Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.922
Filter
1.
Sci Rep ; 14(1): 12995, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844478

ABSTRACT

Woodsmoke (WS) exposure is associated with significant health-related sequelae. Different populations can potentially exhibit varying susceptibility, based on endocrine phenotypes, to WS and investigating neurological impacts following inhaled WS is a growing area of research. In this study, a whole-body inhalation chamber was used to expose both male and female C57BL/6 mice (n = 8 per group) to either control filtered air (FA) or acute WS (0.861 ± 0.210 mg/m3) for 4 h/d for 2 days. Neuroinflammatory and lipid-based biological markers were then assessed. In a second set of studies, female mice were divided into two groups: one group was ovariectomized (OVX) to simulate an ovarian hormone-deficient state (surgical menopause), and the other underwent Sham surgery as controls, to mechanistically assess the impact of ovarian hormone presence on neuroinflammation following FA and acute WS exposure to simulate an acute wildfire episode. There was a statistically significant impact of sex (P ≤ 0.05) and statistically significant interactions between sex and treatment in IL-1ß, CXCL-1, TGF-ß, and IL-6 brain relative gene expression. Hippocampal and cortex genes also exhibited significant changes in acute WS-exposed Sham and OVX mice, particularly in TGF-ß (hippocampus) and CCL-2 and CXCL-1 (cortex). Cortex GFAP optical density (OD) showed a notable elevation in male mice exposed to acute WS, compared to the control FA. Sham and OVX females demonstrated differential GFAP expression, depending on brain region. Overall, targeted lipidomics in phosphatidylcholine (PC) and phosphatidylethanolamine (PE) serum and brain lipids demonstrated more significant changes between control FA and acute WS exposure in female mice, compared to males. In summary, male and female mice show distinct neuroinflammatory markers in response to acute WS exposure. Furthermore, ovarian hormone deficiency may impact the neuroinflammatory response following an acute WS event.


Subject(s)
Mice, Inbred C57BL , Neuroinflammatory Diseases , Animals , Female , Male , Mice , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/etiology , Sex Factors , Ovariectomy/adverse effects , Brain/metabolism , Ovary/metabolism
2.
Mol Med Rep ; 30(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38818814

ABSTRACT

C1q/tumor necrosis factor­related protein 3 (CTRP3) expression is markedly reduced in the serum of patients with osteoporosis. The present study aimed to investigate whether CTRP3 reduces bone loss in oophorectomy (OVX)­induced mice via the AMP­activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/nuclear factor E2­related factor 2 (Nrf2) signaling pathway. Female C57BL/6J mice and MC3T3­E1 cells were used to construct in vivo and in vitro models of osteoporosis, respectively. The left femurs of mice were examined using micro­computed tomography scans and bone­related quantitative morphological evaluation was performed. Pathological changes and the number of osteoclasts in the left femurs of mice were detected using hematoxylin and eosin, and tartrate­resistant acid phosphatase (TRAP) staining. Runt­related transcription factor­2 (RUNX2) expression in the left femurs was detected using immunofluorescence analysis, and the serum levels of bone resorption markers (C­telopeptide of type I collagen and TRAP) and bone formation markers [osteocalcin (OCN) and procollagen type 1 N­terminal propeptide] were detected. In addition, osteoblast differentiation and calcium deposits were examined in MC3T3­E1 cells using alkaline phosphatase (ALP) and Alizarin red staining, respectively. Moreover, RUNX2, ALP and OCN expression levels were detected using reverse transcription­quantitative PCR, and the expression levels of proteins associated with the AMPK/SIRT1/Nrf2 signaling pathway were detected using western blot analysis. The results revealed that globular CTRP3 (gCTRP3) alleviated bone loss and promoted bone formation in OVX­induced mice. gCTRP3 also facilitated the osteogenic differentiation of MC3T3­E1 cells through the AMPK/SIRT1/Nrf2 signaling pathway. The addition of an AMPK inhibitor (Compound C), SIRT1 inhibitor (EX527) or Nrf2 inhibitor (ML385) reduced the osteogenic differentiation of MC3T3­E1 cells via inhibition of gCTRP3. In conclusion, gCTRP3 inhibits OVX­induced osteoporosis by activating the AMPK/SIRT1/Nrf2 signaling pathway.


