Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.013
Filter
1.
Cancer Immunol Immunother ; 73(8): 145, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832992

ABSTRACT

Ovarian cancer is one of the most lethal malignant tumors, characterized by high incidence and poor prognosis. Patients relapse occurred in 65-80% after initial treatment. To date, no effective treatment has been established for these patients. Recently, CD47 has been considered as a promising immunotherapy target. In this paper, we reviewed the biological roles of CD47 in ovarian cancer and summarized the related mechanisms. For most types of cancers, the CD47/Sirpα immune checkpoint has attracted the most attention in immunotherapy. Notably, CD47 monoclonal antibodies and related molecules are promising in the immunotherapy of ovarian cancer, and further research is needed. In the future, new immunotherapy regimens targeting CD47 can be applied to the clinical treatment of ovarian cancer patients.


Subject(s)
CD47 Antigen , Disease Progression , Ovarian Neoplasms , Humans , CD47 Antigen/metabolism , CD47 Antigen/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Female , Immunotherapy/methods , Animals
2.
Front Immunol ; 15: 1402862, 2024.
Article in English | MEDLINE | ID: mdl-38863706

ABSTRACT

Ovarian cancer, ranking as the seventh most prevalent malignancy among women globally, faces significant challenges in diagnosis and therapeutic intervention. The difficulties in early detection are amplified by the limitations and inefficacies inherent in current screening methodologies, highlighting a pressing need for more efficacious diagnostic and treatment strategies. Phage display technology emerges as a pivotal innovation in this context, utilizing extensive phage-peptide libraries to identify ligands with specificity for cancer cell markers, thus enabling precision-targeted therapeutic strategies. This technology promises a paradigm shift in ovarian cancer management, concentrating on targeted drug delivery systems to improve treatment accuracy and efficacy while minimizing adverse effects. Through a meticulous review, this paper evaluates the revolutionary potential of phage display in enhancing ovarian cancer therapy, representing a significant advancement in combating this challenging disease. Phage display technology is heralded as an essential instrument for developing effective immunodiagnostic and therapeutic approaches in ovarian cancer, facilitating early detection, precision-targeted medication, and the implementation of customized treatment plans.


Subject(s)
Cell Surface Display Techniques , Ovarian Neoplasms , Peptide Library , Female , Humans , Ovarian Neoplasms/therapy , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/immunology , Biomarkers, Tumor , Animals , Immunotherapy/methods
3.
Front Immunol ; 15: 1376096, 2024.
Article in English | MEDLINE | ID: mdl-38863707

ABSTRACT

Bispecific T-cell-engaging antibodies are a growing class of therapeutics with numerous molecules being tested in clinical trials and, currently, seven of them have received market approval. They are structurally complex and function as adaptors to redirect the cytotoxicity of T cells to kill tumor cells. T-cell-engaging bispecific antibodies can be generally divided into two categories: IgG/IgG-like and non-IgG-like formats. Different formats may have different intrinsic potencies and physiochemical properties, and comprehensive studies are needed to gain a better understanding of how the differences in formats impact on structural and functional characteristics. In this study, we designed and generated bispecific T-cell-engaging antibodies with IgG-like (DVD-Ig) and non-IgG (BiTE) formats. Both target the same pair of antigens (EGFR and CD3) to minimize the possible influence of targets on functional characterization. We performed a side-by-side comparison to assess differences in the physiochemical and biological properties of these two bispecific T-cell-engaging antibodies using a variety of breast and ovarian cancer cell-based functional assays to delineate the structural-functional relationships and anti-tumor activities/potency. We found that the Fc portion of T-cell-engaging bispecific antibodies can significantly impact antigen binding activity, potency, and stability in addition to eliciting different mechanisms of action that contribute the killing of cancer cells.


