSF1 in osteosarcoma (OS) remains unclear. This study aims to investigate the functions of SRSF1 and its underlying mechanism in OS. METHODS: SRSF1 expression level in OS was evaluated on the TCGA dataset, TAGET-OS database. qRT-PCR and Western blotting were employed to assess SRSF1 expression in human OS cell lines as well as the interfered ectopic expression states. The effect of SRSF1 on cell migration, invasion, proliferation, and apoptosis of OS cells were measured by transwell assay and flow cytometry. RNA sequence and bioinformatic analyses were conducted to elucidate the targeted genes, relevant biological pathways, and alternative splicing (AS) events regulated by SRSF1. RESULTS: SRSF1 expression was consistently upregulated in both OS samples and OS cell lines. Diminishing SRSF1 resulted in reduced proliferation, migration, and invasion and increased apoptosis in OS cells while overexpressing SRSF1 led to enhanced growth, migration, invasion, and decreased apoptosis. Mechanistically, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and Gene Set Enrichment Analysis (GSEA) revealed that the biological functions of SRSF1 were closely associated with the dysregulation of the protein targeting processes, location of the cytosolic ribosome, extracellular matrix (ECM), and proteinaceous extracellular matrix, along with the PI3K-AKT pathway, Wnt pathway, and HIPPO pathway. Transcriptome analysis identified AS events modulated by SRSF1, especially (Skipped Exon) SE events and (Mutually exclusive Exons) MXE events, revealing potential roles of targeted molecules in mRNA surveillance, RNA degradation, and RNA transport during OS development. qRT-PCR confirmed that SRSF1 knockdown resulted in the occurrence of alternative splicing of SRRM2, DMKN, and SCAT1 in OS. CONCLUSIONS: Our results highlight the oncogenic role of high SRSF1 expression in promoting OS progression, and further explore the potential mechanisms of action. The significant involvement of SRSF1 in OS development suggests its potential utility as a therapeutic target in OS.


Subject(s)
Apoptosis , Bone Neoplasms , Cell Movement , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Osteosarcoma , Serine-Arginine Splicing Factors , Humans , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Apoptosis/genetics , Cell Movement/genetics , Up-Regulation , Alternative Splicing
14.
Cancer Biol Ther ; 25(1): 2343450, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38742566

ABSTRACT

The potential function and mechanism of circRNAs in regulating malignant performances of Osteosarcoma (OS) cells have not been well investigated. The expression level of CircLMO7, miR-21-5p and ARHGAP24 were detected by RT-qPCR. The relationship between miR-21-5p and circ-LMO7, as well as between miR-21-5p and ARHGAP24, was predicted and examined through bioinformatics analysis and luciferase reporter gene experiments. Moreover, OS cell growth, invasion, migration, and apoptosis were detected using the cell counting kit-8 (CCK-8), transwell and flow cytometry assays, respectively. ARHGAP24 protein level was measured using western blotting. In present study, we choose to investigate the role and mechanism of circ-LOM7 on OS cell proliferation, migration and invasion. circ-LOM7 was found to be down-regulated in OS tissues and cell lines. Enforced expression of circ-LOM7 suppressed the growth, invasion, and migration of OS cells. In contrast, decreasing circ-LMO7 expression had opposite effects. Furthermore, miR-21-5p was predicted to be sponged by circ-LMO7, and had an opposite role of circ-LMO7 in OS. Moreover, ARHGAP24 served as miR-21-5p's downstream target. Mechanistically, circ-LMO7 was packed in exosomes and acted as a cancer-suppresser on OS by sponging miR-21-5p and upregulating the expression of ARHGAP24. The exosomal circ-LMO7 expression was significantly decreased in OS cell exosomes, and co-culture experiments showed that exosomal circ-LMO7 suppressed the proliferation ability of OS cells. Circ-LMO7 exerts as a tumor suppressor in OS, and the circ-LMO7/miR-21-5P/ARHGAP24 axis is involved in OS progression.


