Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62.167
Filter
1.
Sci Rep ; 14(1): 12995, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844478

ABSTRACT

Woodsmoke (WS) exposure is associated with significant health-related sequelae. Different populations can potentially exhibit varying susceptibility, based on endocrine phenotypes, to WS and investigating neurological impacts following inhaled WS is a growing area of research. In this study, a whole-body inhalation chamber was used to expose both male and female C57BL/6 mice (n = 8 per group) to either control filtered air (FA) or acute WS (0.861 ± 0.210 mg/m3) for 4 h/d for 2 days. Neuroinflammatory and lipid-based biological markers were then assessed. In a second set of studies, female mice were divided into two groups: one group was ovariectomized (OVX) to simulate an ovarian hormone-deficient state (surgical menopause), and the other underwent Sham surgery as controls, to mechanistically assess the impact of ovarian hormone presence on neuroinflammation following FA and acute WS exposure to simulate an acute wildfire episode. There was a statistically significant impact of sex (P ≤ 0.05) and statistically significant interactions between sex and treatment in IL-1ß, CXCL-1, TGF-ß, and IL-6 brain relative gene expression. Hippocampal and cortex genes also exhibited significant changes in acute WS-exposed Sham and OVX mice, particularly in TGF-ß (hippocampus) and CCL-2 and CXCL-1 (cortex). Cortex GFAP optical density (OD) showed a notable elevation in male mice exposed to acute WS, compared to the control FA. Sham and OVX females demonstrated differential GFAP expression, depending on brain region. Overall, targeted lipidomics in phosphatidylcholine (PC) and phosphatidylethanolamine (PE) serum and brain lipids demonstrated more significant changes between control FA and acute WS exposure in female mice, compared to males. In summary, male and female mice show distinct neuroinflammatory markers in response to acute WS exposure. Furthermore, ovarian hormone deficiency may impact the neuroinflammatory response following an acute WS event.


Subject(s)
Mice, Inbred C57BL , Neuroinflammatory Diseases , Animals , Female , Male , Mice , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/etiology , Sex Factors , Ovariectomy/adverse effects , Brain/metabolism , Ovary/metabolism
2.
Wei Sheng Yan Jiu ; 53(3): 441-454, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38839586

ABSTRACT

OBJECTIVE: To investigate the effects of long-term(7 days and 14 days) bisphenol S(BPS) exposure on the ERß-MAPK signaling pathway, hormone secretion phenotype and cell cycle in human normal ovarian epithelial cells IOSE 80 at actual human exposure level. METHODS: Physiologically based pharmacokinetic model combined with BPS levels in the serum of women along the Yangtze River in China was used to determine the dosing concentrations of BPS, and vehicle control and 17 ß-estradiol(E_2) control were used. Complete medium with corresponding concentrations(0, 6.79×10~(-6), 6.79×10~(-4), 6.79×10~(-2), 6.79 µmol/L BPS and 10 nmol/L E_2) was replaced every 2 days. mRNA expressions of estrogen receptor(ERß and GPR30), key genes in MAPK signaling pathway(P38/JNK/ERK signaling pathway) and gonadotropin-releasing hormone-related genes(GnRH-I, GnRH-II and GnRH-R) were measured by qPCR. The ERß-MAPK signaling pathway inhibitors were employed to detect the effect of long-term exposure to BPS on the cell cycle by flow cytometry. Dose-response relationship analysis was performed to calculate the benchmark does lower confidence limits. RESULTS: Compared to the vehicle control, after 7 days exposure to BPS, the ratio of G_2/M phase was significantly increased(P<0.05), and the mRNA expressions of GnRH-I, GnRH-II and GnRH-R were significantly decreased(P<0.05); after 14 days exposure to BPS, the mRNA expressions of ESR2, MAPK3, and MAPK9 were significantly increased(P<0.05), and the mRNA expressions of GnRH-II and GnRH-R were significantly decreased(P<0.05). The GnRH-II mRNA expression level of BPS treatment for 7 days; the G_0/G_1 phase ratio, MAPK3 and MAPK8 mRNA expression level of BPS exposure for 14 days; and the GnRH-I mRNA expression level after BPS treatment for 7 days and 14 days showed a good dose-response relationship but with poor fit. CONCLUSION: Long-term low-dose exposure to BPS may cause cell cycle arrest by activating the ERß-MAPK signaling pathway, and may lead to changes in the hormone secretion of IOSE 80 cells.


Subject(s)
Epithelial Cells , Estrogen Receptor beta , MAP Kinase Signaling System , Ovary , Phenols , Sulfones , Humans , Phenols/toxicity , Female , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Estrogen Receptor beta/metabolism , Estrogen Receptor beta/genetics , MAP Kinase Signaling System/drug effects , Ovary/drug effects , Ovary/metabolism , Sulfones/toxicity , Cell Line
3.
J Vis Exp ; (207)2024 May 17.
Article in English | MEDLINE | ID: mdl-38829044