Subject(s)
Antibodies, Bispecific , Immunoglobulin G , T-Lymphocytes , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/immunology , Humans , Immunoglobulin G/immunology , T-Lymphocytes/immunology , CD3 Complex/immunology , Cell Line, Tumor , ErbB Receptors/immunology , Female , Breast Neoplasms/immunology , Breast Neoplasms/therapy , Ovarian Neoplasms/immunology , Ovarian Neoplasms/therapy
4.
Oncoimmunology ; 13(1): 2349347, 2024.
Article in English | MEDLINE | ID: mdl-38746870

ABSTRACT

The innate lymphoid cell (ILC) family is composed of heterogeneous innate effector and helper immune cells that preferentially reside in tissues where they promote tissue homeostasis. In cancer, they have been implicated in driving both pro- and anti-tumor responses. This apparent dichotomy highlights the need to better understand differences in the ILC composition and phenotype within different tumor types that could drive seemingly opposite anti-tumor responses. Here, we characterized the frequency and phenotype of various ILC subsets in melanoma metastases and primary epithelial ovarian tumors. We observed high PD-1 expression on ILC subsets isolated from epithelial ovarian tumor samples, while ILC populations in melanoma samples express higher levels of LAG-3. In addition, we found that the frequency of cytotoxic ILCs and NKp46+ILC3 in tumors positively correlates with monocytic cells and conventional type 2 dendritic cells, revealing potentially new interconnected immune cell subsets in the tumor microenvironment. Consequently, these observations may have direct relevance to tumor microenvironment composition and how ILC subset may influence anti-tumor immunity.


Subject(s)
Carcinoma, Ovarian Epithelial , Immunity, Innate , Lymphocytes, Tumor-Infiltrating , Melanoma , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Melanoma/immunology , Melanoma/pathology , Carcinoma, Ovarian Epithelial/immunology , Carcinoma, Ovarian Epithelial/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Tumor Microenvironment/immunology , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Neoplasms, Glandular and Epithelial/immunology , Neoplasms, Glandular and Epithelial/pathology , Programmed Cell Death 1 Receptor/metabolism , Natural Cytotoxicity Triggering Receptor 1/metabolism , Dendritic Cells/immunology , Dendritic Cells/pathology , Dendritic Cells/metabolism , Lymphocyte Activation Gene 3 Protein , Antigens, CD/metabolism
5.
Mol Genet Genomics ; 299(1): 51, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743077

ABSTRACT

This study examines the prognostic role and immunological relevance of EMP1 (epithelial membrane protein-1) in a pan-cancer analysis, with a focus on ovarian cancer. Utilizing data from TCGA, CCLE, and GTEx databases, we assessed EMP1 mRNA expression and its correlation with tumor progression, prognosis, and immune microenvironment across various cancers. Our results indicate that EMP1 expression is significantly associated with poor prognosis in multiple cancer types, including ovarian, bladder, testicular, pancreatic, breast, brain, and uveal melanoma. Immune-related analyses reveal a positive correlation between EMP1 and immune cell infiltration, particularly neutrophils, macrophages, and dendritic cells, as well as high expression of immune checkpoint such as CD274, HAVCR2, IL10, PDCD1LG2, and TGFB1 in most tumors. In vivo experiments confirm that EMP1 promotes ovarian cancer cell proliferation, metastasis, and invasion. In conclusion, EMP1 emerges as a potential prognostic biomarker and therapeutic target in various cancers, particularly ovarian cancer, due to its influence on tumor progression and immune cell dynamics. Further research is warranted to elucidate the precise mechanisms of EMP1 in cancer biology and to translate these findings into clinical applications.


Subject(s)
Biomarkers, Tumor , Disease Progression , Gene Expression Regulation, Neoplastic , Ovarian Neoplasms , Tumor Microenvironment , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Prognosis , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Biomarkers, Tumor/genetics , Animals , Cell Proliferation/genetics , Cell Line, Tumor , Mice , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , Membrane Glycoproteins/genetics
6.
Pharmacol Res ; 204: 107213, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750677

ABSTRACT

Prostate cancer (PC) and Ovarian cancer (OC) are two of the most common types of cancer that affect the reproductive systems of older men and women. These cancers are associated with a poor quality of life among the aged population. Therefore, finding new and innovative ways to detect, treat, and prevent these cancers in older patients is essential. Finding biomarkers for these malignancies will increase the chance of early detection and effective treatment, subsequently improving the survival rate. Studies have shown that the prevalence and health of some illnesses are linked to an impaired immune system. However, the age-associated changes in the immune system during malignancies such as PC and OC are poorly understood. Recent research has suggested that the excessive production of inflammatory immune mediators, such as interleukin-6 (IL-6), interleukin-8 (IL-8), transforming growth factor (TGF), tumor necrosis factor (TNF), CXC motif chemokine ligand 1 (CXCL1), CXC motif chemokine ligand 12 (CXCL12), and CXC motif chemokine ligand 13 (CXCL13), etc., significantly impact the development of PC and OC in elderly patients. Our review focuses on the latest functional studies of pro-inflammatory cytokines (interleukins) and CXC chemokines, which serve as biomarkers in elderly patients with PC and OC. Thus, we aim to shed light on how these biomarkers affect the development of PC and OC in elderly patients. We also examine the current status and future perspective of cytokines (interleukins) and CXC chemokines-based therapeutic targets in OC and PC treatment for elderly patients.


