Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65.806
Filter
1.
Nutr Diabetes ; 14(1): 37, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824123

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a chronic medical condition affecting more than 95% of people with diabetes. Traditionally, some medicinal plants have been considered as an effective approach in management of T2DM. This trial evaluated the effects of date seed powder (DSP) on glycemia indices and oxidative stress in T2DM patients. METHODS: In this trail, 43 patients with T2DM were randomized to two groups: either 5 g/d of the DSP or placebo for 8 weeks. Levels of glycemic indices, lipolpolysaccharide (LPS), and soluble receptor for advanced glycation end products (s-RAGE), as well as other parameters associated with oxidative stress were assessed at baseline and after 8 weeks. Independent t-test and analysis of covariance (ANCOVA) were used for between-groups comparisons at baseline and the post-intervention phase, respectively. RESULTS: The results showed that supplementation with DSP significantly decreased HbA1c (-0.30 ± 0.48%), insulin (-1.70 ± 2.21 µU/ml), HOMA-IR (-1.05 ± 0.21), HOMA-B (-0.76 ± 21.21), lipopolysaccharide (LPS) (-3.68 ± 6.05 EU/mL), and pentosidine (118.99 ± 21.67 pg/mL) (P < 0.05, ANCOVA adjusted for baseline and confounding factors). On the other hand, DSP supplementation significantly increased total antioxidant capacity (TAC) (0.50 ± 0.26 mmol/L), superoxide dismutase (SOD) (0.69 ± 0.32 U/ml), and s-RAGE (240.13 ± 54.25 pg/mL) compared to the placebo group. FPG, hs-CRP, GPx, CML, and uric acid had no significant within- or between-group changes. CONCLUSION: Supplementation of DSP could be considered an effective strategy to improve glycemic control and oxidative stress in T2DM patients (Registration ID at www.irct.ir : IRCT20150205020965N10).


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Glycated Hemoglobin , Glycation End Products, Advanced , Oxidative Stress , Seeds , Humans , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Male , Female , Middle Aged , Glycation End Products, Advanced/blood , Oxidative Stress/drug effects , Glycated Hemoglobin/analysis , Blood Glucose/drug effects , Receptor for Advanced Glycation End Products/blood , Insulin/blood , Adult , Glycemic Index/drug effects , Aged
2.
Sci Rep ; 14(1): 12593, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824160

ABSTRACT

Coconut (Cocos nucifera) leaves, an unutilized resource, enriched with valuable bioactive compounds. Spectral analysis of purified pentane fraction of coconut leaves revealed the presence of a squalene analog named 4,4'-diapophytofluene or in short 4,4'-DPE (C30H46). Pure squalene standard (PSQ) showed cytotoxicity after 8 µg/ml concentration whereas 4,4'-DPE exhibited no cytotoxic effects up to 16 µg/ml concentration. On senescence-induced WI38 cells, 4,4'-DPE displayed better percentage of cell viability (164.5% at 24 h, 159.4% at 48 h and 148% at 72 h) compared to PSQ and BSQ (bio-source squalene) with same time duration. Similar trend of result was found in HaCaT cells. SA-ß-gal assay showed that number of ß-galactosidase positive cells were significantly decreased in senescent cells (WI38 and HaCaT) after treated with 4,4'-DPE than PSQ, BSQ. Percentage of ROS was increased to 60% in WI38 cells after olaparib treatment. When PSQ, BSQ and 4,4'-DPE were applied separately on these oxidative-stress-induced cells for 48 h, the overall percentage of ROS was decreased to 39.3%, 45.6% and 19.3% respectively. This 4,4'-DPE was found to be more effective in inhibiting senescence by removing ROS as compared to squalene. Therefore, this 4,4'-DPE would be new potent senotherapeutic agent for pharmaceuticals and dermatological products.