ABSTRACT

Mature oocyte vitrification is the standard of care to preserve fertility in women at risk of infertility. However, ovarian tissue cryopreservation (OTC) is still the only option to preserve fertility in women who need to start gonadotoxic treatment urgently or in prepubertal children. During ovarian cortex preparation for cryopreservation, medullar tissue is removed. Growing antral follicles reside at the border of the cortex-medullar interface of the ovary and are broken during this process, releasing their cumulus-oocyte complex (COC). By thoroughly inspecting the medium and fragmented medullar tissue, these immature cumulus-oocyte complexes can be identified without interfering with the OTC procedure. The ovarian tissue-derived immature oocytes can be successfully matured in vitro, creating an additional source of gametes for fertility preservation. If OTC is performed within or near a medical assisted reproduction laboratory, all necessary in vitro maturation (IVM) and oocyte vitrification tools can be at hand. Furthermore, upon remission and child wish, the patient has multiple options for fertility restoration: ovarian tissue transplantation or embryo transfer after the insemination of vitrified/warmed oocytes. Hence, ovarian tissue oocyte-in vitro maturation (OTO-IVM) can be a valuable adjunct fertility preservation technique.


Subject(s)
Cryopreservation , Fertility Preservation , In Vitro Oocyte Maturation Techniques , Oocytes , Ovary , Female , Fertility Preservation/methods , Humans , Ovary/physiology , Cryopreservation/methods , In Vitro Oocyte Maturation Techniques/methods , Vitrification
4.
J Ovarian Res ; 17(1): 118, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822408

ABSTRACT

In women who are getting older, the quantity and quality of their follicles or oocytes and decline. This is characterized by decreased ovarian reserve function (DOR), fewer remaining oocytes, and lower quality oocytes. As more women choose to delay childbirth, the decline in fertility associated with age has become a significant concern for modern women. The decline in oocyte quality is a key indicator of ovarian aging. Many studies suggest that age-related changes in oocyte energy metabolism may impact oocyte quality. Changes in oocyte energy metabolism affect adenosine 5'-triphosphate (ATP) production, but how related products and proteins influence oocyte quality remains largely unknown. This review focuses on oocyte metabolism in age-related ovarian aging and its potential impact on oocyte quality, as well as therapeutic strategies that may partially influence oocyte metabolism. This research aims to enhance our understanding of age-related changes in oocyte energy metabolism, and the identification of biomarkers and treatment methods.


Subject(s)
Aging , Energy Metabolism , Oocytes , Ovary , Oocytes/metabolism , Humans , Female , Aging/metabolism , Ovary/metabolism , Animals , Adenosine Triphosphate/metabolism
5.
BMC Genomics ; 25(1): 548, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824502

ABSTRACT

Gibel carp (Carassius gibelio) is a cyprinid fish that originated in eastern Eurasia and is considered as invasive in European freshwater ecosystems. The populations of gibel carp in Europe are mostly composed of asexually reproducing triploid females (i.e., reproducing by gynogenesis) and sexually reproducing diploid females and males. Although some cases of coexisting sexual and asexual reproductive forms are known in vertebrates, the molecular mechanisms maintaining such coexistence are still in question. Both reproduction modes are supposed to exhibit evolutionary and ecological advantages and disadvantages. To better understand the coexistence of these two reproduction strategies, we performed transcriptome profile analysis of gonad tissues (ovaries) and studied the differentially expressed reproduction-associated genes in sexual and asexual females. We used high-throughput RNA sequencing to generate transcriptomic profiles of gonadal tissues of triploid asexual females and males, diploid sexual males and females of gibel carp, as well as diploid individuals from two closely-related species, C. auratus and Cyprinus carpio. Using SNP clustering, we showed the close similarity of C. gibelio and C. auratus with a basal position of C. carpio to both Carassius species. Using transcriptome profile analyses, we showed that many genes and pathways are involved in both gynogenetic and sexual reproduction in C. gibelio; however, we also found that 1500 genes, including 100 genes involved in cell cycle control, meiosis, oogenesis, embryogenesis, fertilization, steroid hormone signaling, and biosynthesis were differently expressed in the ovaries of asexual and sexual females. We suggest that the overall downregulation of reproduction-associated pathways in asexual females, and their maintenance in sexual ones, allows the populations of C. gibelio to combine the evolutionary and ecological advantages of the two reproductive strategies. However, we showed that many sexual-reproduction-related genes are maintained and expressed in asexual females, suggesting that gynogenetic gibel carp retains the genetic toolkits for meiosis and sexual reproduction. These findings shed new light on the evolution of this asexual and sexual complex.


Subject(s)
Carps , Reproduction, Asexual , Reproduction , Animals , Female , Reproduction, Asexual/genetics , Reproduction/genetics , Carps/genetics , Carps/physiology , Male , Transcriptome , Gene Expression Profiling , Ovary/metabolism , Polymorphism, Single Nucleotide
6.
Front Endocrinol (Lausanne) ; 15: 1369248, 2024.
Article in English | MEDLINE | ID: mdl-38828407