Subject(s)
Chemokines, CXC , Cytokines , Ovarian Neoplasms , Prostatic Neoplasms , Humans , Female , Male , Ovarian Neoplasms/immunology , Ovarian Neoplasms/metabolism , Cytokines/immunology , Chemokines, CXC/metabolism , Prostatic Neoplasms/immunology , Prostatic Neoplasms/metabolism , Animals , Aging/immunology , Inflammation Mediators/metabolism
7.
Sci Adv ; 10(20): eadj5428, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38748789

ABSTRACT

High-grade serous ovarian cancer (HGSC) is a challenging disease, especially for patients with immunologically "cold" tumors devoid of tumor-infiltrating lymphocytes (TILs). We found that HGSC exhibits among the highest levels of MYCN expression and transcriptional signature across human cancers, which is strongly linked to diminished features of antitumor immunity. N-MYC repressed basal and induced IFN type I signaling in HGSC cell lines, leading to decreased chemokine expression and T cell chemoattraction. N-MYC inhibited the induction of IFN type I by suppressing tumor cell-intrinsic STING signaling via reduced STING oligomerization, and by blunting RIG-I-like receptor signaling through inhibition of MAVS aggregation and localization in the mitochondria. Single-cell RNA sequencing of human clinical HGSC samples revealed a strong negative association between cancer cell-intrinsic MYCN transcriptional program and type I IFN signaling. Thus, N-MYC inhibits tumor cell-intrinsic innate immune signaling in HGSC, making it a compelling target for immunotherapy of cold tumors.


Subject(s)
Immunity, Innate , Interferon Type I , Ovarian Neoplasms , Signal Transduction , Humans , Female , Ovarian Neoplasms/immunology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Cell Line, Tumor , Interferon Type I/metabolism , Cystadenocarcinoma, Serous/pathology , Cystadenocarcinoma, Serous/immunology , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/metabolism , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Neoplasm Grading , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics
8.
Medicine (Baltimore) ; 103(18): e38019, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701316

ABSTRACT

BACKGROUND: Recurrent ovarian cancer (OC) presents a significant therapeutic challenge with limited treatment success. Programmed cell death protein 1 (PD-1/PD-L1) immune checkpoint inhibitors have emerged as a potential treatment avenue, necessitating a systematic review and meta-analysis to evaluate their efficacy and safety. METHODS: Adhering to preferred reporting items for systematic reviews and meta-analyses guidelines, we conducted a comprehensive literature search across PubMed, Embase, Web of Science, and Cochrane Library, culminating in the inclusion of studies focusing on the treatment of recurrent OC with PD-1/PD-L1 inhibitors. Studies were evaluated using the Newcastle-Ottawa Scale and analyzed using fixed or random effects models depending on heterogeneity levels. RESULTS: Our search yielded 1215 articles, with 6 meeting the inclusion criteria for final analysis. Studies varied in size and reported median age, overall survival (OS), progression-free survival (PFS), and adverse events. The meta-analysis showed improved Objective Response Rates (ORR), Disease Control Rate (DCR), and PFS in patients treated with PD-1/PD-L1 inhibitors. The overall adverse event rate was 17.9%, indicating a need for careful patient selection and monitoring. No significant publication bias was detected, enhancing the reliability of our findings. CONCLUSIONS: PD-1/PD-L1 inhibitors offer a promising treatment option for recurrent OC, improving ORR, DCR, and PFS. However, the higher incidence of adverse events necessitates a cautious approach to their use. Future research should focus on long-term outcomes, biomarker identification, and optimal combination therapies.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasm Recurrence, Local , Ovarian Neoplasms , Programmed Cell Death 1 Receptor , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/immunology , Female , Neoplasm Recurrence, Local/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , B7-H1 Antigen/antagonists & inhibitors
9.
Braz J Med Biol Res ; 57: e12874, 2024.
Article in English | MEDLINE | ID: mdl-38775545