Subject(s)
Disease Progression , Exosomes , GTPase-Activating Proteins , MicroRNAs , Osteosarcoma , RNA, Circular , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Exosomes/metabolism , Exosomes/genetics , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Cell Proliferation , Mice , Animals , Cell Line, Tumor , Cell Movement/genetics , Apoptosis/genetics , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Male , Female
15.
Sci Rep ; 14(1): 11056, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744935

ABSTRACT

Osteosarcoma is the most common malignant bone cancer in pediatric patients. Patients who respond poorly to chemotherapy experience worse clinical outcomes with a high mortality rate. The major challenge is the lack of effective drugs for these patients. To introduce new drugs for clinical approval, preclinical studies based on in vitro models must demonstrate the potency of the tested drugs, enabling the drugs to enter phase 1 clinical trials. Patient-derived cell culture is a promising testing platform for in vitro studies, as they more accurately recapitulate cancer states and genetic profiles compared to cell lines. In the present study, we established patient-derived osteosarcoma cells (PDC) from a patient who had previously been diagnosed with retinoblastoma. We identified a new variant of a germline mutation in the RB1 gene in the tissue of the patient. The biological effects of this PDC were studied to observe whether the cryopreserved PDC retained a feature of fresh PDC. The cryopreserved PDC preserved the key biological effects, including cell growth, invasive capability, migration, and mineralization, that define the conserved phenotypes compared to fresh PDC. From whole genome sequencing analysis of osteosarcoma tissue and patient-derived cells, we found that cryopreserved PDC was a minor population in the origin tissue and was selectively grown under the culture conditions. The cryopreserved PDC has a high resistance to conventional chemotherapy. This study demonstrated that the established cryopreserved PDC has the aggressive characteristics of osteosarcoma, in particular the chemoresistance phenotype that might be used for further investigation in the chemoresistant mechanism of osteosarcoma. In conclusion, the approach we applied for primary cell culture might be a promising method to generate in vitro models for functional testing of osteosarcoma.


Subject(s)
Bone Neoplasms , Osteosarcoma , Retinoblastoma , Humans , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/drug therapy , Retinoblastoma/genetics , Retinoblastoma/pathology , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/drug therapy , Cell Line, Tumor , Retinoblastoma Binding Proteins/genetics , Cell Proliferation , Germ-Line Mutation , Cryopreservation , Male , Gene Expression Profiling , Cell Movement/genetics
16.
J Nanobiotechnology ; 22(1): 250, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750519

ABSTRACT

The complexity of repairing large segment defects and eradicating residual tumor cell puts the osteosarcoma clinical management challenging. Current biomaterial design often overlooks the crucial role of precisely regulating innervation in bone regeneration. Here, we develop a Germanium Selenium (GeSe) co-doped polylactic acid (PLA) nanofiber membrane-coated tricalcium phosphate bioceramic scaffold (TCP-PLA/GeSe) that mimics the bone-periosteum structure. This biomimetic scaffold offers a dual functionality, combining piezoelectric and photothermal conversion capabilities while remaining biodegradable. When subjected to ultrasound irradiation, the US-electric stimulation of TCP-PLA/GeSe enables spatiotemporal control of neurogenic differentiation. This feature supports early innervation during bone formation, promoting early neurogenic differentiation of Schwann cells (SCs) by increasing intracellular Ca2+ and subsequently activating the PI3K-Akt and Ras signaling pathways. The biomimetic scaffold also demonstrates exceptional osteogenic differentiation potential under ultrasound irradiation. In rabbit model of large segment bone defects, the TCP-PLA/GeSe demonstrates promoted osteogenesis and nerve fibre ingrowth. The combined attributes of high photothermal conversion capacity and the sustained release of anti-tumor selenium from the TCP-PLA/GeSe enable the synergistic eradication of osteosarcoma both in vitro and in vivo. This strategy provides new insights on designing advanced biomaterials of repairing large segment bone defect and osteosarcoma.