ABSTRACT

Background: Reproduction ability requires a certain amount of body fat that is necessary for ovulation, menstruation and pregnancy. Fat tissue represents an endocrine organ with high metabolic activity as it produces adipokines such as leptin and adiponectin. Our aim is to examine potential associations between women of reproductive age's ovarian reserves and their levels of leptin and adiponectin. Method: 74 women between 19 and 40 years of age consented to take part. Based on the patterns of their ovarian reserves, the women were divided into three main groups: women with adequate ovarian reserves (AOR - Group A, n=30), women with polycystic ovary syndrome (PCOS - Group B, n=31) and women with depleted ovarian reserves (DOR - Group C, n=13). Among these groups, several biochemical and demographic parameters were statistically compared. Results: Compared to the other two groups, women with DOR had statistically higher age and follicle stimulation hormone (FSH) levels. For estradiol (E2) and thyroid-stimulating hormone (TSH), no statistically significant difference was seen between the groups. In addition, women with PCOS had higher body mass index (BMI), luteinizing hormone (LH), total testosterone (TT), 17 hydroxyprogesterone (17-OHP), dehydroepiandrosterone (DHEA), anti-Mullerian hormone (AMH), and antral follicle count (AFC) than the other two groups. In line with expectations, women with DOR also had lower levels of AMH and AFC than the other two groups. Women with PCOS had higher leptin levels than the other two groups, but there was no statistically significant difference. Women with PCOS had lower levels of adiponectin than the other groups, however the difference was not statistically significant. Conclusion: The way we classified women in our study according to their ovarian reserves is completely consistent with what has been published internationally. The ovarian reserve in women of reproductive age is not strongly correlated with leptin and adiponectin levels. For safe conclusions, more research including a greater number of samples is required.


Subject(s)
Adiponectin , Leptin , Ovarian Reserve , Humans , Female , Leptin/blood , Adiponectin/blood , Ovarian Reserve/physiology , Adult , Young Adult , Polycystic Ovary Syndrome/blood , Polycystic Ovary Syndrome/metabolism , Body Mass Index , Reproduction/physiology , Ovary/metabolism
7.
Gynecol Endocrinol ; 40(1): 2358219, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38835150

ABSTRACT

OBJECTIVES: Polycystic ovary syndrome (PCOS) and subclinical hypothyroidism (SCH) are prevalent gynecological conditions. However, the interrelationship between the two remains elusive. This study aims to elucidate the association between these conditions and determine the potential impact of SCH on the physiological and metabolic characteristics of patients with PCOS. METHODS: This cross-sectional study enrolled 133 patients with PCOS from our Hospital. Participants were categorized into two groups: those with PCOS + SCH (n = 58) and those with PCOS (n = 75). Serum hormonal levels, metabolic markers, ovarian volume, and follicle count were compared between the groups. RESULTS: There was a significant difference in BMI between the two groups, with a higher prevalence of obesity in the PCOS + SCH group (p = .014). Compared to the PCOS group, patients with PCOS + SCH had significantly higher levels of TSH (p < .001), triglycerides (p = .025), and HOMA-IR (p < .001), while LH levels were significantly lower (p = .048). However, multivariate linear regression analysis revealed that TSH, triglycerides, LH, and HOMA-IR were not determinants for the occurrence of SCH in patients with PCOS. Additionally, there was a notable reduction in follicle count in the left ovary for the PCOS + SCH group compared to the PCOS group (p = .003), and the overall follicle diameter of the PCOS + SCH group was also smaller (p = .010). CONCLUSION: SCH may exert effects on the physiological and metabolic profiles of patients with PCOS. Further investigation into the relationship between these disorders is warranted to delineate their clinical implications.


Subject(s)
Hypothyroidism , Ovary , Polycystic Ovary Syndrome , Humans , Polycystic Ovary Syndrome/blood , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/complications , Female , Hypothyroidism/blood , Hypothyroidism/complications , Cross-Sectional Studies , Adult , Ovary/pathology , Ovary/metabolism , Ovary/diagnostic imaging , Young Adult , Thyrotropin/blood , Insulin Resistance/physiology , Luteinizing Hormone/blood , Body Mass Index , Triglycerides/blood , Ovarian Follicle/diagnostic imaging , Ovarian Follicle/metabolism
8.
J Obstet Gynaecol ; 44(1): 2362416, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38847083

ABSTRACT

BACKGROUND: This study aimed to investigate the effects of different volumes of ovarian tissue transplantation on the reproductive endocrine function of rats after oophorectomy. METHODS: Female rats were selected to establish a castration model and then underwent different volumes of ovarian tissue transplantation. Group I served as the sham operation group. The transplantation group was divided into five subgroups based on the calculated ratio of ovarian weight to body weight in normal female rats, δ = (2.52 ± 0.17) ×10-4: Group II: transplanted ovarian volume was δ; Group III: 0.75δ; Group IV: 0.5δ; Group V: 0.25δ; Group VI: without ovarian transplantation. The post-transplant oestrous cycle recovery was observed, and blood samples were collected every 2 weeks to measure serum hormone levels. Histological evaluation was performed at the end of the observation period. RESULTS: Rats in Group V exhibited disrupted oestrous cycles after transplantation, which were significantly longer than those in Group I. Rats in Groups II, III, and IV showed no cyclic changes. At 6 weeks post-transplantation, rats in Group V had lower E2 and AMH levels and higher FSH levels compared to Group I. The uterine wet weight and the number of normal follicles in Group V were significantly lower than those in Group I, but the number of atretic follicles was higher than in Group I. CONCLUSION: The larger ovarian tissue transplantation resulted in a faster recovery with a higher survival rate of the uterus and normal follicles, compared to smaller ovarian tissue transplantation.