Subject(s)
AMP-Activated Protein Kinases , NF-E2-Related Factor 2 , Osteoporosis , Ovariectomy , Signal Transduction , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Sirtuin 1/genetics , Female , Mice , Osteoporosis/metabolism , Osteoporosis/etiology , Osteoporosis/pathology , NF-E2-Related Factor 2/metabolism , Ovariectomy/adverse effects , AMP-Activated Protein Kinases/metabolism , Mice, Inbred C57BL , Osteoblasts/metabolism , Cell Line , Osteoclasts/metabolism , Disease Models, Animal , Femur/metabolism , Femur/pathology , Femur/diagnostic imaging , Osteogenesis/drug effects
3.
Int J Biol Macromol ; 270(Pt 2): 132370, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763253

ABSTRACT

BACKGROUND: Polysaccharides from Grifola frondosa(GFP) have gained worldwide attention owing to their promising biological activities and potential health benefits. PURPOSE: This study aimed to investigate the effects of GFP on alleviation of osteoporosis in ovariectomized (OVX) mice and examine the underlying mechanism. METHOD: A mouse model of postmenopausal osteoporosis was established by OVX method, Forty eight C57BL/6 female mice were randomly divided into Normal group, OVX alone (Model group, n = 8), OVX + 10 mg/kg GFP (GFP-L group, n = 8), OVX + 20 mg/kg GFP (GFP-M group, n = 8), OVX + 40 mg/kg GFP (GFP-H group, n = 8), OVX + 10 mg/kg Estradiol valerate (Positive group, n = 8). RESULTS: The results showed that compared with Model group, the concentrations of interleukin (IL)-1ß, interleukin (IL)-6 and Tumor necrosis factor-α (TNF-α) were significantly reduced, the activity of superoxide dismutase (SOD) and glutathione (GSH) were significantly increased, the content of myeloperoxidase (MPO) and malondialdehyde (MDA) were significantly reduced, and the proteins levels of PINK1, Parkin, Beclin-1 and LC3-II were significantly decreased in the GFP groups. CONCLUSION: This study demonstrates that GFP alleviates ovariectomy-induced osteoporosis via reduced secretion of inflammatory cytokines, improvement in the oxidative stress status in the body, and inhibition of the PINK1/Parkin signaling pathway.


Subject(s)
Grifola , Inflammation , Osteoporosis , Ovariectomy , Oxidative Stress , Protein Kinases , Signal Transduction , Ubiquitin-Protein Ligases , Animals , Ovariectomy/adverse effects , Oxidative Stress/drug effects , Female , Mice , Signal Transduction/drug effects , Osteoporosis/drug therapy , Osteoporosis/etiology , Osteoporosis/prevention & control , Osteoporosis/metabolism , Protein Kinases/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Ubiquitin-Protein Ligases/metabolism , Grifola/chemistry , Mice, Inbred C57BL , Cytokines/metabolism , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Disease Models, Animal
4.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791103

ABSTRACT

Menopause is characterized by a reduction in sex hormones in women and is associated with metabolic changes, including fatty liver and insulin resistance. Lifestyle changes, including a balanced diet and physical exercise, are necessary to prevent these undesirable changes. Strength training (ST) has been widely used because of the muscle and metabolic benefits it provides. Our study aims to evaluate the effects of ST on hepatic steatosis and insulin resistance in ovariectomized mice fed a high-fat diet (HFD) divided into four groups as follows: simulated sedentary surgery (SHAM-SED), trained simulated surgery (SHAM-EXE), sedentary ovariectomy (OVX-SED), and trained ovariectomy (OVX-EXE). They were fed an HFD for 9 weeks. ST was performed thrice a week. ST efficiently reduced body weight and fat percentage and increased lean mass in OVX mice. Furthermore, ST reduced the accumulation of ectopic hepatic lipids, increased AMPK phosphorylation, and inhibited the de novo lipogenesis pathway. OVX-EXE mice also showed a better glycemic profile, associated with greater insulin sensitivity identified by the euglycemic-hyperinsulinemic clamp, and reduced markers of hepatic oxidative stress compared with sedentary animals. Our data support the idea that ST can be indicated as a non-pharmacological treatment approach to mitigate metabolic changes resulting from menopause.


Subject(s)
Diet, High-Fat , Fatty Liver , Insulin Resistance , Ovariectomy , Resistance Training , Animals , Female , Ovariectomy/adverse effects , Diet, High-Fat/adverse effects , Mice , Fatty Liver/metabolism , Fatty Liver/prevention & control , Physical Conditioning, Animal , Oxidative Stress , Liver/metabolism , Mice, Inbred C57BL , Body Weight , Lipogenesis
6.
Nutrients ; 16(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38474779

