Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 290
Filter
1.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791472

ABSTRACT

Yellow pitahaya is a tropical fruit that has gained popularity in recent years. Natural elicitors are compounds that can stimulate the resistance and quality of fruits. The objective of this study was to evaluate the effects of natural elicitors, methyl salicylate (MeSa), methyl jasmonate (JaMe), salicylic acid (SA) and oxalic acid (OA) at concentrations of 0.1 mM (MeSa and JaMe) and 5 mM (SA and OA), applied to the yellow pitahaya fruits under greenhouse conditions. After full blossom, four applications were made with a frequency of 15 days. At the time of harvest and after storage, the following variables were evaluated: firmness (whole fruit), total soluble solids (TSS), total acidity (TA), phenolics and carotenoids (in the pulp), while phenolics, carotenoids, macronutrients and micronutrients were determined in the peel. The results showed MeSa advanced the fruit maturation, according to higher TSS, lower TA and firmness than MeJa-treated fruits, for which a delayed ripening process was shown. All treatments induced a higher polyphenolic concentration during storage. Regarding the alternative use of the peel as a by-product, the application of natural elicitors significantly increased the content of polyphenols, carotenoids, macronutrients and micronutrients in the peel, especially MeSa, which can be used as a bioactive compound in the food industry. In conclusion, the results indicate that natural elicitors can be an alternative to improve the quality and shelf life of yellow pitahaya fruits.


Subject(s)
Acetates , Cactaceae , Carotenoids , Cyclopentanes , Food Storage , Fruit , Oxylipins , Salicylic Acid , Fruit/chemistry , Fruit/drug effects , Fruit/metabolism , Fruit/growth & development , Oxylipins/pharmacology , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Acetates/pharmacology , Carotenoids/metabolism , Food Storage/methods , Cactaceae/chemistry , Cactaceae/growth & development , Cactaceae/metabolism , Salicylic Acid/pharmacology , Salicylates/pharmacology , Salicylates/metabolism , Phenols/analysis , Oxalic Acid/metabolism
2.
World J Microbiol Biotechnol ; 40(6): 178, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662173

ABSTRACT

Oxalic acid and oxalates are secondary metabolites secreted to the surrounding environment by fungi, bacteria, and plants. Oxalates are linked to a variety of processes in soil, e.g. nutrient availability, weathering of minerals, or precipitation of metal oxalates. Oxalates are also mentioned among low-molecular weight compounds involved indirectly in the degradation of the lignocellulose complex by fungi, which are considered to be the most effective degraders of wood. The active regulation of the oxalic acid concentration is linked with enzymatic activities; hence, the biochemistry of microbial biosynthesis and degradation of oxalic acid has also been presented. The potential of microorganisms for oxalotrophy and the ability of microbial enzymes to degrade oxalates are important factors that can be used in the prevention of kidney stone, as a diagnostic tool for determination of oxalic acid content, as an antifungal factor against plant pathogenic fungi, or even in efforts to improve the quality of edible plants. The potential role of fungi and their interaction with bacteria in the oxalate-carbonate pathway are regarded as an effective way for the transfer of atmospheric carbon dioxide into calcium carbonate as a carbon reservoir.


Subject(s)
Bacteria , Biotechnology , Fungi , Oxalic Acid , Oxalic Acid/metabolism , Fungi/metabolism , Bacteria/metabolism , Biotechnology/methods , Plants/microbiology , Plants/metabolism , Oxalates/metabolism , Lignin/metabolism
3.
Chemosphere ; 356: 141896, 2024 May.
Article in English | MEDLINE | ID: mdl-38579949

ABSTRACT

Complex rhizoremediation is the main mechanism of phytoremediation in organic-contaminated soil. Low molecular weight organic acids (LMWOAs) in root exudates have been shown to increase the bioavailability of contaminants and are essential for promoting the dissipation of contaminants. The effects of root exudates on the dissipation of organophosphate esters (OPEs) in soil are unclear. Consequently, we studied the combined effects of root exudates, soil enzymes and microorganisms on OPEs (tri (1-chloro-2-propyl) phosphate (TCPP) and triphenyl phosphate (TPP)) dissipation through pot experiments. Oxalic acid (OA) was confirmed to be the main component of LMWOAs in root exudates of ryegrass. The existence of OA increased the dissipation rate of OPEs by 6.04%-25.50%. Catalase and dehydrogenase activities were firstly activated and then inhibited in soil. While, urease activity was activated and alkaline phosphatase activity was inhibited during the exposure period. More bacteria enrichment (e.g., Sphingomonas, Pseudomonas, Flavisolibacter, Pontibacter, Methylophilus and Massilia) improved the biodegradation of OPEs. In addition, the transformation paths of OPEs hydrolysis and methylation under the action of root exudates were observed. This study provided theoretical insights into reducing the pollution risk of OPEs in the soil.