With advancements in science and technology, ovarian transplantation techniques have become increasingly mature. However, there are still many questions that need to be addressed. For instance, the large size of the transplanted ovarian tissues may cause over-recruitment of the primordial follicles. When the transplanted ovarian tissue is too small, it can only exert limited functionality and may not meet the patient's needs. This study aimed to investigate the effects of different volumes of ovarian tissue transplantation on the reproductive endocrine function in rats after oophorectomy, and to provide a theoretical basis for determining the minimum effective volume of heterotopic ovarian tissue transplantation.


Subject(s)
Estrous Cycle , Ovariectomy , Ovary , Transplantation, Heterotopic , Animals , Female , Ovary/transplantation , Rats , Anti-Mullerian Hormone/blood , Follicle Stimulating Hormone/blood , Estradiol/blood , Rats, Sprague-Dawley , Organ Size , Ovarian Follicle , Reproduction/physiology
9.
Theranostics ; 14(8): 3385-3403, 2024.
Article in English | MEDLINE | ID: mdl-38855175

ABSTRACT

Rationale: It has been emergingly recognized that apoptosis generates plenty of heterogeneous apoptotic vesicles (apoVs), which play a pivotal role in the maintenance of organ and tissue homeostasis. However, it is unknown whether apoVs influence postnatal ovarian folliculogenesis. Methods: Apoptotic pathway deficient mice including Fas mutant (Fasmut ) and Fas ligand mutant (FasLmut ) mice were used with apoV replenishment to evaluate the biological function of apoVs during ovarian folliculogenesis. Ovarian function was characterized by morphological analysis, biochemical examination and cellular assays. Mechanistical studies were assessed by combinations of transcriptomic and proteomic analysis as well as molecular assays. CYP17A1-Cre; Axin1fl /fl mice was established to verify the role of WNT signaling during ovarian folliculogenesis. Polycystic ovarian syndrome (PCOS) mice and 15-month-old mice were used with apoV replenishment to further validate the therapeutic effects of apoVs based on WNT signaling regulation. Results: We show that systemic administration of mesenchymal stem cell (MSC)-derived apoptotic vesicles (MSC-apoVs) can ameliorate impaired ovarian folliculogenesis, PCOS phenotype, and reduced birth rate in Fasmut and FasLmut mice. Mechanistically, transcriptome analysis results revealed that MSC-apoVs downregulated a number of aberrant gene expression in Fasmut mice, which were enriched by kyoto encyclopedia of genes and genomes (KEGG) pathway analysis in WNT signaling and sex hormone biosynthesis. Furthermore, we found that apoptotic deficiency resulted in aberrant WNT/ß-catenin activation in theca and mural granulosa cells, leading to responsive action of dickkopf1 (DKK1) in the cumulus cell and oocyte zone, which downregulated WNT/ß-catenin expression in oocytes and, therefore, impaired ovarian folliculogenesis via NPPC/cGMP/PDE3A/cAMP cascade. When WNT/ß-catenin was specially activated in theca cells of CYP17A1-Cre; Axin1fl /fl mice, the same ovarian impairment phenotypes observed in apoptosis-deficient mice were established, confirming that aberrant activation of WNT/ß-catenin in theca cells caused the impairment of ovarian folliculogenesis. We firstly revealed that apoVs delivered WNT membrane receptor inhibitor protein RNF43 to ovarian theca cells to balance follicle homeostasis through vesicle-cell membrane integration. Systemically infused RNF43-apoVs down-regulated aberrantly activated WNT/ß-catenin signaling in theca cells, contributing to ovarian functional maintenance. Since aging mice have down-regulated expression of WNT/ß-catenin in oocytes, we used MSC-apoVs to treat 15-month-old mice and found that MSC-apoVs effectively ameliorated the ovarian function and fertility capacity of these aging mice through rescuing WNT/ß-catenin expression in oocytes. Conclusion: Our studies reveal a previously unknown association between apoVs and ovarian folliculogenesis and suggest an apoV-based therapeutic approach to improve oocyte function and birth rates in PCOS and aging.


Subject(s)
Apoptosis , Mesenchymal Stem Cells , Ovarian Follicle , Ovary , Polycystic Ovary Syndrome , Wnt Signaling Pathway , Animals , Female , Polycystic Ovary Syndrome/metabolism , Mice , Mesenchymal Stem Cells/metabolism , Ovarian Follicle/metabolism , Ovary/metabolism , Disease Models, Animal , Aging/physiology , Fas Ligand Protein/metabolism , Fas Ligand Protein/genetics
10.
J Ovarian Res ; 17(1): 121, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840218