ABSTRACT

Menopause marks a critical life stage characterized by hormonal changes that significantly impact bone health, leading to a heightened susceptibility to bone fractures. This research seeks to elucidate the impact of daidzein and tempeh on calcium status, calcium transporters, and bone metabolism in an ovariectomized rat model. Forty female Wistar rats, aged 3 months, participated in a two-phase experiment. The initial phase involved inducing a calcium deficit, while the second phase comprised dietary interventions across five groups: Sham (S) and Ovariectomy (O) with a standard diet, O with bisphosphonate (OB), O with pure daidzein (OD), and O with tempeh (OT). Multiple parameters, encompassing calcium levels, calcium transporters, bone histopathology, and serum bone metabolism markers, were evaluated. The findings revealed that the OT group showcased heightened levels of bone turnover markers, such as pyridinoline, C-telopeptide of type I collagen, bone alkaline phosphatase, and procollagen type I N-terminal propeptide, in contrast to S and O groups, with statistical significance (p < 0.05). Histopathologically, both the OD and OT groups exhibited effects akin to the OB group, indicating a decrease in the surface area occupied by adipocytes in the femoral bone structure, although statistically non-equivalent, supporting the directionally similar trends. Although TRPV5 and TRPV6 mRNA expression levels in the jejunum and duodenum did not display statistically significant differences (p > 0.05), the OD and OT groups exhibited increased expression compared to the O group. We hypothesized that obtained results may be related to the effect of isoflavones on estrogen pathways because of their structurally similar to endogenous estrogen and weak estrogenic properties. In conclusion, the daily consumption of pure daidzein and tempeh could potentially improve and reinstate calcium status, calcium transport, and bone metabolism in ovariectomized rats. Additionally, isoflavone products demonstrate effects similar to bisphosphonate drugs on these parameters in ovariectomized rats.


Subject(s)
Isoflavones , Osteoporosis , Soy Foods , Rats , Female , Animals , Humans , Calcium , Osteoporosis/etiology , Rats, Wistar , Calcium, Dietary/pharmacology , Isoflavones/pharmacology , Estrogens/pharmacology , Biomarkers , Diphosphonates , Ovariectomy/adverse effects , Bone Density
7.
J Agric Food Chem ; 72(14): 7969-7979, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38551374

ABSTRACT

Oligosaccharides from the plant Amorphophallus konjac were potentially effective in menopausal osteoporosis due to their prebiotic attributes. The present work mainly studied the regulation of konjac oligosaccharides (KOS) on menopausal bone loss. Experiments were carried out in ovariectomized (OVX) rats, and various contents of KOS were correlated with diet. After 3 months of treatment, the degree of osteoporosis was determined by bone mineral density and femoral microarchitecture. The research data showed that the 8% dietary KOS significantly alleviated bone loss in OVX rats, as it promoted the bone trabecular number by 134.2% and enhanced the bone bending stiffness by 103.1%. From the perspective of the gut-bone axis, KOS promoted gut barrier repair and decreased pro-inflammatory cytokines. Besides, KOS promoted the growth of Bifidobacterium longum and restored Treg/Th17 balance in bone marrow. The two aspects contributed to decreased osteoclastogenic activity and thus inhibited inflammation-related bone loss. This work extended current knowledge of prebiotic inhibition on bone loss and provide an alternative strategy for osteoporosis prevention.


Subject(s)
Amorphophallus , Gastrointestinal Microbiome , Osteoporosis , Female , Rats , Animals , Humans , T-Lymphocytes, Regulatory , Osteoporosis/drug therapy , Osteoporosis/etiology , Bone Density , Ovariectomy/adverse effects , Oligosaccharides/pharmacology
8.
Sci Rep ; 14(1): 7042, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38528074

ABSTRACT

In China, traditional medications for osteoporosis have significant side effects, low compliance, and high costs, making it urgent to explore new treatment options. Probiotics have demonstrated superiority in the treatment of various chronic diseases, and the reduction of bone mass in postmenopausal osteoporosis (PMOP) is closely related to the degradation and metabolism of intestinal probiotics. It is crucial to explore the role and molecular mechanisms of probiotics in alleviating PMOP through their metabolites, as well as their therapeutic effects. We aim to identify key probiotics and their metabolites that affect bone loss in PMOP through 16srDNA sequencing combined with non-targeted metabolomics sequencing, and explore the impact and possible mechanisms of key probiotics and their metabolites on the progression of PMOP in the context of osteoporosis caused by estrogen deficiency. The sequencing results showed a significant decrease in Lactobacillus acidophilus and butyrate in PMOP patients. In vivo experiments confirmed that the intervention of L. acidophilus and butyrate significantly inhibited osteoclast formation and bone resorption activity, improved intestinal barrier permeability, suppressed B cells, and the production of RANKL on B cells, effectively reduced systemic bone loss induced by oophorectomy, with butyric acid levels regulated by L. acidophilus. Consistently, in vitro experiments have confirmed that butyrate can directly inhibit the formation of osteoclasts and bone resorption activity. The above research results indicate that there are various pathways through which L. acidophilus inhibits osteoclast formation and bone resorption activity through butyrate. Intervention with L. acidophilus may be a safe and promising treatment strategy for osteoclast related bone diseases, such as PMOP.