ABSTRACT

More attention has been paid to immunotherapy for ovarian cancer and the development of tumor vaccines. We developed a trichostatin A (TSA)-modified tumor vaccine with potent immunomodulating activities that can inhibit the growth of ovarian cancer in rats and stimulate immune cell response in vivo. TSA-treated Nutu-19 cells inactivated by X-ray radiation were used as a tumor vaccine in rat ovarian cancer models. Prophylactic and therapeutic experiments were performed with TSA-modified tumor vaccine in rats. Flow cytometry and ELISpot assays were conducted to assess immune response. Immune cell expression in the spleen and thymus were detected by immunohistochemical staining. GM-CSF, IL-7, IL-17, LIF, LIX, KC, MCP-1, MIP-2, M-CSF, IP-10/CXCL10, MIG/CXCL9, RANTES, IL-4, IFN-γ, and VEGF expressions were detected with Milliplex Map Magnetic Bead Panel immunoassay. TSA vaccination in therapeutic and prophylactic models could effectively stimulate innate immunity and boost the adaptive humoral and cell-mediated immune responses to inhibit the growth and tumorigenesis of ovarian cancer. This vaccine stimulated the thymus into reactivating status and enhanced infiltrating lymphocytes in tumor-bearing rats. The expression of key immunoregulatory factors were upregulated in the vaccine group. The intensities of infiltrating CD4+ and CD8+ T cells and NK cells were significantly increased in the vaccine group compared to the control group (P<0.05). This protection was mainly dependent on the IFN-γ pathway and, to a much lesser extent, by the IL-4 pathway. The tumor cells only irradiated by X-ray as the control group still showed a slight immune effect, indicating that irradiated cells may also cause certain immune antigen exposure, but the efficacy was not as significant as that of the TSA-modified tumor vaccine. Our study revealed the potential application of the TSA-modified tumor vaccine as a novel tumor vaccine against tumor refractoriness and growth. These findings offer a better understanding of the immunomodulatory effects of the vaccine against latent tumorigenesis and progression. This tumor vaccine therapy may increase antigen exposure, synergistically activate the immune system, and ultimately improve remission rates. A vaccine strategy designed to induce effective tumor immune response is being considered for cancer immunotherapy.


Subject(s)
Cancer Vaccines , Hydroxamic Acids , Ovarian Neoplasms , Animals , Female , Ovarian Neoplasms/immunology , Ovarian Neoplasms/prevention & control , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Rats , Hydroxamic Acids/therapeutic use , Hydroxamic Acids/pharmacology , Flow Cytometry , Cell Line, Tumor , Disease Models, Animal
10.
Adv Exp Med Biol ; 1452: 107-118, 2024.
Article in English | MEDLINE | ID: mdl-38805127

ABSTRACT

According to the latest global cancer data, ovarian cancer is the deadliest among all gynecological malignant tumors and ranks fifth in terms of mortality. Its etiology and pathogenesis are unknown, and the 5-year survival rate of patients with advanced ovarian cancer is only 40% (Sung et al. CA Cancer J Clin 71:209-49, 2021). Recent research has shown that the human microbiota plays a crucial role in the development and progression of tumors, including ovarian cancer. Numerous studies have highlighted the complex connections between the reproductive tract microbiota, intestinal microbiota, and ovarian cancer (Jacobson et al. PeerJ 9:e11574, 2021). Therefore, this chapter will delve into composition, function, and the correlation between microbiota and immunity in the field of ovarian cancer microbiota, as well as the potential of bacteria in therapeutics and diagnostics of ovarian cancer.