Subject(s)
Biodegradation, Environmental , Esters , Lolium , Oxalic Acid , Plant Roots , Soil Microbiology , Soil Pollutants , Soil , Oxalic Acid/metabolism , Soil Pollutants/metabolism , Lolium/metabolism , Plant Roots/metabolism , Soil/chemistry , Esters/metabolism , Organophosphates/metabolism , Oxidoreductases/metabolism , Catalase/metabolism , Bacteria/metabolism , Plant Exudates/metabolism , Plant Exudates/chemistry
4.
Waste Manag ; 179: 245-261, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38493610

ABSTRACT

This study explores the extraction of metals from spent mobile phone printed circuit boards (SMPhPCBs) to address environmental and resource depletion concerns. The challenges in metal recovery from SMPhPCBs arise due to their complex composition and high metal content. While previous research has primarily focused on using bio-cyanide, bio-sulfate, and bio-ferric compounds from acidophilic bacteria, the potential of bio-oxalic acid for SMPhPCBs treatment and the alteration of their complex structure has not yet been explored. Additionally, this study suggests evaluating the untapped potential of Aspergillus niger in oxalic acid production through mixed cultures with bacteria, marking a pioneering approach. A unique culture of Bacillus megaterium and A. niger was created, inducing bio-stress by bacterial metabolites, including gluconic acid (2683 mg/l) and live/dead bacterial cells in a medium with glucose deficiency. Results demonstrated reducing sugar consumption and oxalic acid over-production in mixed cultures compared to pure cultures, ranging from 1350 to 4951 mg/l at an initial glucose concentration (IGC) of 10 g/l and 4276 to 7460 mg/l at IGC 20 g/l. This over-production is attributed to proposed fungal signaling mechanisms to bacteria. Metal extraction using organic acids and siderophores at 10 g/l pulp density, 24 h, and 60 °C yielded Mn (100 %), Pt (100 %), Pd (70.7 %), Fe (50.8 %), Co (48.3 %), Al (21.8 %), among others. The final valuable residue containing copper, gold, and silver holds potential for future recycling. The study concludes with XRD and FTIR analyses to assess the bioleaching effect on the bio-leached powder.


Subject(s)
Copper , Electronic Waste , Gold , Recycling/methods , Oxalic Acid/metabolism , Glucose
5.
Environ Res ; 251(Pt 2): 118703, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38518912

ABSTRACT

Organic acids are important compounds with numerous applications in different industries. This work presents a comprehensive review of the biological synthesis of oxalic acid, an important organic acid with many industrial applications. Due to its important applications in pharmaceuticals, textiles, metal recovery, and chemical and metallurgical industries, the global demand for oxalic acid has increased. As a result, there is an increasing need to develop more environmentally friendly and economically attractive alternatives to chemical synthesis methods, which has led to an increased focus on microbial fermentation processes. This review discusses the specific strategies for microbial production of oxalic acid, focusing on the benefits of using bio-derived substrates to improve the economics of the process and promote a circular economy in comparison with chemical synthesis. This review provides a comprehensive analysis of the various fermentation methods, fermenting microorganisms, and the biochemistry of oxalic acid production. It also highlights key sustainability challenges and considerations related to oxalic acid biosynthesis, providing important direction for further research. By providing and critically analyzing the most recent information in the literature, this review serves as a comprehensive resource for understanding the biosynthesis of oxalic acid, addressing critical research gaps, and future advances in the field.