Subject(s)
Bone Resorption , Osteoporosis, Postmenopausal , Osteoporosis , Probiotics , Female , Humans , Osteoclasts/metabolism , Osteoporosis, Postmenopausal/etiology , Lactobacillus acidophilus , Butyrates/metabolism , Osteoporosis/metabolism , Bone Resorption/metabolism , Probiotics/pharmacology , Probiotics/therapeutic use , Cell Differentiation , Ovariectomy/adverse effects
9.
Molecules ; 29(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38542877

ABSTRACT

Disordered gut microbiota (GM) structure and function may contribute to osteoporosis (OP). Nodakenin has been shown to ameliorate osteoporosis; however, its anti-osteoporotic mechanism is unknown. This study aimed to further reveal the mechanism of the anti-osteoporotic action of nodakenin from the perspective of the microbiome and metabolome. An osteoporosis model was induced in mice through ovariectomy (OVX), with bone mass and microstructure assessed using µCT. Subsequently, ELISA and histologic examination were used to detect biochemical indicators of bone conversion and intestinal morphology. Using metabolomics and 16S rRNA sequencing, it was possible to determine the composition and abundance of the gut microbiota in feces. The results revealed that nodakenin treatment improved the bone microstructure and serum levels of bone turnover markers, and increased the intestinal mucosal integrity. 16S rRNA sequencing analysis revealed that nodakenin treatment decreased the relative abundance of Firmicutes and Patescibacteria, as well as the F/B ratio, and elevated the relative abundance of Bacteroidetes in OVX mice. In addition, nodakenin enhanced the relative abundance of Muribaculaceae and Allobaculum, among others, at the genus level. Moreover, metabolomics analysis revealed that nodakenin treatment significantly altered the changes in 113 metabolites, including calcitriol. A correlation analysis revealed substantial associations between various gut microbiota taxa and both the osteoporosis phenotype and metabolites. In summary, nodakenin treatment alleviated OVX-induced osteoporosis by modulating the gut microbiota and intestinal barrier.


Subject(s)
Coumarins , Gastrointestinal Microbiome , Glucosides , Osteoporosis , Female , Mice , Animals , Humans , RNA, Ribosomal, 16S/genetics , Gastrointestinal Microbiome/genetics , Osteoporosis/drug therapy , Osteoporosis/etiology , Ovariectomy/adverse effects
10.
Hypertension ; 81(5): e51-e62, 2024 May.
Article in English | MEDLINE | ID: mdl-38445498

ABSTRACT

BACKGROUND: Arterial stiffness is a cardiovascular risk factor and dramatically increases as women transition through menopause. The current study assessed whether a mouse model of menopause increases arterial stiffness in a similar manner to aging and whether activation of the G-protein-coupled estrogen receptor could reverse stiffness. METHODS: Female C57Bl/6J mice were ovariectomized at 10 weeks of age or aged to 52 weeks, and some mice were treated with G-protein-coupled estrogen receptor agonists. RESULTS: Ovariectomy and aging increased pulse wave velocity to a similar extent independent of changes in blood pressure. Aging increased carotid wall thickness, while ovariectomy increased material stiffness without altering vascular geometry. RNA-sequencing analysis revealed that ovariectomy downregulated smooth muscle contractile genes. The enantiomerically pure G-protein-coupled estrogen receptor agonist, LNS8801, reversed stiffness in ovariectomy mice to a greater degree than the racemic agonist G-1. In summary, ovariectomy and aging induced arterial stiffening via potentially different mechanisms. Aging was associated with inward remodeling, while ovariectomy-induced material stiffness independent of geometry and a loss of the contractile phenotype. CONCLUSIONS: This study enhances our understanding of the impact of estrogen loss on vascular health in a murine model and warrants further studies to examine the ability of LNS8801 to improve vascular health in menopausal women.


Subject(s)
Ovariectomy , Receptors, G-Protein-Coupled , Vascular Stiffness , Animals , Female , Mice , Aging/physiology , Carotid Arteries , Estrogens/pharmacology , GTP-Binding Proteins , Ovariectomy/adverse effects , Pulse Wave Analysis , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Vascular Stiffness/drug effects , Vascular Stiffness/physiology
11.
J Cell Physiol ; 239(5): e31214, 2024 May.
Article in English | MEDLINE | ID: mdl-38358001