ABSTRACT

BACKGROUND: Polycystic Ovary Syndrome (PCOS) is a widespread endocrine disorder among women, characterized by symptoms like ovarian cysts, hormonal imbalance, and metabolic issues. This research evaluates the therapeutic potential of Bone Marrow Mesenchymal Stem Cell-derived exosomes (BMSC-Exo) in treating PCOS symptoms within a mouse model. METHODS: BMSC-Exo were isolated from NMRI mice, characterized using Transmission Electron Microscopy (TEM) and Nanoparticle Tracking Analysis (NTA), and administered to a PCOS mouse model induced by dehydroepiandrosterone (DHEA). The efficacy of BMSC-Exo was assessed in three groups of mice: a control group, a PCOS group, and a PCOS group treated with intravenous BMSC-Exo. Morphological changes in ovarian tissue were examined by Hematoxylin and Eosin (H&E) staining, apoptosis was determined using the TUNEL assay, and CD31 expression was analyzed through immunofluorescent staining to assess angiogenic activity. RESULTS: The existence of BMSCs-Exo was confirmed via TEM and NTA, revealing their distinct cup-shaped morphology and a size range of 30 to 150 nanometers. H&E staining revealed that BMSCs-Exo treatment improved ovarian morphology in PCOS models, increasing corpora lutea and revitalizing granulosa cell layers, suggesting a reversal of PCOS-induced damage. TUNEL assays showed that BMSCs-Exo treatment significantly reduced apoptosis in PCOS-affected ovarian cells to levels comparable with the control group, highlighting its role in mitigating PCOS-induced cellular apoptosis. Immunofluorescence for CD31 indicated that BMSCs-Exo treatment normalized endothelial marker expression and angiogenic activity in PCOS models, suggesting its effectiveness in modulating the vascular irregularities of PCOS. Collectively, these findings demonstrate the therapeutic potential of BMSCs-Exo in addressing ovarian dysfunction, cellular apoptosis, and aberrant angiogenesis associated with PCOS. CONCLUSION: The study substantiates the role of BMSC-Exo in mitigating the deleterious effects of PCOS on ovarian tissue, with implications for enhanced follicular development and reduced cellular stress. The modulation of CD31 by BMSC-Exo further highlights their potential in normalizing PCOS-induced vascular anomalies. These findings propel the need for clinical investigations to explore BMSC-Exo as a promising therapeutic avenue for PCOS management.


Subject(s)
Apoptosis , Dehydroepiandrosterone , Disease Models, Animal , Exosomes , Mesenchymal Stem Cells , Polycystic Ovary Syndrome , Animals , Female , Polycystic Ovary Syndrome/therapy , Polycystic Ovary Syndrome/metabolism , Exosomes/metabolism , Dehydroepiandrosterone/pharmacology , Mice , Mesenchymal Stem Cells/metabolism , Neovascularization, Physiologic , Ovary/metabolism , Ovary/pathology , Angiogenesis
11.
J Ovarian Res ; 17(1): 122, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844959

ABSTRACT

INTRODUCTION: Endometriosis is a heritable, complex chronic inflammatory disease, for which much of the causal pathogenic mechanism remain unknown.Despite the high prevalence of ovarian chocolate cyst, its origin is still under debate. METHODS: Prevailing retrograde menstruation model predicts that ectopic endometrial cells migrate and develop into ovarian chocolate cyst. However, other models were also proposed. Genome-wide association studies (GWASs) have proved successful in identifying common genetic variants of moderate effects for various complex diseases. RESULTS: A growing body of evidence shows that the remodeling of retrograde endometrial tissues to the ectopic endometriotic lesions involves multiple epigenetic alterations, such as DNA methylation, histone modification, and microRNA expression.Because DNA methylation states exhibit a tissue specific pattern, we profiled the DNA methylation for ovarian cysts and paired eutopic endometrial and ovarian tissues from four patients. Surprisingly, DNA methylation profiles showed the ovarian cysts were closely grouped with normal ovarian but not endometrial tissues. CONCLUSIONS: These results suggested alterative origin of ovarian cysts or strong epigenetic reprogramming of infiltrating endometrial cells after seeding the ovarian tissue. The data provide contributing to the pathogenesis and pathophysiology of endometriosis.


Subject(s)
DNA Methylation , Endometrium , Ovarian Cysts , Ovary , Female , Humans , Ovarian Cysts/genetics , Ovarian Cysts/pathology , Ovarian Cysts/metabolism , Endometrium/metabolism , Endometrium/pathology , Adult , Ovary/metabolism , Ovary/pathology , Endometriosis/genetics , Endometriosis/pathology , Endometriosis/metabolism , Epigenesis, Genetic
12.
Reprod Fertil Dev ; 362024 May.
Article in English | MEDLINE | ID: mdl-38753959

ABSTRACT

Context Melatonin may have a heat-stress-alleviating role during pregnancy. Aims To investigate the effects of melatonin administration during the first half of pregnancy on heat-tolerance capacity and pregnancy outputs of naturally heat-stressed rabbits. Methods Forty female rabbits were stratified equally into two experimental groups and daily received 1mg melatonin/kg body weight or not (control) for 15 consecutive days post-insemination. Heat tolerance indices, hormone profile, ovarian structures, and fetal loss were determined. Key results Treatment with melatonin significantly decreased respiration rate and rectal temperature, improved concentrations of nitric oxide, and tended to decrease malondialdehyde concentrations (P =0.064) compared to control. Melatonin treatment significantly increased concentrations of high-density lipoprotein, oestradiol, and progesterone compared to control. No significant differences in the numbers of visible ovarian follicles, corpora lutea, and total implantation sites on day 18 of pregnancy were observed between experimental groups. However, melatonin treatment significantly reduced the number of absorbed implantation sites and significantly improved amniotic fluid volume and conception rate compared to control. Conclusions Melatonin administration during the first half of pregnancy can improve reproductive performance of heat-stressed female rabbits. Implications Melatonin can improve fetal survivability via improving heat-tolerance capacity of does and steroidogenesis.