Subject(s)
Fermentation , Oxalic Acid , Oxalic Acid/metabolism , Bacteria/metabolism
6.
Appl Microbiol Biotechnol ; 107(23): 7331-7346, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37736792

ABSTRACT

In the context of e-waste recycling by fungal bioleaching, nickel and cobalt precipitate as toxic metals by oxalic acid, whereas organic acids, such as citric, act as a high-performance chelating agent in dissolving these metals. Oxalic acid elimination requires an excess and uneconomical carbon source concentration in culture media. To resolve this issue, a novel and straightforward systems metabolic engineering method was devised to switch metabolic flux from oxalic acid to citric acid. In this technique, the genome-scale metabolic model of Aspergillus niger was applied to predicting flux variability and key reactions through the calculation of multiple optimal solutions for cellular regulation. Accordingly, BRENDA regulators and a novel molecular docking-oriented approach were defined a regulatory medium for this end. Then, ligands were evaluated in fungal culture to assess their impact on organic acid production for bioleaching of copper and nickel from waste telecommunication printed circuit boards. The protein structure of oxaloacetate hydrolase was modeled based on homology modeling for molecular docking. Metformin, glutathione, and sodium fluoride were found to be effective as inhibitors of oxalic acid production, enabling the production of 8100 ppm citric acid by controlling cellular metabolism. Indirect bioleaching demonstrated that nickel did not precipitate, and the bioleaching efficiency of copper and nickel increased from 40% and 24% to 61% and 100%, respectively. Bioleaching efficiency was evaluated qualitatively by FE-SEM, EDX, mapping, and XRD analysis. KEY POINTS: • A regulatory-systemic procedure for controlling cellular metabolism was introduced • Metformin inhibited oxalic acid, leading to 8100 ppm citric acid production • Bioleaching of copper and nickel in TPCBs improved by 21% and 76.


Subject(s)
Aspergillus niger , Metformin , Aspergillus niger/metabolism , Copper/metabolism , Nickel , Molecular Docking Simulation , Oxalic Acid/chemistry , Oxalic Acid/metabolism , Citric Acid/metabolism , Metformin/metabolism
7.
Mol Plant Pathol ; 24(11): 1400-1413, 2023 11.
Article in English | MEDLINE | ID: mdl-37428013

ABSTRACT

Bacterial panicle blight is caused by Burkholderia glumae and results in damage to rice crops worldwide. Virulence of B. glumae requires quorum sensing (QS)-dependent synthesis and export of toxoflavin, responsible for much of the damage to rice. The DedA family is a conserved membrane protein family found in all bacterial species. B. glumae possesses a member of the DedA family, named DbcA, which we previously showed is required for toxoflavin secretion and virulence in a rice model of infection. B. glumae secretes oxalic acid as a "common good" in a QS-dependent manner to combat toxic alkalinization of the growth medium during the stationary phase. Here, we show that B. glumae ΔdbcA fails to secrete oxalic acid, leading to alkaline toxicity and sensitivity to divalent cations, suggesting a role for DbcA in oxalic acid secretion. B. glumae ΔdbcA accumulated less acyl-homoserine lactone (AHL) QS signalling molecules as the bacteria entered the stationary phase, probably due to nonenzymatic inactivation of AHL at alkaline pH. Transcription of toxoflavin and oxalic acid operons was down-regulated in ΔdbcA. Alteration of the proton motive force with sodium bicarbonate also reduced oxalic acid secretion and expression of QS-dependent genes. Overall, the data show that DbcA is required for oxalic acid secretion in a proton motive force-dependent manner, which is critical for QS of B. glumae. Moreover, this study supports the idea that sodium bicarbonate may serve as a chemical for treatment of bacterial panicle blight.


Subject(s)
Burkholderia , Oryza , Oryza/microbiology , Quorum Sensing , Membrane Proteins/metabolism , Sodium Bicarbonate/metabolism , Burkholderia/genetics , Oxalic Acid/metabolism , Bacterial Proteins/metabolism
8.
Int J Mol Sci ; 24(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36901947