Subject(s)
Bone Regeneration , Calcium Phosphates , Osteogenesis , Osteosarcoma , Tissue Scaffolds , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Animals , Bone Regeneration/drug effects , Tissue Scaffolds/chemistry , Rabbits , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Osteogenesis/drug effects , Polyesters/chemistry , Humans , Cell Differentiation/drug effects , Bone Neoplasms/pathology , Bone Neoplasms/drug therapy , Bone Neoplasms/therapy , Cell Line, Tumor , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Schwann Cells/drug effects , Nanofibers/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Selenium/chemistry , Selenium/pharmacology
17.
J Cell Mol Med ; 28(9): e18286, 2024 May.
Article in English | MEDLINE | ID: mdl-38742843

ABSTRACT

Osteosarcoma, the primary bone cancer in adolescents and young adults, is notorious for its aggressive growth and metastatic potential. Our study delved into the prognostic impact of inflammasome-related gene signatures in osteosarcoma patients, employing comprehensive genetic profiling to uncover signatures linked with patient outcomes. We identified three patient subgroups through consensus clustering, with one showing worse survival rates correlated with high FGFR3 and RARB expressions. Immune profiling revealed significant immune cell infiltration differences among these subgroups, affecting survival. Utilising advanced machine learning, including StepCox and gradient boosting machine algorithms, we developed a prognostic model with a notable c-index of 0.706, highlighting CD36 and MYD88 as key genes. Higher inflammasome risk scores from our model were associated with poorer survival, corroborated across datasets. In vitro experiments validated CD36 and MYD88's roles in promoting osteosarcoma cell proliferation, invasion and migration, emphasising their therapeutic potential. This research offers new insights into inflammasomes' role in osteosarcoma, introducing novel biomarkers for risk assessment and potential therapeutic targets. Our findings suggest a pathway towards personalised treatment strategies, potentially improving patient outcomes in osteosarcoma.


Subject(s)
Biomarkers, Tumor , Bone Neoplasms , Gene Expression Regulation, Neoplastic , Inflammasomes , Osteosarcoma , Humans , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/immunology , Osteosarcoma/mortality , Inflammasomes/metabolism , Inflammasomes/genetics , Biomarkers, Tumor/genetics , Prognosis , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/mortality , Bone Neoplasms/immunology , Bone Neoplasms/diagnosis , Gene Expression Profiling , Female , Male , Transcriptome/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Adolescent , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism
18.
J Vis Exp ; (207)2024 May 03.
Article in English | MEDLINE | ID: mdl-38767376

ABSTRACT

Understanding the relationship between the cells and their location within each tissue is critical to uncover the biological processes associated with normal development and disease pathology. Spatial transcriptomics is a powerful method that enables the analysis of the whole transcriptome within tissue samples, thus providing information about the cellular gene expression and the histological context in which the cells reside. While this method has been extensively utilized for many soft tissues, its application for the analyses of hard tissues such as bone has been challenging. The major challenge resides in the inability to preserve good quality RNA and tissue morphology while processing the hard tissue samples for sectioning. Therefore, a method is described here to process freshly obtained bone tissue samples to effectively generate spatial transcriptomics data. The method allows for the decalcification of the samples, granting successful tissue sections with preserved morphological details while avoiding RNA degradation. In addition, detailed guidelines are provided for samples that were previously paraffin-embedded, without demineralization, such as samples collected from tissue banks. Using these guidelines, high-quality spatial transcriptomics data generated from tissue bank samples of primary tumor and lung metastasis of bone osteosarcoma are shown.


Subject(s)
Bone Neoplasms , Bone and Bones , Transcriptome , Humans , Transcriptome/genetics , Bone and Bones/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/metabolism , Gene Expression Profiling/methods , Paraffin Embedding/methods , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism
19.
BMC Med ; 22(1): 200, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755647