Subject(s)
Gastrointestinal Microbiome , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/microbiology , Ovarian Neoplasms/immunology , Microbiota , Genitalia, Female/microbiology
11.
BMC Med Genomics ; 17(1): 148, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807162

ABSTRACT

BACKGROUND: Ovarian cancer is the most common cause of gynecological cancer death. Pak4 has been proved to be tumorigenic in many types of cancers, but its role in ovarian cancer is still not clarified. METHODS: In this study, we used immunohistochemistry to investigate into Pak4 expression in different histological types of ovarian cancer. TIMER, TISCH2, GEPIA, ualcan, KM plotter, GSCA and GeneMANIA were used to identify the prognostic roles and gene regulation networks of Pak4 in ovarian cancer. Immune infiltration levels were investigated using TIMER database. RESULTS: Pak4 was highly expressed in ovarian cancers, regardless of different FIGO stages and histological grades. Single cell sequencing database proved that Pak4 was highly expressed in malignant ovarian cancer cells. Pak4 level was significantly correlated with different histological types of ovarian cancer. Pak4 expression was negatively connected with OS and PFS of ovarian cancer patients. Functions of Pak4 and its interacted genes were mainly involved in protein serine/threonine kinase activity, regulation of actin filament-based process and regulation of cytoskeleton organization. Pak4 level was negatively correlated with immune biomarkers of B cell infiltration (p = 2.39e-05), CD8 + T cell infiltration (p = 1.51e-04), neutrophil (p = 1.74e-06) and dendritic cell (p = 4.41e-08). Close correlation was found between Pak4 expression and T cell exhaustion (p < 0.05). CONCLUSIONS: Our results demonstrated the expression level, gene interaction networks and immune infiltration levels of Pak4 in ovarian cancer. And the results revealed role of Pak4 in tumorigenesis and the possibility to be a potential immunotherapeutic target.


Subject(s)
Ovarian Neoplasms , p21-Activated Kinases , Humans , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/immunology , Gene Expression Regulation, Neoplastic , Prognosis , Carcinogenesis/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Gene Regulatory Networks
13.
Int Immunopharmacol ; 134: 112235, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38761779

ABSTRACT

The involvement of Interferon-stimulated exonuclease gene 20 (ISG20) has been reported in renal clear cell carcinoma, hepatocellular carcinoma, and cervical cancer. However, its role in ovarian cancer chemotherapy remains unclear. In this study, we conducted a comparative analysis of TGF-ß1 and ISG20 in cisplatin-sensitive and cisplatin-resistant ovarian cancer cells and tissues using qRT-PCR and a tissue immunofluorescence analysis. We also investigated the impact of ISG20-targeted drugs (IFN-γ) and TGF-ß1 inhibitors on cisplatin response both in vivo and in vitro. Additionally, we assessed the effects of TGF-ß1 or ISG20 on the polarization of tumor-associated macrophages through flow cytometry and ELISA analysis. Our findings revealed that ISG20 expression was lower in cisplatin-resistant tissues compared to cisplatin-sensitive tissues; however, overexpression of ISG20 sensitized ovarian cancer to cisplatin treatment. Furthermore, activation of ISG20 expression with IFN-γ or TGF-ß1 inhibitors enhanced the sensitivity of ovarian cancer cells to cisplatin therapy. Notably, our results demonstrated that TGF-ß1 promoted M2-type macrophage polarization as well as PI3K/mTOR pathway activation by suppressing ISG20 expression both in vivo and in vitro. In conclusion, our study highlights the critical role played by ISG20 within the network underlying cisplatin resistance in ovarian cancer. Targeting ISG20 using IFN-γ or TGF-ß1 inhibitors may represent a promising therapeutic strategy for treating ovarian cancer.


Subject(s)
Antineoplastic Agents , Cisplatin , Drug Resistance, Neoplasm , Ovarian Neoplasms , Phosphatidylinositol 3-Kinases , Signal Transduction , TOR Serine-Threonine Kinases , Transforming Growth Factor beta1 , Cisplatin/pharmacology , Cisplatin/therapeutic use , Female , Humans , TOR Serine-Threonine Kinases/metabolism , Transforming Growth Factor beta1/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/immunology , Signal Transduction/drug effects , Animals , Phosphatidylinositol 3-Kinases/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Mice , Macrophages/immunology , Macrophages/drug effects , Macrophages/metabolism , Interferon-gamma/metabolism , Mice, Nude , Mice, Inbred BALB C , Intracellular Signaling Peptides and Proteins
14.
Oncoimmunology ; 13(1): 2346359, 2024.
Article in English | MEDLINE | ID: mdl-38737794

