Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Test Anal ; 14(1): 39-55, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34378336

ABSTRACT

Oxandrolone is an anabolic-androgenic steroid with favourable anabolic to androgenic ratio, making it an effective anabolic agent with less androgenic side effects. Although its metabolism has been studied in humans, its phase I and II metabolism has not been previously reported in the horse. The purpose of this study was to investigate the in vitro metabolism of oxandrolone (using both equine liver microsomes and S9) and in vivo metabolism following oral administration (three daily doses of 50 mg of oxandrolone to a single Thoroughbred horse), using both gas and liquid chromatography-mass spectrometry techniques. The in vitro phase I transformations observed included 16-hydroxylated (two epimers), 17-methyl-hydroxylated and 16-keto metabolites. In addition to parent oxandrolone and these hydroxylated metabolites, the 17-epimer and a 17,17-dimethyl-18-norandrost-13-ene analogue were detected in biological samples following the administration. 16-keto-oxandrolone was only observed in urine. The 16- and 17-methyl-hydroxylated oxandrolone metabolites were predominantly excreted as sulfate conjugates in urine, whereas parent oxandrolone, its epimer and 17,17-dimethyl-18-norandrost-13-ene derivative were found predominantly in the unconjugated urine fraction. The most abundant analyte detected in both plasma and urine was parent oxandrolone. However, the longest detection period using the developed analytical method was provided by 17-hydroxymethyl-oxandrolone in both matrices. The results of this study provided knowledge of how best to detect the use of oxandrolone in regulatory samples.


Subject(s)
Microsomes, Liver/metabolism , Oxandrolone/metabolism , Substance Abuse Detection/methods , Anabolic Agents/analysis , Anabolic Agents/metabolism , Androgens/analysis , Androgens/metabolism , Animals , Chromatography, Liquid/methods , Chromatography, Liquid/veterinary , Doping in Sports/prevention & control , Gas Chromatography-Mass Spectrometry/methods , Gas Chromatography-Mass Spectrometry/veterinary , Horses , Male , Mass Spectrometry/methods , Mass Spectrometry/veterinary , Oxandrolone/analysis , Substance Abuse Detection/veterinary
2.
Biosensors (Basel) ; 8(1)2017 Dec 26.
Article in English | MEDLINE | ID: mdl-29278383

ABSTRACT

We have studied the Fourier Transform Infrared (FT-IR) and the Fourier transform Raman (FT-Raman) spectra of stanozolol and oxandrolone, and we have performed quantum chemical calculations based on the density functional theory (DFT) with a B3LYP/6-31G (d, p) level of theory. The FT-IR and FT-Raman spectra were collected in a solid phase. The consistency between the calculated and experimental FT-IR and FT-Raman data indicates that the B3LYP/6-31G (d, p) can generate reliable geometry and related properties of the title compounds. Selected experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumbers by their total energy distribution. The good agreement between the experimental and theoretical spectra allowed positive assignment of the observed vibrational absorption bands. Finally, the calculation results were applied to simulate the Raman and IR spectra of the title compounds, which show agreement with the observed spectra.


Subject(s)
Anabolic Agents/analysis , Oxandrolone/analysis , Quantum Theory , Stanozolol/analysis , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman
3.
Burns ; 37(7): 1150-3, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21764219

ABSTRACT

Many references exist in the literature identifying the usefulness of oxandrolone in treating muscle wasting due to various conditions including severe burns. However, there is an absence of dosage form alternatives as it is only available as tablets. The dose for children is weight based (0.1 mg/kg) which is difficult to achieve with the currently available tablets of 2.5 mg and 10 mg. The literature provides ample evidence of clinical importance but little guidance on extemporaneous oral liquid formulation of oxandrolone. In order to develop and validate an extemporaneous liquid formulation, suspensions of oxandrolone were developed using locally available (New Zealand) vehicles. Combinations of these vehicles with ethanol, as advised in some articles were also tried. Assay method was developed for oxandrolone using High Performance Liquid Chromatography (HPLC) and Mass Spectroscopy (LC-MS). The formulations were evaluated for stability as per the International Conference on Harmonization (ICH) stability guidelines. They were observed for physical and chemical stability at different time points over a period of 28 days. A stable and validated liquid formulation of oxandrolone has been developed which can be made under the hospital and community pharmacy conditions. The formula utilises commercially available oxandrolone tablets, crushed and dispersed in Simple Syrup BP or Orablend(®) vehicle. The formulation has confirmed stability for 21 days and can be easily made with locally available vehicles.


Subject(s)
Oxandrolone/chemistry , Administration, Oral , Chromatography, High Pressure Liquid , Drug Compounding , Drug Stability , Oxandrolone/administration & dosage , Oxandrolone/analysis , Pharmaceutical Solutions/chemistry , Pharmaceutical Vehicles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...