Subject(s)
Heat-Shock Response , Melatonin , Reproduction , Animals , Female , Melatonin/pharmacology , Melatonin/administration & dosage , Rabbits , Pregnancy , Heat-Shock Response/drug effects , Heat-Shock Response/physiology , Reproduction/drug effects , Reproduction/physiology , Progesterone/pharmacology , Heat Stress Disorders/veterinary , Heat Stress Disorders/drug therapy , Heat Stress Disorders/metabolism , Ovary/drug effects , Estradiol/pharmacology , Estradiol/administration & dosage , Thermotolerance/drug effects
13.
J Ovarian Res ; 17(1): 104, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760869

ABSTRACT

INTRODUCTION: The incidence of infertility caused by diminished ovarian reserve has become a significant problem worldwide. The beneficial effect of PRP treatment of the ovaries has already been described, but the high-level evidence of its effectiveness has not yet been proven. MATERIALS AND METHODS: A systematic search was performed in five databases, until March 12th, 2024. Both randomized and non-randomized studies that compared PRP treatment of the ovaries to self-control among women with diminished ovarian reserve were eligible for inclusion. Hormonal levels (Anti-Müllerian hormone (AMH), Follicle stimulating hormone (FSH), Luteinizing hormone (LH), Estradiol (E2), In-vitro fertilization parameters (Antral follicle count, oocyte, and embryo count), biochemical and spontaneous pregnancy and livebirth were measured. RESULTS: 38 eligible studies were identified reporting on 2256 women. The level of AMH rised, the level of FSH decreased significantly after the PRP treatment. AMH 1 month MD 0.20 (n = 856, p > 0.001, 95% CI: [0.12;0.28]), 2 months MD 0.26 (n = 910, p = 0.013, 95% CI: [0.07;0.44]), 3 months MD 0.36 (n = 881, p = 0.002,95% CI: [0.20;0.52]). FSH 1 month MD -10.20 (n = 796, p > 0.039, 95% CI: [-19.80;-0.61]), 2 months MD -7.02 (n = 910, p = 0.017, 95% CI: [-12.48; -1.57]), 3 months MD -8.87 (n = 809, p = 0.010, 95% CI: [-14.19; -3.55]). The antral follicle count elevated significantly MD 1.60 (n = 1418, p = < 0.001, 95% CI: [0.92; 2.27]). Significant improvement was observed in the number of retrieved oocytes MD 0.81 (n = 802, p = 0.002, 95% CI: [0.36; 1.26]), and embryos created MD 0.91 (n = 616, p = 0.001, 95% CI: [0.45;1.36]). The incidence of spontaneous pregnancy following PRP treatment showed a rate with a proportion of 0.07 (n = 1370, 95% CI: 0.04-0.12), the rate of biochemical pregnancy was 0.18 (n = 1800, 95% CI: 0.15-0.22), livebirth was 0.11 (n = 1482, 95% CI: 0.07-0.15). CONCLUSIONS: Our meta-analysis showed that based on protocolized analysis of the widest scientific literature search to date, containing predominantly observational studies, PRP treatment resulted in a statistically significant improvement in the main fertility parameters of diminished ovarian reserve women. Further multicenter, randomized trials, with large patient numbers and a longer follow-up period are needed to certify our results and develop the most effective treatment protocol.


Subject(s)
Ovarian Reserve , Platelet-Rich Plasma , Humans , Female , Platelet-Rich Plasma/metabolism , Pregnancy , Ovary/physiopathology , Fertility , Anti-Mullerian Hormone/blood , Fertilization in Vitro/methods , Infertility, Female/therapy , Infertility, Female/blood , Treatment Outcome , Follicle Stimulating Hormone/blood
14.
BMC Genomics ; 25(1): 451, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714919

ABSTRACT

BACKGROUND: Sturgeon species are living fossils that exhibit unique reproductive characteristics, and elucidation of the molecular processes governing the formation and quality of sturgeon eggs is crucial. However, comprehensive data on the protein composition of sturgeon ovarian fluid (OF) and eggs and their functional significance are lacking. To address this knowledge gap, the aim of the present study was to conduct a comprehensive comparative proteomic analysis of Siberian sturgeon OF and eggs using liquid chromatography-mass spectrometry (LC-MS/MS). RESULTS: A total of 617 proteins were identified in OF, and 565 proteins were identified in eggs. A total of 772 proteins showed differential abundance. Among the differentially abundant proteins, 365 were more abundant in OFs, while 407 were more abundant in eggs. We identified 339 proteins unique to OFs and 287 proteins specific to eggs, and further investigated the top 10 most abundant proteins in each. The functional annotation of the OF proteins highlighted their predominant association with immune system processes, including the complement and coagulation cascade, neutrophil and leukocyte-mediated immunity, cholesterol metabolism, and regulation of the actin cytoskeleton. Analysis of egg proteins revealed enrichment in metabolic pathways, such as oxidative phosphorylation and fatty acid metabolism, and protein ubiquitination and translation. OF-specific proteins included extracellular matrix and secretory vesicles, and eggs were enriched in proteins localized to mitochondria and ribosome components. CONCLUSIONS: This study presents the first comprehensive characterization of the protein composition of sturgeon OF and eggs and elucidates their distinct functional roles. These findings advance our understanding of sturgeon reproduction, OF-egg signaling and the origin of OF proteins. The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium with the dataset identifier PXD044168 to ensure accessibility for further research.