ABSTRACT

Immune exhaustion is a hallmark of ovarian cancer. Using multiparametric flow cytometry, the study aimed to analyze protein expression of novel immunological targets on CD3+ T cells isolated from the peripheral blood (n = 20), malignant ascites (n = 16), and tumor tissue (n = 6) of patients with ovarian cancer (OVCA). The study revealed an increased proportion of effector memory CD8+ T cells in OVCA tissue and malignant ascites. An OVCA-characteristic PD-1high CD8+ T cell population was detected, which differed from PD-1lowCD8+ T cells by increased co-expression of TIGIT, CD39, and HLA-DR. In addition, these OVCA-characteristic CD8+ T cells showed reduced expression of the transcription factor TCF-1, which may also indicate reduced effector function and memory formation. On the contrary, the transcription factor TOX, which significantly regulates terminal T cell-exhaustion, was found more frequently in these cells. Further protein and gene analysis showed that CD39 and CD73 were also expressed on OVCA tumor cells isolated from solid tumors (n = 14) and malignant ascites (n = 9). In the latter compartment, CD39 and CD73 were also associated with the expression of the "don't eat me" molecule CD24 on tumor cells. Additionally, ascites-derived CD24+EpCAM+ tumor cells showed a higher frequency of CD39+ or CD73+ cells. Furthermore, CD39 expression was associated with unfavorable clinical parameters. Expression of CD39 on T cells was upregulated through CD3/CD28 stimulation and its blockade by a newly developed nanobody construct resulted in increased proliferation (eFluor), activation (CD25 and CD134), and production of cytotoxic cytokines (IFN-γ, TNF-α, and granzyme-B) of CD8+ T cells.


Subject(s)
Apyrase , CD8-Positive T-Lymphocytes , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Apyrase/metabolism , Apyrase/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Middle Aged , Ascites/immunology , Ascites/pathology , Ascites/metabolism , Antigens, CD/metabolism , Antigens, CD/genetics , Aged , Programmed Cell Death 1 Receptor/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/antagonists & inhibitors , T Cell Transcription Factor 1/metabolism , T Cell Transcription Factor 1/genetics , HLA-DR Antigens/metabolism , Adult , T-Cell Exhaustion , High Mobility Group Proteins
15.
Cell Rep ; 43(4): 114096, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38607919

ABSTRACT

Receptors controlling the cross-presentation of tumor antigens by macrophage subsets in cancer tissues are poorly explored. Here, we show that TIM4+ large peritoneal macrophages efficiently capture and cross-present tumor-associated antigens at early stages of peritoneal infiltration by ovarian cancer cells. The phosphatidylserine (PS) receptor TIM4 promotes maximal uptake of dead cells or PS-coated artificial targets and triggers inflammatory and metabolic gene programs in combination with cytoskeletal remodeling and upregulation of transcriptional signatures related to antigen processing. At the cellular level, TIM4-mediated engulfment induces nucleation of F-actin around nascent phagosomes, delaying the recruitment of vacuolar ATPase, acidification, and cargo degradation. In vivo, TIM4 deletion blunts induction of early anti-tumoral effector CD8 T cells and accelerates the progression of ovarian tumors. We conclude that TIM4-mediated uptake drives the formation of specialized phagosomes that prolong the integrity of ingested antigens and facilitate cross-presentation, contributing to immune surveillance of the peritoneum.


Subject(s)
Antigens, Neoplasm , Carcinogenesis , Macrophages, Peritoneal , Animals , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/immunology , Female , Mice , Carcinogenesis/pathology , Carcinogenesis/immunology , Carcinogenesis/metabolism , Humans , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Cross-Priming/immunology , Cell Line, Tumor , Phagosomes/metabolism , Antigen Presentation/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Actins/metabolism
16.
Cell Rep ; 43(4): 114041, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38573857

ABSTRACT

CD24 is frequently overexpressed in ovarian cancer and promotes immune evasion by interacting with its receptor Siglec10, present on tumor-associated macrophages, providing a "don't eat me" signal that prevents targeting and phagocytosis by macrophages. Factors promoting CD24 expression could represent novel immunotherapeutic targets for ovarian cancer. Here, using a genome-wide CRISPR knockout screen, we identify GPAA1 (glycosylphosphatidylinositol anchor attachment 1), a factor that catalyzes the attachment of a glycosylphosphatidylinositol (GPI) lipid anchor to substrate proteins, as a positive regulator of CD24 cell surface expression. Genetic ablation of GPAA1 abolishes CD24 cell surface expression, enhances macrophage-mediated phagocytosis, and inhibits ovarian tumor growth in mice. GPAA1 shares structural similarities with aminopeptidases. Consequently, we show that bestatin, a clinically advanced aminopeptidase inhibitor, binds to GPAA1 and blocks GPI attachment, resulting in reduced CD24 cell surface expression, increased macrophage-mediated phagocytosis, and suppressed growth of ovarian tumors. Our study highlights the potential of targeting GPAA1 as an immunotherapeutic approach for CD24+ ovarian cancers.