ABSTRACT

BACKGROUND: Osteosarcoma (OS) is the most common primary malignant bone tumor and is highly prone to metastasis. OS can metastasize to the lymph node (LN) through the lymphatics, and the metastasis of tumor cells reestablishes the immune landscape of the LN, which is conducive to the growth of tumor cells. However, the mechanism of LN metastasis of osteosarcoma and remodeling of the metastatic lymph node (MLN) microenvironment is not clear. METHODS: Single-cell RNA sequencing of 18 samples from paracancerous, primary tumor, and lymph nodes was performed. Then, new signaling axes closely related to metastasis were identified using bioinformatics, in vitro experiments, and immunohistochemistry. The mechanism of remodeling of the LN microenvironment in tumor cells was investigated by integrating single-cell and spatial transcriptomics. RESULTS: From 18 single-cell sequencing samples, we obtained 117,964 cells. The pseudotime analysis revealed that osteoblast(OB) cells may follow a differentiation path from paracancerous tissue (PC) → primary tumor (PT) → MLN or from PC → PT, during the process of LN metastasis. Next, in combination of bioinformatics, in vitro and in vivo experiments, and immunohistochemistry, we determined that ETS2/IBSP, a new signal axis, might promote LN metastasis. Finally, single-cell and spatial dissection uncovered that OS cells could reshape the microenvironment of LN by interacting with various cell components, such as myeloid, cancer-associated fibroblasts (CAFs), and NK/T cells. CONCLUSIONS: Collectively, our research revealed a new molecular mechanism of LN metastasis and clarified how OS cells influenced the LN microenvironment, which might provide new insight for blocking LN metastasis.


Subject(s)
Bone Neoplasms , Lymph Nodes , Lymphatic Metastasis , Osteosarcoma , Single-Cell Analysis , Transcriptome , Tumor Microenvironment , Osteosarcoma/pathology , Osteosarcoma/genetics , Humans , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Bone Neoplasms/secondary , Lymph Nodes/pathology , Lymphatic Metastasis/pathology , Animals , Mice , Cell Line, Tumor , Gene Expression Profiling
20.
Medicine (Baltimore) ; 103(20): e38261, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758844

ABSTRACT

OBJECTIVE: To explore the therapeutic mechanism of Mori Cortex against osteosarcoma (OS), we conducted bioinformatics prediction followed by in vitro experimental validation. METHODS: Gene expression data from normal and OS tissues were obtained from the GEO database and underwent differential analysis. Active Mori Cortex components and target genes were extracted from the Traditional Chinese Medicine System Pharmacology database. By intersecting these targets with differentially expressed genes in OS, we identified potential drug action targets. Using the STRING database, a protein-protein interaction network was constructed. Subsequent analyses of these intersected genes, including Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment, were performed using R software to elucidate biological processes, molecular functions, and cellular components, resulting in the simulation of signaling pathways. Molecular docking assessed the binding capacity of small molecules to signaling pathway targets. In vitro validations were conducted on U-2 OS cells. The CCK8 assay was used to determine drug-induced cytotoxicity in OS cells, and Western Blotting was employed to validate the expression of AKT, extracellular signal-regulated kinases (ERK), Survivin, and Cyclin D1 proteins. RESULTS: Through differential gene expression analysis between normal and OS tissues, we identified 12,364 differentially expressed genes. From the TCSMP database, 39 active components and 185 therapeutic targets related to OS were derived. The protein-protein interaction network indicated that AKT1, IL-6, JUN, VEGFA, and CASP3 might be central targets of Mori Cortex for OS. Molecular docking revealed that the active compound Morusin in Mori Cortex exhibits strong binding affinity to AKT and ERK. The CCK8 assay showed that Morusin significantly inhibits the viability of U-2 OS cells. Western Blot demonstrated a reduction in the p-AKT/AKT ratio, the p-ERK/ERK ratio, Survivin, and Cyclin D1. CONCLUSION: Mori Cortex may exert its therapeutic effects on OS through multiple cellular signaling pathways. Morusin, the active component of Mori Cortex, can inhibit cell cycle regulation and promote cell death in OS cells by targeting AKT/ERK pathway.


Subject(s)
Bone Neoplasms , Computational Biology , Drugs, Chinese Herbal , Molecular Docking Simulation , Morus , Osteosarcoma , Osteosarcoma/genetics , Osteosarcoma/metabolism , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Humans , Cell Line, Tumor , Drugs, Chinese Herbal/pharmacology , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Protein Interaction Maps , Signal Transduction , Gene Expression Regulation, Neoplastic , Medicine, Chinese Traditional/methods , Survivin/metabolism , Survivin/genetics , Cyclin D1/metabolism , Cyclin D1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...