ABSTRACT

Alleviating bone loss is an essential way to prevent osteoporotic fractures. Proper exercise improves bone density without the side effects of long-term medications, but the mechanism is unclear. Our study explored the role of Antxr1/LncRNA H19/Wnt/ß-catenin axis in the process of exercise-mediated alleviation of bone loss. Here we discovered that moderate-intensity treadmill exercise alleviates bone loss caused by ovariectomy and ameliorates bone strength accompanied by an increased lncRNA H19 expression. Concomitantly, Antxr1, a mechanosensitive protein was found downregulated by exercise but upregulated by ovariectomy. Interestingly, knockdown expression of Antxr1 increased lncRNA H19 expression and Wnt/ß-catenin signaling pathway in bone marrow mesenchymal stem cells, whereas overexpression of Antxr1 decreased lncRNA H19 expression and Wnt/ß-catenin signaling pathway. Hence, our study demonstrates the regulation of Antxr1/LncRNA H19/Wnt/ß-catenin axis in the process of mechanical strain-induced osteogenic differentiation, which provides further mechanistic insight into the role of mechanical regulation in bone metabolism.


Subject(s)
Microfilament Proteins , Osteogenesis , RNA, Long Noncoding , Receptors, Cell Surface , Stress, Mechanical , Wnt Signaling Pathway , beta Catenin , Animals , Female , Mice , beta Catenin/metabolism , beta Catenin/genetics , Bone Density/genetics , Cell Differentiation , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Osteoporosis/genetics , Osteoporosis/metabolism , Osteoporosis/pathology , Ovariectomy/adverse effects , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Wnt Signaling Pathway/genetics , Mice, Inbred C57BL , Microfilament Proteins/metabolism , Receptors, Cell Surface/metabolism
12.
Climacteric ; 27(3): 269-274, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38308574

ABSTRACT

OBJECTIVE: There are limited studies on urogenital symptoms in women who experience menopause before the age of 40 years due to primary ovarian insufficiency (POI) or bilateral oophorectomy (surgical POI). This study aimed to compare the urogenital symptoms, including sexuality, of women with POI to those without the condition. METHODS: This cross-sectional study conducted was in seven Latin American countries, in which postmenopausal women (with POI and non-POI) were surveyed with a general questionnaire, the Menopause Rating Scale (MRS) and the six-item Female Sexual Function Index (FSFI-6). The association of premature menopause with more urogenital symptoms and lower sexual function was evaluated with logistic regression analysis. RESULTS: Women with POI experience more urogenital symptoms (MRS urogenital score: 3.54 ± 3.16 vs. 3.15 ± 2.89, p < 0.05) and have lower sexual function (total FSFI-6 score: 13.71 ± 7.55 vs. 14.77 ± 7.57 p < 0.05) than women who experience menopause at a normal age range. There were no significant differences in symptoms when comparing women based on the type of POI (idiopathic or surgical). After adjusting for covariates, our logistic regression model determined that POI is associated with more urogenital symptoms (odds ratio [OR]: 1.38, 95% confidence interval [CI] 1.06-1.80) and lower sexual function (OR: 1.67, 95% CI 1.25-2.25). CONCLUSION: POI, whether idiopathic or secondary to bilateral oophorectomy, is associated with symptoms that affect vaginal and sexual health.


Subject(s)
Menopause, Premature , Primary Ovarian Insufficiency , Sexual Dysfunction, Physiological , Humans , Female , Cross-Sectional Studies , Primary Ovarian Insufficiency/complications , Middle Aged , Sexual Dysfunction, Physiological/etiology , Adult , Surveys and Questionnaires , Ovariectomy/adverse effects , Female Urogenital Diseases , Latin America , Logistic Models , Menopause/physiology
13.
Curr Oncol Rep ; 26(5): 427-438, 2024 05.
Article in English | MEDLINE | ID: mdl-38305992

ABSTRACT

PURPOSE OF REVIEW: Pre-menopausal women diagnosed with hormone receptor (HR) breast cancer are candidates for prolonged hypoestrogenism to improve cancer outcomes. However, the disease benefit eclipses the toxicities associated with ovarian function suppression (OFS), which are often under-reported. RECENT FINDINGS: Increased risk of mortality from cardiovascular disease, bone disorders, and metabolic disorders is well reported in women with no history of cancer, after surgical oophorectomy or premature ovarian failure. Vasomotor symptoms, urogenital atrophy, weight gain, sexual dysfunction, cognitive decline, and sleep disturbances contribute to the increased non-compliance associated with OFS, especially in younger women. Balancing the toxicities of prolonged OFS with its benefits should be critically analyzed by providers when making recommendations for their patients. Supportive care to manage multi-system toxicities and to counteract the long-term impact on all-cause mortality should be emphasized by every cancer program. Future studies with OFS should incorporate patient outcomes and strategies for symptom management in addition to focusing on improving disease outcomes.