Subject(s)
Acyltransferases , CD24 Antigen , Ovarian Neoplasms , Phagocytosis , Animals , Female , Humans , Mice , Acyltransferases/metabolism , Amidohydrolases/metabolism , Amidohydrolases/genetics , CD24 Antigen/metabolism , Cell Line, Tumor , Glycosylphosphatidylinositols/metabolism , Macrophages/metabolism , Macrophages/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/therapy
17.
Sci Rep ; 14(1): 9757, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684875

ABSTRACT

The purpose of this study was to identify novel autoantibodies against tumor-associated antigens (TAAs) and explore a diagnostic panel for Ovarian cancer (OC). Enzyme-linked immunosorbent assay was used to detect the expression of five anti-TAA autoantibodies in the discovery (70 OC and 70 normal controls) and validation cohorts (128 OC and 128 normal controls). Machine learning methods were used to construct a diagnostic panel. Serum samples from 81 patients with benign ovarian disease were used to identify the specificity of anti-TAA autoantibodies for OC. In both the discovery and validation cohorts, the expression of anti-CFL1, anti-EZR, anti-CYPA, and anti-PFN1 was higher in patients with OC than that in normal controls. The area under the receiver operating characteristic curve, sensitivity, and specificity of the panel containing anti-CFL1, anti-EZR, and anti-CYPA were 0.762, 55.56%, and 81.31%. The panel identified 53.06%, 53.33%, and 51.11% of CA125 negative, HE4 negative and the Risk of Ovarian Malignancy Algorithm negative OC patients, respectively. The combination of the three anti-TAA autoantibodies can serve as a favorable diagnostic tool for OC and has the potential to be a complementary biomarker for CA125 and HE4 in the diagnosis of ovarian cancer.


Subject(s)
Autoantibodies , Biomarkers, Tumor , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/immunology , Ovarian Neoplasms/blood , Autoantibodies/blood , Autoantibodies/immunology , Biomarkers, Tumor/blood , Biomarkers, Tumor/immunology , Middle Aged , Adult , Aged , Antigens, Neoplasm/immunology , Antigens, Neoplasm/blood , ROC Curve , Sensitivity and Specificity , Case-Control Studies , CA-125 Antigen/blood , CA-125 Antigen/immunology
18.
Int Immunopharmacol ; 133: 112112, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38640714

ABSTRACT

Ovarian cancer ranks as the seventh most prevalent cancer among women and is considered the most lethal gynecological malignancy on a global scale. The absence of reliable screening techniques, coupled with the insidious onset of nonspecific symptoms, often results in a delayed diagnosis, typically at an advanced stage characterized by peritoneal involvement. Management of advanced tumors typically involves a combination of chemotherapy and cytoreductive surgery. However, the therapeutic arsenal for ovarian cancer patients remains limited, highlighting the unmet need for precise, targeted, and sustained-release pharmacological agents. Genetically engineered T cells expressing chimeric antigen receptors (CARs) represent a promising novel therapeutic modality that selectively targets specific antigens, demonstrating robust and enduring antitumor responses in numerous patients. CAR T cell therapy has exhibited notable efficacy in hematological malignancies and is currently under investigation for its potential in treating various solid tumors, including ovarian cancer. Currently, numerous researchers are engaged in the development of novel CAR-T cells designed to target ovarian cancer, with subsequent evaluation of these candidate cells in preclinical studies. Given the ability of chimeric antigen receptor (CAR) expressing T cells to elicit potent and long-lasting anti-tumor effects, this therapeutic approach holds significant promise for the treatment of ovarian cancer. This review article examines the utilization of CAR-T cells in the context of ovarian cancer therapy.