ABSTRACT

Secretion and efflux of oxalic acid from roots is an important aluminum detoxification mechanism for various plants; however, how this process is completed remains unclear. In this study, the candidate oxalate transporter gene AtOT, encoding 287 amino acids, was cloned and identified from Arabidopsis thaliana. AtOT was upregulated in response to aluminum stress at the transcriptional level, which was closely related to aluminum treatment concentration and time. The root growth of Arabidopsis was inhibited after knocking out AtOT, and this effect was amplified by aluminum stress. Yeast cells expressing AtOT enhanced oxalic acid resistance and aluminum tolerance, which was closely correlated with the secretion of oxalic acid by membrane vesicle transport. Collectively, these results underline an external exclusion mechanism of oxalate involving AtOT to enhance oxalic acid resistance and aluminum tolerance.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Aluminum/metabolism , Biological Transport , Membrane Transport Proteins/metabolism , Oxalic Acid/metabolism , Plant Roots/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism
9.
J Hazard Mater ; 446: 130691, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36608576

ABSTRACT

The toxicity of metals to microorganisms is highly correlated with the type of metal used. However, the differences in the resistance mechanisms of filamentous fungi to multiple metals remain unclear. In this study, we investigated the responses of Aspergillus niger to three toxic metals, i.e., Pb2+, Cd2+, and Cu2+. Fungal growth and metabolism indices showed that A. niger had a higher tolerance to Pb2+ (>1000 mg L-1) than to Cu2+ (300 mg L-1) and Cd2+ (50 mg L-1). An appropriate Pb2+ concentration (<500 mg L-1) stimulated fungal growth and metabolic activity, whereas Cd2+ and Cu2+ stress showed continuously negative influences on fungal physiological parameters, such as biomass and secretion of oxalic acid. A. niger responded to Pb stress by constructing a new border layer around its cell wall. This pathway was also confirmed using RNA-seq analysis, i.e., the gene encoding cell wall α-1,3-glucan synthase was upregulated. This upregulation subsequently promoted the production of polysaccharides, which are the main components that support fungal cell walls. In contrast, the expression of genes encoding both AAA family ATPase and efflux pump antibiotic resistance proteins for Cd2+ and Cu2+ was significantly downregulated. Therefore, these findings elucidated the relatively complete fungal responses to different metal stresses.


Subject(s)
Aspergillus niger , Cadmium , Aspergillus niger/genetics , Aspergillus niger/metabolism , Cadmium/toxicity , Cadmium/metabolism , Lead/toxicity , Lead/metabolism , Oxalic Acid/metabolism
10.
J Agric Food Chem ; 70(51): 16037-16049, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36511327

ABSTRACT

Characterized by strong acidity, chelating ability, and reducing ability, oxalic acid, a low molecular weight dicarboxylic organic acid, plays important roles in the regulation of plant growth and development, the response to both biotic and abiotic stresses such as plant defense and heavy metals detoxification, and food quality. The metabolism of oxalic acid has been well-studied in microorganisms, fungi, and animals but remains less understood in plants. However, excessive accumulation of oxalic acid is detrimental to plants. Therefore, the level of oxalic acid has to be precisely controlled in plant tissues. In this review, we summarize the metabolism, function, and regulation of oxalic acid in plants, and we discuss solutions such as agricultural practices and plant biotechnology to manipulate oxalic acid metabolism to regulate plant responses to both external stimuli and internal developmental cues.


Subject(s)
Metals, Heavy , Plants , Animals , Plants/metabolism , Oxalic Acid/metabolism , Fungi/metabolism , Biotechnology , Metals, Heavy/metabolism
11.
World J Microbiol Biotechnol ; 39(1): 13, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36380124

ABSTRACT

Oxalate oxidase (EC 1.2.3.4) is an oxalate-decomposing enzyme predominantly found in plants but also described in basidiomycete fungi. In this study, we investigated 23 fungi to determine their capability of oxalic acid degradation. After analyzing their secretomes for the products of the oxalic acid-degrading enzyme activity, three groups were distinguished among the fungi studied. The first group comprised nine fungi classified as oxalate oxidase producers, as their secretome pattern revealed an increase in the hydrogen peroxide concentration, no formic acid, and a reduction in the oxalic acid content. The second group of fungi comprised eight fungi described as oxalate decarboxylase producers characterized by an increase in the formic acid level associated with a decrease in the oxalate content in their secretomes. In the secretomes of the third group of six fungi, no increase in formic acid or hydrogen peroxide contents was observed but a decline in the oxalate level was found. The intracellular activity of OXO in the mycelia of Schizophyllum commune, Trametes hirsuta, Gloeophyllum trabeum, Abortiporus biennis, Cerrena unicolor, Ceriosporopsis mediosetigera, Trametes sanguinea, Ceriporiopsis subvermispora, and Laetiporus sulphureus was confirmed by a spectrophotometric assay.