Subject(s)
Breast Neoplasms , Menopause, Premature , Humans , Female , Breast Neoplasms/therapy , Breast Neoplasms/complications , Ovary , Primary Ovarian Insufficiency/etiology , Primary Ovarian Insufficiency/therapy , Ovariectomy/adverse effects , Cardiovascular Diseases/etiology
14.
STAR Protoc ; 5(1): 102910, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38416648

ABSTRACT

Ovariectomy, involving the surgical removal of ovaries, and estradiol replacement facilitate the understanding of sexual dimorphism-related physiological changes, encompassing reproductive biology, metabolism, and hormone-related diseases. In this study, we present a protocol for conducting ovariectomy and estradiol replacement in mice. We describe steps for performing sham and ovariectomy operations, outline preoperative preparations, and provide details on postoperative care, including analgesia administration and the removal of surgical clips. Additionally, we elaborate on the procedures for performing vehicle and estradiol injections. For complete details on the use and execution of this protocol, please refer to Luengo-Mateos et al.1.


Subject(s)
Estradiol , Ovary , Female , Humans , Mice , Animals , Estradiol/pharmacology , Ovariectomy/adverse effects , Ovary/surgery
15.
Med J Aust ; 220(5): 264-274, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38353066

ABSTRACT

Ovarian cancer remains the most lethal gynaecological malignancy with 314 000 cases and 207 000 deaths annually worldwide. Ovarian cancer cases and deaths are predicted to increase in Australia by 42% and 55% respectively by 2040. Earlier detection and significant downstaging of ovarian cancer have been demonstrated with multimodal screening in the largest randomised controlled trial of ovarian cancer screening in women at average population risk. However, none of the randomised trials have demonstrated a mortality benefit. Therefore, ovarian cancer screening is not currently recommended in women at average population risk. More frequent surveillance for ovarian cancer every three to four months in women at high risk has shown good performance characteristics and significant downstaging, but there is no available information on a survival benefit. Population testing offers an emerging novel strategy to identify women at high risk who can benefit from ovarian cancer prevention. Novel multicancer early detection biomarker, longitudinal multiple marker strategies, and new biomarkers are being investigated and evaluated for ovarian cancer screening. Risk-reducing salpingo-oophorectomy (RRSO) decreases ovarian cancer incidence and mortality and is recommended for women at over a 4-5% lifetime risk of ovarian cancer. Pre-menopausal women without contraindications to hormone replacement therapy (HRT) undergoing RRSO should be offered HRT until 51 years of age to minimise the detrimental consequences of premature menopause. Currently risk-reducing early salpingectomy and delayed oophorectomy (RRESDO) should only be offered to women at increased risk of ovarian cancer within the context of a research trial. Pre-menopausal early salpingectomy is associated with fewer menopausal symptoms and better sexual function than bilateral salpingo-oophorectomy. A Sectioning and Extensively Examining the Fimbria (SEE-FIM) protocol should be used for histopathological assessment in women at high risk of ovarian cancer who are undergoing surgical prevention. Opportunistic salpingectomy may be offered at routine gynaecological surgery to all women who have completed their family. Long term prospective opportunistic salpingectomy studies are needed to determine the effect size of ovarian cancer risk reduction and the impact on menopause.


Subject(s)
Early Detection of Cancer , Ovarian Neoplasms , Female , Humans , Prospective Studies , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/prevention & control , Ovariectomy/adverse effects , Ovariectomy/methods , Salpingectomy/adverse effects , Salpingectomy/methods
16.
Eur J Pharmacol ; 969: 176454, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38417607

ABSTRACT

Estrogen hormone replacement therapy (EHRT), improving women's life quality at menopause, reduces anxiety and depression symptoms associated with ovarian hormonal decline. However, its potential adverse effects, like thromboembolism and cancer risk, limit its use. Prolame is a synthetic 17ß-amino estrogen with antithrombotic actions that exerts anxiolytic- and antidepressant-like effects on young adult ovariectomized female rats. It is unknown if prolame's effects may be observed in age and endocrine conditions emulating menopause. This study aimed to identify the antidepressant- and anxiolytic-like effects of prolame and E2 (used as a reference estrogen treatment) in middle-aged female rats coursing with irregular cycles, in two different conditions: ovariectomized or gonadally intact. Results were compared with those from young adult ovariectomized rats. Prolame (60 or 120 µg/kg), 17ß-estradiol (E2, 40 or 80 µg/kg), or vehicle were chronically administered, and their effects were evaluated in the elevated plus-maze, defensive burying behavior test, open field test, and forced swimming test. Uterotrophic actions were estimated by uterine weight related to body weight. Prolame and E2 produced robust anxiolytic- and antidepressant-like effects in young adult ovariectomized rats, but these effects were absent in gonadally intact middle-aged rats. Interestingly, only prolame induced anxiolytic- and antidepressant-like effects in middle-aged ovariectomized rats. Uterotrophic effects of prolame were weaker than E2 effects, notably in middle-aged females. Altogether, present data support the notion that prolame has the potential to be considered an EHRT with relevant psychoactive actions and with apparently lower adverse-side effects, especially in middle-aged populations.