Subject(s)
Immunotherapy, Adoptive , Ovarian Neoplasms , Receptors, Chimeric Antigen , T-Lymphocytes , Humans , Female , Ovarian Neoplasms/therapy , Ovarian Neoplasms/immunology , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/therapeutic use , Animals , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology
19.
J Immunol ; 212(12): 1904-1912, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38668728

ABSTRACT

NK cells have been shown to exhibit inflammatory and immunoregulatory functions in a variety of healthy and diseased settings. In the context of chronic viral infection and cancer, distinct NK cell populations that inhibit adaptive immune responses have been observed. To understand how these cells arise and further characterize their immunosuppressive role, we examined in vitro conditions that could polarize human NK cells into an inhibitory subset. TGF-ß1 has been shown to induce regulatory T cells in vitro and in vivo; we therefore investigated if TGF-ß1 could also induce immunosuppressive NK-like cells. First, we found that TGF-ß1/IL-15, but not IL-15 alone, induced CD103+CD49a+ NK-like cells from peripheral blood NK cells, which expressed markers previously associated with inhibitory CD56+ innate lymphoid cells, including high expression of GITR and CD101. Moreover, supernatant from ascites collected from patients with ovarian carcinoma also induced CD103+CD49a+ NK-like cells in vitro in a TGF-ß-dependent manner. Interestingly, TGF-ß1/IL-15-induced CD103+CD56+ NK-like cells suppressed autologous CD4+ T cells in vitro by reducing absolute number, proliferation, and expression of activation marker CD25. Collectively, these findings provide new insight into how NK cells may acquire an inhibitory phenotype in TGF-ß1-rich environments.


Subject(s)
Interleukin-15 , Killer Cells, Natural , Transforming Growth Factor beta1 , Humans , Killer Cells, Natural/immunology , Interleukin-15/immunology , Interleukin-15/metabolism , Transforming Growth Factor beta1/metabolism , Female , Antigens, CD/metabolism , Antigens, CD/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Integrin alpha Chains/metabolism , Integrin alpha Chains/immunology , CD56 Antigen/metabolism , Cells, Cultured , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Lymphocyte Activation/immunology
20.
Front Immunol ; 15: 1360615, 2024.
Article in English | MEDLINE | ID: mdl-38646521

ABSTRACT

Introduction: Malignant ascites indicates ovarian cancer progression and predicts poor clinical outcome. Various ascites components induce an immunosuppressive crosstalk between tumor and immune cells, which is poorly understood. In our previous study, imbalanced electrolytes, particularly high sodium content in malignant ascites, have been identified as a main immunosuppressive mechanism that impaired NK and T-cell activity. Methods: In the present study, we explored the role of high concentrations of ascites proteins and immunoglobulins on antitumoral NK effector functions. To this end, a coculture system consisting of healthy donor NK cells and ovarian cancer cells was used. The anti-EGFR antibody Cetuximab was added to induce antibody-dependent cellular cytotoxicity (ADCC). NK activity was assessed in the presence of different patient ascites samples and immunoglobulins that were isolated from ascites. Results: Overall high protein concentration in ascites impaired NK cell degranulation, conjugation to tumor cells, and intracellular calcium signaling. Immunoglobulins isolated from ascites samples competitively interfered with NK ADCC and inhibited the conjugation to target cells. Furthermore, downregulation of regulatory surface markers CD16 and DNAM-1 on NK cells was prevented by ascites-derived immunoglobulins during NK cell activation. Conclusion: Our data show that high protein concentrations in biological fluids are able to suppress antitumoral activity of NK cells independent from the mechanism mediated by imbalanced electrolytes. The competitive interference between immunoglobulins of ascites and specific therapeutic antibodies could diminish the efficacy of antibody-based therapies and should be considered in antibody-based immunotherapies.


Subject(s)
Antibody-Dependent Cell Cytotoxicity , Ascites , Killer Cells, Natural , Ovarian Neoplasms , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Ascites/immunology , Female , Antibody-Dependent Cell Cytotoxicity/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/metabolism , Cell Line, Tumor , Immunoglobulins/metabolism , Receptors, IgG/metabolism , Receptors, IgG/immunology , Cell Degranulation/immunology , Cell Degranulation/drug effects , Antigens, Differentiation, T-Lymphocyte/metabolism , Antigens, Differentiation, T-Lymphocyte/immunology , Cetuximab/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...