Subject(s)
Hydrogen Peroxide , Wood , Wood/microbiology , Trametes/metabolism , Oxalic Acid/metabolism
12.
Int J Food Microbiol ; 383: 109939, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36166914

ABSTRACT

Sclerotinia rot infected by cosmopolitan fungi Sclerotinia sclerotiorum is a serious and destructive disease in carrot production, especially during their postharvest storage. Natural products with the advantages of environmentally friendly and safety have been widely concerned. This research estimated the impact of hinokitiol against S. sclerotiorum and on the quality of carrots. In vitro and in vivo tests demonstrated that hinokitiol had promising antifungal activities against both carbendazim-susceptible and -resistant isolates of S. sclerotiorum. Importantly, it effectively kept the quality and prolonged the shelf life of carrot by declining the loss of weight, ascorbic acid, carotenoid, and total phenolics content, preventing the formation of malondialdehyde, and enhancing the activities of antioxidant enzymes. Further study found that hinokitiol inhibited the formation of sclerotia by destroying the morphology and the integrality of cell membrane, reduced the pathogenicity by suppressing the synthesis of oxalic acid and exopolysaccharide, declined the activities of enzymes and the gene expression related to sclerotia development in S. sclerotiorum. These information evidenced the great potential of hinokitiol as a natural fresh-keeping agent for the management of postharvest decay infected by S. sclerotiorum.


Subject(s)
Ascomycota , Biological Products , Daucus carota , Antifungal Agents/pharmacology , Biological Products/pharmacology , Biological Products/metabolism , Antioxidants/metabolism , Oxalic Acid/metabolism , Oxalic Acid/pharmacology , Ascorbic Acid/pharmacology , Carotenoids/metabolism , Malondialdehyde/metabolism , Malondialdehyde/pharmacology
13.
Bull Environ Contam Toxicol ; 109(5): 920-926, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36129516

ABSTRACT

Thallium (Tl) is a highly toxic element with two species, Tl(I) and Tl(III). We discovered the Tl uptake in rice exposed to Tl(III) hydroponic treatment was significantly lower than that to Tl(I) treatment, but the content of oxalic acid secreted from roots in Tl(III) treatment was higher than that in Tl(I). The physiological and molecular mechanisms underlying the difference between the two Tl species were studied using a hydroponic system. The results showed the reduction of oxalic acid content had no effect on the amount of Tl on the root surface, indicating oxalic acid might not immobilize Tl to affect the Tl uptake. Therefore, the secretion of oxalic acid from roots may not be a strategy for detoxifying Tl in rice. Notably, Tl(III) increased the expression of Oryza sativa H+-ATPase genes OsAs and the activity of H+-ATPase, and decreased potassium transport gene expression of OsKAT1.1 and OsHKT2;4, which indicated that the difference in Tl uptake of rice between the two Tl species mainly cause by the potassium transport system rather than oxalic acid.


Subject(s)
Oryza , Oryza/metabolism , Thallium , Hydroponics , Oxalic Acid/metabolism , Potassium , Plant Roots/metabolism
14.
Viruses ; 14(9)2022 08 27.
Article in English | MEDLINE | ID: mdl-36146699