Subject(s)
Anti-Anxiety Agents , Estrenes , Humans , Rats , Female , Animals , Middle Aged , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Rats, Wistar , Estradiol/pharmacology , Estradiol/therapeutic use , Estrogens/pharmacology , Estrogens/therapeutic use , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Ovariectomy/adverse effects
17.
Parkinsonism Relat Disord ; 121: 106025, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364624

ABSTRACT

INTRODUCTION: Current evidence in the literature is inconclusive due to conflicting results with regards to an association between B/L (B/L) oophorectomy and Parkinson's disease (PD). We included large, powered studies to assess the association of PD in women who have undergone B/L oophorectomy. METHODS: We conducted a comprehensive search across three databases from inception to October 2022 for observational studies including pre-menopausal or post-menopausal women undergoing B/L oophorectomy. Primary outcome of interest was incidence of PD or parkinsonism. The results for these associations were presented as Risk Ratios (RR) with 95% confidence intervals (CI), which were pooled using a generic invariance weighted random effects model using Review Manager (RevMan). RESULTS: Data was included from a total of 4 studies. No significant association was found between B/L oophorectomy and PD (RR: 1.38; 95% CI: 0.76 to 2.49; I2:89 %) in contrast significant association was found with parkinsonism (RR: 1.80; 95% CI: 1.29 to 2.52). Age at surgery didn't significantly affect Parkinsonism incidence (RR: 0.88; 95% CI: 0.59 to 1.3). No significant association was found between ovarian indication and Parkinsonism (RR: 1.08; 95% CI: 0.69 to 1.68). B/L oophorectomy with hysterectomy was associated with higher Parkinson's risk compared to without hysterectomy (RR: 1.4; 95% CI: 1.13 to 1.74). Lastly, there was no significant association between Post Menopausal Hormonal (PMH) use and Parkinson's disease (RR: 1.07; 95% CI: 0.92 to 1.26). CONCLUSION: Our findings suggest that B/L oophorectomy is significantly associated with the incidence of Parkinsonism. Further research is needed to understand the potential relationship between oophorectomy and Parkinson's disease.


Subject(s)
Parkinson Disease , Female , Humans , Incidence , Parkinson Disease/epidemiology , Parkinson Disease/etiology , Ovariectomy/adverse effects , Databases, Factual , Odds Ratio
18.
Phytother Res ; 38(4): 1971-1989, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38358727

ABSTRACT

BACKGROUND AND AIM: Osteoporosis, a systemic metabolic bone disease, is characterized by the decline of bone mass and quality due to excessive osteoclast activity. Currently, drug-targeting osteoclasts show promising therapy for osteoporosis. In this study, we investigated the effect of cichoric acid (CA) on receptor activator of nuclear kappa-B ligand (RANKL)-induced osteoclastogenesis and the bone loss induced by ovariectomy in mice. EXPERIMENTAL PROCEDURE: Molecular docking technologies were employed to examine the interaction between CA and RANKL. CCK8 assay was used to evaluate the cell viability under CA treatment. TRAcP staining, podosome belt staining, and bone resorption assays were used to test the effect of CA on osteoclastogenesis and osteoclast function. Further, an OVX-induced osteoporosis mice model was employed to identify the effect of CA on bone loss using micro-CT scanning and histological examination. To investigate underlying mechanisms, network pharmacology was applied to predict the downstream signaling pathways, which were verified by Western blot and immunofluorescence staining. KEY RESULTS: The molecular docking analysis revealed that CA exhibited a specific binding affinity to RANKL, engaging multiple binding sites. CA inhibited RANKL-induced osteoclastogenesis and bone resorption without cytotoxic effects. Mechanistically, CA suppressed RANKL-induced intracellular reactive oxygen species, nuclear factor-kappa B, and mitogen-activated protein kinase pathways, followed by abrogated nuclear factor activated T-cells 1 activity. Consistent with this finding, CA attenuated post-ovariectomy-induced osteoporosis by ameliorating osteoclastogenesis. CONCLUSIONS AND IMPLICATIONS: CA inhibited osteoclast activity and bone loss by targeting RANKL. CA might represent a promising candidate for treating osteoclast-related diseases, such as osteoporosis.