Subject(s)
Fishes , Ovary , Proteomics , Animals , Fishes/metabolism , Female , Proteomics/methods , Ovary/metabolism , Tandem Mass Spectrometry , Chromatography, Liquid , Proteome/metabolism , Proteome/analysis , Fish Proteins/metabolism , Ovum/metabolism , Egg Proteins/metabolism , Egg Proteins/analysis
15.
BMC Womens Health ; 24(1): 279, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714986

ABSTRACT

BACKGROUND: Infertility remains a serious health concern for Ethiopian women. Most of its treatment approaches entail controlled ovarian stimulation, the responses of which vary. However, there are no data on ovarian response to stimulation or its predictors in our situation. Thus, the current study aimed to assess the ovarian response to controlled stimulation and identify predictors. METHODS: A retrospective follow-up study was undertaken from April 1, 2021, to March 31, 2022, among patients who had first-cycle controlled ovarian stimulation at St.Paul's Hospital Fertility Center in Addis Ababa, Ethiopia. Clinical data were extracted using a checklist. SPSS-26 for data analysis and Epidata-4.2 for data entry were employed. The binary logistic regression model was fitted. A p-value < 0.05 indicated a significant association. The ROC curve was used to determine cutoff values and identify accurate predictors. RESULTS: A total of 412 study participants were included in the final analysis. The patients had a mean age of 32.3 ± 5.1 years (range: 20 - 4). The good ovarian response rate was 67% (95% CI: 62.2-71.5). An anti-Mullerian hormone (AMH) concentration < 1.2ng/ml (AOR = 0.19, 95% CI (0.06-0.57)), an antral follicle count (AFC) < 5 (AOR = 0.16, 95% CI (0.05-0.56)), and an induction length < 10 days (AOR = 0.23, 95% CI (0.06-0.93)) were significantly associated with ovarian response. The prediction accuracies for the AFC and AMH concentrations were 0.844 and 0.719, respectively. The optimal cutoff point for prediction was 5.5 AFC, which had a sensitivity of 77.2% and a specificity of 72.8%. However, its positive and negative predictive values were 85.2% and 61.1%, respectively. For AMH, the optimal cutoff value was 0.71ng/mL, with a corresponding sensitivity and specificity of 65.2% and 66%. At this value, the positive and negative predictive values were 63.8% and 67.3%, respectively. CONCLUSION: Only two-thirds of our patients achieved a good ovarian response. Induction duration, AMH concentration, and AFC were found to be predictors, with the AFC being the strongest predictor. Therefore, the AFC should be performed on all of our patients, and the AMH is selectively employed. Future research must verify the best cutoff points and investigate additional factors affecting ovarian response.


Subject(s)
Anti-Mullerian Hormone , Infertility, Female , Ovulation Induction , Humans , Female , Adult , Ethiopia , Ovulation Induction/methods , Retrospective Studies , Anti-Mullerian Hormone/blood , Anti-Mullerian Hormone/analysis , Infertility, Female/therapy , Infertility, Female/blood , Young Adult , Follow-Up Studies , Pregnancy , Ovary/physiology
16.
Development ; 151(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38722097

ABSTRACT

Bez is a Class B scavenger receptor in Drosophila that is yet to be characterised. In a new study, Margret Bülow and colleagues uncover a role for Bez in mobilising lipids from Drosophila adipocytes into the ovary for oocyte maturation. To find out more about the people behind the paper, we caught up with first author, Pilar Carrera, and corresponding author, Margret Bülow, Group Leader at the University of Bonn.


Subject(s)
Drosophila Proteins , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Female , Drosophila , History, 21st Century , Humans , Adipocytes/cytology , Adipocytes/metabolism , History, 20th Century , Developmental Biology/history , Oocytes/metabolism , Oocytes/cytology , Drosophila melanogaster , Ovary/metabolism , Ovary/cytology
17.
Mol Biol Rep ; 51(1): 631, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722405

ABSTRACT

Adipokines are now well-known to regulate reproduction. Visfatin is an adipokine expressed in the hypothalamus, pituitary, ovary, uterus, and placenta of different species, and since it has been found to modulate the endocrine secretion of the hypothalamus, pituitary gland and ovary, it may be considered a novel regulator of female reproduction. Although the majority of the literature explored its role in ovarian regulation, visfatin has also been shown to regulate uterine remodeling, endometrial receptivity and embryo development, and its expression in the uterus is steroid dependent. Like other adipokines, visfatin expression and levels are deregulated in pathological conditions including polycystic ovary syndrome. Thus, the present mini-review focuses on the role of visfatin in female reproduction under both physiological and pathological conditions.