ABSTRACT

Soybean leaf-associated gemygorvirus-1 (SlaGemV-1) is a CRESS-DNA virus classified in the family Genomoviridae, which causes hypovirulence and abolishes sclerotia formation in infected fungal pathogens under the family Sclerotiniaceae. To investigate the mechanisms involved in the induction of hypovirulence, RNA-Seq was compared between virus-free and SlaGemV-1-infected Sclerotinia sclerotiorum strain DK3. Overall, 4639 genes were differentially expressed, with 50.5% up regulated and 49.5% down regulated genes. GO enrichments suggest changes in integral membrane components and transmission electron microscopy images reveal virus-like particles localized near the inner cell membrane. Differential gene expression analysis focused on genes responsible for cell cycle and DNA replication and repair pathways, ubiquitin proteolysis, gene silencing, methylation, pathogenesis-related, sclerotial development, carbohydrate metabolism, and oxalic acid biosynthesis. Carbohydrate metabolism showed the most changes, with two glycoside hydrolase genes being the most down regulated by -2396.1- and -648.6-fold. Genes relating to pathogenesis showed consistent down regulation with the greatest being SsNep1, SsSSVP1, and Endo2 showing, -4555-, -14.7-, and -12.3-fold changes. The cell cycle and DNA replication/repair pathways were almost entirely up regulated including a putative cyclin and separase being up regulated 8.3- and 5.2-fold. The oxalate decarboxylase genes necessary for oxalic acid catabolism and oxalic acid precursor biosynthesis genes and its metabolism show down regulations of -17.2- and -12.1-fold changes. Sclerotial formation genes also appear differentially regulated including a melanin biosynthesis gene Pks1 and a sclerotia formation gene Sl2 with fold changes of 3.8 and -2.9.


Subject(s)
Ascomycota , Viruses , Ascomycota/genetics , Cyclins/metabolism , Glycoside Hydrolases/metabolism , Melanins/metabolism , Oxalic Acid/metabolism , Plant Diseases/microbiology , Separase/metabolism , Ubiquitins/metabolism , Virulence
15.
Chemosphere ; 307(Pt 4): 136041, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35981623

ABSTRACT

The final sinkers of polyaromatic hydrocarbons are water sources, where they undergo bioaccumulation and biomagnification, leading to adverse mutagenic, carcinogenic, and teratogenic effects on exposure in flora, fauna, and humans. Two indigenous strains, Pseudomonas sp. WDE11 and Pseudomonas sp. WD23, isolated from refinery effluent, degraded over 97.5% of benzo(a)fluorene (10 mg/L) in 7 days. On growth at concentration dependent amounts (50 mg/L and 100 mg/L), the degradation reduced to approximately 90% and 80% respectively in 56 days. Degradation kinetics was concentration dependent, as degradation followed first-order and second-order kinetics for 50 mg/L and 100 mg/L respectively. The half-life for degradation of benzo(a)fluorene ranged between 11.64 - 12.26 days and 13.11-14.5 days for strains WDE11 and WD23 respectively. The values of Andrew-Haldane kinetic parameters i.e. µmax, Ks, and Ki were 0.306 day-1, 11.11 mg/L, and 120.41 mg/L for strain WDE11 respectively, while for strain WD23, the respective values were 0.312 day-1, 9.97 mg/L, and 152 mg/L. Degradation metabolites were identified by their MS patterns as 3,4-dihydroxy fluorene, 2-(1-oxo-2,3-dihydro-1H-inden-2-yl) acetic acid, 3,4-dihydrocoumarin, salicylic acid, catechol, and oxalic acid. Metabolic pathway of degradation constructed, revealed that benzo(a)fluorene was metabolized via the formation of fluorene, further metabolized by salicylate pathway forming catechol. The catechol formed was degraded into simpler metabolites by meta-cleavage pathway, which was validated by catechol 2,3 dioxygenase enzyme activity.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Pseudomonas , Biodegradation, Environmental , Catechol 2,3-Dioxygenase/metabolism , Catechols/metabolism , Fluorenes/metabolism , Humans , Kinetics , Oxalic Acid/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Pseudomonas/metabolism , Salicylic Acid/metabolism
16.
J Agric Food Chem ; 70(35): 10738-10746, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36027054

ABSTRACT

To explore the mechanisms of crop straw degradation and phosphorus (P) release by phosphate-solubilizing fungi (PSF), a typical PSF Aspergillus niger (A. niger, ANG) was investigated for the degradation of wheat straw (WST) in this work. The results revealed that A. niger significantly increased wheat straw degradation (30%) compared with no A. niger treatment (7.7%). Meanwhile, more than 92% of total P was released from WST by A. niger, much higher than from WST treatment (69.5%). Although the ratios of inorganic P release between WST and WST + ANG treatments were similar (17.6 vs 19.7%), a significant difference occurred between their release of organic P, i.e., WST (51.9%) vs WST + ANG (72.5%). The high enzyme activity of ß-1,4-glucanase and ß-glucosidase produced by A. niger contributed to the wheat straw degradation and organic P release compared with no A. niger treatment. Oxalic acid secreted by A. niger dominated the release of inorganic P from WST. Our findings suggested that A. niger is an efficient microbial agent for crop straw degradation and P release, which could be a candidate in the pathway of straw return.