Subject(s)
Bone Resorption , Caffeic Acids , Osteoporosis , Succinates , Animals , Female , Humans , Mice , Bone Resorption/prevention & control , Cell Differentiation , Mice, Inbred C57BL , Molecular Docking Simulation , NF-kappa B/metabolism , Osteoclasts , Osteogenesis , Osteoporosis/pathology , Ovariectomy/adverse effects , RANK Ligand/metabolism
19.
Res Vet Sci ; 169: 105179, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38335894

ABSTRACT

Ovariohysterectomy (OVH) is a widely used surgical procedure in small animal practice. In developing countries, injectable anesthetics such as ketamine and xylazine are commonly used in veterinary medicine. Pharmacological agents with analgesic activity, such as ketamine and meloxicam, are not sufficiently effective in reducing visceral pain. Therefore, this study aimed to investigate the visceral analgesia and anti-inflammatory effectiveness of maropitant compared with those of meloxicam during and after OVH in bitches. In this study, thirty-six bitches were randomly divided into the maropitant, meloxicam, and control groups. The heart rate (HR), peripheral oxygen saturation, and respiratory rate were monitored during the procedure. Pain scores were assessed using the University of Melbourne pain scale (UMPS). Rescue analgesia was not necessary for any bitch at any time point. Blood samples were collected before anesthesia induction and 24 h after the operation to determine C-reactive protein (CRP) levels. No significant difference was observed in HR between the control and meloxicam groups when the right ovary was removed, and the HR of the maropitant group was significantly (p < 0.05) lower than that of the control group. The pain scores of the maropitant group were significantly (p < 0.05) lower than those of the other groups. However, no significant differences were observed in CRP levels between the groups. In conclusion, compared to meloxicam, maropitant provided more effective visceral analgesia in bitches undergoing OVH, although no significant difference was found in its anti-inflammatory effect.


Subject(s)
Analgesia , Dog Diseases , Ketamine , Quinuclidines , Female , Dogs , Animals , Meloxicam/therapeutic use , Pain Management/veterinary , Ovariectomy/adverse effects , Ovariectomy/veterinary , Pain, Postoperative/drug therapy , Pain, Postoperative/prevention & control , Pain, Postoperative/veterinary , Hysterectomy/veterinary , Analgesia/veterinary , Anti-Inflammatory Agents/therapeutic use
20.
Food Funct ; 15(4): 2154-2169, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38311970

ABSTRACT

Postmenopausal osteoporosis (PMOP) is a metabolic bone disease that results from overproduction and hyperactivation of osteoclasts caused by insufficient estrogen in women after menopause. Current therapeutic strategies are mainly focused on treating PMOP patients who have already developed severe bone loss or even osteoporotic fractures. Obviously, a better strategy is to prevent PMOP from occurring in the first place. However, such reagents are largely lacking. Piperlongumine (PLM), an amide alkaloid extracted from long pepper Piper longum, exhibits the anti-osteoclastogenic effect in normal bone marrow macrophages (BMMs) and the protective effect against osteolysis induced by titanium particles in mice. This study examined the preventive effect of PLM on PMOP and explored the potential mechanism of this effect using both ovariectomized mice and their primary cells. The result showed that PLM (5 and 10 mg kg-1) administered daily for 6 weeks ameliorated ovariectomy-induced bone loss and osteoclast formation in mice. Further cell experiments showed that PLM directly suppressed osteoclast formation, F-actin ring formation, and osteoclastic resorption pit formation in BMMs derived from osteoporotic mice, but did not obviously affect osteogenic differentiation of bone marrow stromal cells (BMSCs) from these mice. Western blot analysis revealed that PLM attenuated maximal activation of p38 and JNK pathways by RANKL stimulation without affecting acute activation of NF-κB, AKT, and ERK signaling. Furthermore, PLM inhibited expression of key osteoclastogenic transcription factors NFATc1/c-Fos and their target genes (Dcstamp, Atp6v0d2, Acp5, and Oscar). Taken together, our findings suggest that PLM inhibits osteoclast formation and function by suppressing RANKL-induced activation of the p38/JNK-cFos/NFATc1 signaling cascade, thereby preventing ovariectomy-induced osteoporosis in mice. Thus, PLM can potentially be used as an anti-resorption drug or dietary supplement for the prevention of PMOP.


Subject(s)
Alkaloids , Benzodioxoles , Bone Resorption , Osteoporosis, Postmenopausal , Osteoporosis , Humans , Female , Animals , Mice , Osteogenesis , MAP Kinase Signaling System , Osteoclasts , Bone Resorption/drug therapy , Bone Resorption/prevention & control , Osteoporosis/etiology , Osteoporosis/genetics , Cell Differentiation , NF-kappa B/metabolism , Osteoporosis, Postmenopausal/metabolism , Ovariectomy/adverse effects , Alkaloids/metabolism , RANK Ligand/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...