Subject(s)
Nicotinamide Phosphoribosyltransferase , Polycystic Ovary Syndrome , Reproduction , Female , Humans , Nicotinamide Phosphoribosyltransferase/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Reproduction/physiology , Reproduction/genetics , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/physiopathology , Animals , Ovary/metabolism , Uterus/metabolism , Cytokines/metabolism , Pregnancy , Adipokines/metabolism
18.
J Ovarian Res ; 17(1): 100, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734641

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is a reproductive endocrine disorder with multiple metabolic abnormalities. Most PCOS patients have concomitant metabolic syndromes such as insulin resistance and obesity, which often lead to the development of type II diabetes and cardiovascular disease with serious consequences. Current treatment of PCOS with symptomatic treatments such as hormone replacement, which has many side effects. Research on its origin and pathogenesis is urgently needed. Although improving the metabolic status of the body can alleviate reproductive function in some patients, there is still a subset of patients with metabolically normal PCOS that lacks therapeutic tools to address ovarian etiology. METHODS: The effect of IL-22 on PCOS ovarian function was verified in a non-metabolic PCOS mouse model induced by dehydroepiandrosterone (DHEA) and rosiglitazone, as well as granulosa cell -specific STAT3 knockout (Fshrcre+Stat3f/f) mice (10 groups totally and n = 5 per group). Mice were maintained under controlled temperature and lighting conditions with free access to food and water in a specific pathogen-free (SPF) facility. Secondary follicles separated from Fshrcre+Stat3f/f mice were cultured in vitro with DHEA to mimic the hyperandrogenic environment in PCOS ovaries (4 groups and n = 7 per group) and then were treated with IL-22 to investigate the specific role of IL-22 on ovarian function. RESULTS: We developed a non-metabolic mice model with rosiglitazone superimposed on DHEA. This model has normal metabolic function as evidenced by normal glucose tolerance without insulin resistance and PCOS-like ovarian function as evidenced by irregular estrous cycle, polycystic ovarian morphology (PCOM), abnormalities in sex hormone level. Supplementation with IL-22 improved these ovarian functions in non-metabolic PCOS mice. Application of DHEA in an in vitro follicular culture system to simulate PCOS follicular developmental block and ovulation impairment. Follicles from Fshrcre+Stat3f/f did not show improvement in POCS follicle development with the addition of IL-22. In DHEA-induced PCOS mice, selective ablation of STAT3 in granulosa cells significantly reversed the ameliorative effect of IL-22 on ovarian function. CONCLUSION: IL-22 can improve non-metabolic PCOS mice ovarian function. Granulosa cells deficient in STAT3 reverses the role of IL-22 in alleviating ovary dysfunction in non-metabolic PCOS mice.


Subject(s)
Disease Models, Animal , Interleukin-22 , Interleukins , Ovary , Polycystic Ovary Syndrome , Female , Animals , Polycystic Ovary Syndrome/metabolism , Mice , Interleukins/metabolism , Interleukins/genetics , Ovary/metabolism , Ovary/pathology , Dehydroepiandrosterone/pharmacology , STAT3 Transcription Factor/metabolism , Rosiglitazone/pharmacology , Rosiglitazone/therapeutic use , Granulosa Cells/metabolism , Mice, Knockout
19.
Front Endocrinol (Lausanne) ; 15: 1361289, 2024.
Article in English | MEDLINE | ID: mdl-38694941

ABSTRACT

Mitochondria plays an essential role in regulating cellular metabolic homeostasis, proliferation/differentiation, and cell death. Mitochondrial dysfunction is implicated in many age-related pathologies. Evidence supports that the dysfunction of mitochondria and the decline of mitochondrial DNA copy number negatively affect ovarian aging. However, the mechanism of ovarian aging is still unclear. Treatment methods, including antioxidant applications, mitochondrial transplantation, emerging biomaterials, and advanced technologies, are being used to improve mitochondrial function and restore oocyte quality. This article reviews key evidence and research updates on mitochondrial damage in the pathogenesis of ovarian aging, emphasizing that mitochondrial damage may accelerate and lead to cellular senescence and ovarian aging, as well as exploring potential methods for using mitochondrial mechanisms to slow down aging and improve oocyte quality.


Subject(s)
Aging , Mitochondria , Ovary , Humans , Mitochondria/metabolism , Female , Aging/physiology , Aging/pathology , Ovary/metabolism , Ovary/pathology , Animals , Cellular Senescence , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/genetics , Oocytes/metabolism
20.
BMC Genomics ; 25(1): 464, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741085

ABSTRACT

Gonad development includes sex determination and divergent maturation of the testes and ovaries. Recent advances in measuring gene expression in single cells are providing new insights into this complex process. However, the underlying epigenetic regulatory mechanisms remain unclear. Here, we profiled chromatin accessibility in mouse gonadal cells of both sexes from embryonic day 11.5 to 14.5 using single-cell assay for transposase accessible chromatin by sequencing (scATAC-seq). Our results showed that individual cell types can be inferred by the chromatin landscape, and that cells can be temporally ordered along developmental trajectories. Integrative analysis of transcriptomic and chromatin-accessibility maps identified multiple putative regulatory elements proximal to key gonadal genes Nr5a1, Sox9 and Wt1. We also uncover cell type-specific regulatory factors underlying cell type specification. Overall, our results provide a better understanding of the epigenetic landscape associated with the progressive restriction of cell fates in the gonad.


Subject(s)
Cell Lineage , Chromatin , Gonads , SOX9 Transcription Factor , Single-Cell Analysis , Animals , Chromatin/metabolism , Chromatin/genetics , Mice , Cell Lineage/genetics , Female , Male , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Gonads/metabolism , Gonads/cytology , Gonads/embryology , Steroidogenic Factor 1/genetics , Steroidogenic Factor 1/metabolism , WT1 Proteins/genetics , WT1 Proteins/metabolism , Testis/metabolism , Testis/cytology , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Ovary/metabolism , Ovary/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...