Subject(s)
Aspergillus niger , Triticum , Aspergillus , Oxalic Acid/metabolism , Phosphates/metabolism , Phosphorus/metabolism , Triticum/metabolism
17.
J Hazard Mater ; 430: 128509, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35739687

ABSTRACT

Metals recovery from spent automotive catalytic converters (SACCs) has gained great attention due to high metal content of SACCs and their potential to pollute the environment. This study presented a novel green strategy for treating SACCs using oxalic acid-enriched spent culture medium from Aspergillus niger cultivations. To enhance oxalic acid production, the Central Composite Design (CCD) was applied, which demonstrated that glucose (27.06 g/L), NaNO3 (0.9 g/L), disodium oxalate (7.7 g/L), MnSO4·H2O (0.28 g/L), and ethanol (0.65%(v/v)) were the optimum values leading to production of 15.3 g/L oxalic acid. The results of metals biorecovery with the fungal metabolites showed that pulp density of 15 g/L, temperature of 60 °C, and leaching time of 6 h resulted in the highest extraction of 99.1% Al, 99.3% Si, 82.2% Mn, 91.9% Zn, 17.6% Ba, 99.5% Fe, 92.2% Sr, 35.7% Ti, 60.9% Pt, and 73.7% Pd, as well as maximum enrichment of rare earth elements (REEs) in the residual powder. The EDX-mapping analysis indicated that the concentration of ∑REEs was nearly 8% in the initial waste powder, while it reached around 81% in the residual powder after bioleaching. The bioleaching mechanism was further analyzed by characterizing the bioleaching residues through XRD, FTIR, and FESEM analyses.


Subject(s)
Metals, Rare Earth , Aspergillus niger/metabolism , Catalysis , Metals/metabolism , Metals, Rare Earth/metabolism , Oxalic Acid/metabolism , Powders/metabolism
18.
Probiotics Antimicrob Proteins ; 14(5): 854-872, 2022 10.
Article in English | MEDLINE | ID: mdl-35699895

ABSTRACT

In the present study, we characterized the probiotic properties of two commercially available bacterial strains, Lactobacillus paragasseri UBLG-36 and Lacticaseibacillus paracasei UBLPC-87, and evaluated their ability to degrade oxalate in vitro and in a hyperoxaluria-induced nephrolithiasis rat model. UBLG-36 harboring two oxalate catabolizing genes, oxalyl coenzyme A decarboxylase (oxc) and formyl coenzyme A transferase (frc), was previously shown to degrade oxalate in vitro effectively. Here, we show that UBLPC-87, lacking both oxc and frc, could still degrade oxalate in vitro. Both these strains harbored several potential putative probiotic genes that may have conferred them the ability to survive in low pH and 0.3% bile, resist antibiotic stress, show antagonistic activity against pathogenic bacteria, and adhere to epithelial cell surfaces. We further evaluated if UBLG-36 and UBLPC-87 could degrade oxalate in vivo and prevent hyperoxaluria-induced nephrolithiasis in rats. We observed that rats treated with 4.5% sodium oxalate (NaOx) developed hyperoxaluria and renal stones. However, when pre-treated with UBLG-36 or UBLPC-87 before administering 4.5% NaOx, the rats were protected against several pathophysiological manifestations of hyperoxaluria. Compared to the hyperoxaluric rats, the probiotic pre-treated rats showed reduced urinary excretion of oxalate and urea (p < 0.05), decreased serum blood urea nitrogen and creatinine (p < 0.05), alleviated stone formation and renal histological damage, and an overall decrease in renal tissue oxalate and calcium content (p < 0.05). Taken together, both UBLG-36 and UBLPC-87 are effective oxalate catabolizing probiotics capable of preventing hyperoxaluria and alleviating renal damage associated with nephrolithiasis.


Subject(s)
Hyperoxaluria , Kidney Calculi , Lacticaseibacillus paracasei , Probiotics , Animals , Hyperoxaluria/chemically induced , Hyperoxaluria/prevention & control , Hyperoxaluria/urine , Kidney Calculi/chemically induced , Kidney Calculi/prevention & control , Kidney Calculi/urine , Lactobacillus/metabolism , Lacticaseibacillus paracasei/metabolism , Oxalic Acid/adverse effects , Oxalic Acid/metabolism , Probiotics/pharmacology , Rats
19.
J Appl Microbiol ; 133(5): 2680-2693, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35543356

ABSTRACT

AIM: Oxalic acid (OA) is one of the pathogenic factors of Botrytis cinerea. Trichoderma afroharzianum exerts both antagonistic and oxalate-degrading effects on B. cinerea. This study aimed to investigate the relationship between the elimination of OA by T. afroharzianum and its antagonistic effects on B. cinerea. METHODS AND RESULTS: Reversed-phase high performance liquid chromatogram (RP-HPLC) analysis showed that T. afroharzianum LTR-2 eliminated 10- or 20-mmol/L OA within 120 h, with the degradation being particularly efficient at the concentration of 20 mmol/L. RNA-seq analysis showed that the oxalate decarboxylase (OXDC) gene Toxdc, ß-1,3-exoglucanase gene Tglu and aspartic protease gene Tpro of LTR-2 were significantly upregulated after treatment with 20-mmol/L OA. RT-qPCR analysis showed that under the conditions of confrontation, Toxdc and three cell wall degrading enzyme (CWDE) genes were upregulated before physical contact with B. cinerea. In addition, RT-qPCR analysis showed that OA synthesis in B. cinerea was not significantly affected by LTR-2. CONCLUSIONS: The results revealed a correlation between OA degradation and mycoparasitism in T. afroharzianum when antagonising B. cinerea at the transcriptional level. SIGNIFICANCE AND IMPACT OF THE STUDY: The relationship between OA degradation by T. afroharzianum and its effects against B. cinerea provide a new perspective on the antagonism of T. afroharzianum against B. cinerea. In addition, this study provides theoretical data for the scientific application of T. afroharzianum in the field of biocontrol.


Subject(s)
Oxalic Acid , Trichoderma , Oxalic Acid/metabolism , Trichoderma/genetics , Trichoderma/metabolism , Plant Diseases , Botrytis/genetics , Botrytis/metabolism , Cell Wall/metabolism , Peptide Hydrolases/metabolism
20.
Plant Biol (Stuttg) ; 24(3): 502-509, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35246912

ABSTRACT

Oxalic acid (OA) is a crucial pathogenic factor for Sclerotinia spp. fungi, which is closely related to Botrytis spp. fungi. Whether OA is a pathogenic factor for the causal agent of grey mould in lily, Botrytis elliptica, and the response of lily to OA are poorly understood. To address these questions, lesion tissues and deposition of calcium oxalate (CaOX) and callose were observed in diploid and tetraploid leaves of L. rosthornii after inoculation with B. elliptica. Oxalate oxidase (OXO) activity and the transcript levels of some genes related to OA degradation (LrGLP1, LrGLP2 and LrWRKY4), reactive oxygen species (ROS) production/scavenging systems (LrRBOHD, LrGST, LrPOD and LrAPX1) and pathogen-related protein (PR) synthesis (LrCHI, LrBGL and LrPR10) were compared. After diploid and tetraploid leaves inoculation, lesion tissue and callose and CaOX were separately observed around in guard cells and stomata rather than the epidermis in the infected area. OXO activity was triggered at 2 h post-inoculation (hpi) in both ploidy leaves, and it was higher in the latter from 12-48 hpi. Expression of LrGLP1, LrGLP2, LrRBOHD, LrGST, LrPOD, LrCHI, LrBGL and LrPR10 was higher in tetraploids than in diploids from 24(12)-36(48) hpi. In conclusion, for B. elliptica, OA mainly chelates Ca2+ from the stomata cell wall. The strong capability to degrade OA and higher expression levels of some genes related to ROS accumulation/scavenging and PR synthesis may partially explain the relatively higher grey mould resistance of tetraploid L. rosthornii.


Subject(s)
Botrytis , Lilium , Botrytis/metabolism , Oxalic Acid/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Tetraploidy
SELECTION OF CITATIONS
SEARCH DETAIL
...