Subject(s)
Antioxidants , Cellular Senescence , Cocos , Fibroblasts , Keratinocytes , Plant Leaves , Squalene , Humans , Plant Leaves/chemistry , Squalene/pharmacology , Squalene/chemistry , Cellular Senescence/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Keratinocytes/drug effects , Keratinocytes/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Cocos/chemistry , Cell Survival/drug effects , Cell Line , Plant Extracts/pharmacology , Plant Extracts/chemistry , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects
3.
Mol Biol Rep ; 51(1): 705, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824214

ABSTRACT

BACKGROUND: Quinoa seeds (Chenopodium quinoa Willd.) have gained interest due to their naturally occurring phytochemicals and antioxidants. They possess potent anticancer properties against human colorectal cancer. METHODS AND RESULTS: Fatty acids in quinoa oil were studied using gas chromatography-mass spectrometry. Rats were used to test the acute oral toxicity of the nanoemulsion loaded with sodium alginate. The DPPH radical scavenging method was employed to assess the nanoemulsion's ability to scavenge free radicals. It was examined the in vivo anticancer potential of quinoa oil nanoemulsion on rats with breast cancer induced by 7, 12-dimethylbenz (a) anthracene (DMBA). DMBA-breast cancer models received daily quinoa oil nanoemulsions for 30 days. The anticancer effect of the nanoemulsion was assessed by measuring ROS, protein carbonyl, gene expression of anti-oncogenes, and histopathological analysis. Supplying quinoa oil nanoemulsion significantly reduced the increase in serum ROS and PC levels induced in breast cancer tissue. The expression levels of antioncogenes in breast cancer tissue were decreased by the quinoa oil nanoemulsion. Nanoemulsions also improved the cellular morphology of breast tumors. CONCLUSION: The study results indicate that quinoa oil nanoemulsion has anticancer activity against breast cancer, effectively modulating oxidative stress markers, anti-oncogene expressions, and tissue architecture. It can be inferred from the results that quinoa oil nanoemulsion is a chemoprotective medication that may hinder breast cancer progression in rats.


Subject(s)
Alginates , Breast Neoplasms , Chenopodium quinoa , Emulsions , Plant Oils , Animals , Chenopodium quinoa/chemistry , Female , Rats , Plant Oils/pharmacology , Plant Oils/chemistry , Alginates/chemistry , Alginates/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Antioxidants/pharmacology , Reactive Oxygen Species/metabolism , Nanoparticles/chemistry , Seeds/chemistry , Antineoplastic Agents/pharmacology , Oxidative Stress/drug effects , Humans
4.
Food Res Int ; 188: 114489, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823872

ABSTRACT

Solanum nigrum L. (SN) berry is an edible berry containing abundant polyphenols and bioactive compounds, which possess antioxidant and antiinflammatory properties. However, the effects of SN on alcohol-induced biochemical changes in the enterohepatic axis remain unclear. In the current study, a chronic ethanol-fed mice ALD model was used to test the protective mechanisms of SN berries. Microbiota composition was determined via 16S rRNA sequencing, we found that SN berries extract (SNE) improved intestinal imbalance by reducing the Firmicutes to Bacteroides ratio, restoring the abundance of Akkermansia microbiota, and reducing the abundance of Allobaculum and Shigella. SNE restored the intestinal short-chain fatty acids content. In addition, liver transcriptome data analysis revealed that SNE primarily affected the genes involved in lipid metabolism and inflammatory responses. Furthermore, SNE ameliorated hepatic steatosis in alcohol-fed mice by activating AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), peroxisome proliferator-activated receptor α (PPAR-α). SNE reduced the expression of toll-like receptor 4 (TLR4), myeloid differentiation factor-88 (MyD88) nuclear factor kappa-B (NF-κB), which can indicate that SNE mainly adjusted LPS/TLR4/MyD88/NF-κB pathway to reduce liver inflammation. SNE enhanced hepatic antioxidant capacity by regulating NRF2-related protein expression. SNE alleviates alcoholic liver injury by regulating of gut microbiota, lipid metabolism, inflammation, and oxidative stress. This study may provide a reference for the development and utilization of SN resources.


Subject(s)
Fruit , Gastrointestinal Microbiome , Lipid Metabolism , Liver Diseases, Alcoholic , Oxidative Stress , Plant Extracts , Solanum nigrum , Animals , Gastrointestinal Microbiome/drug effects , Oxidative Stress/drug effects , Lipid Metabolism/drug effects , Plant Extracts/pharmacology , Mice , Fruit/chemistry , Solanum nigrum/chemistry , Male , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/prevention & control , Mice, Inbred C57BL , Inflammation , Liver/drug effects , Liver/metabolism , Toll-Like Receptor 4/metabolism , Disease Models, Animal , PPAR alpha/metabolism , Antioxidants/pharmacology , Ethanol
5.
FASEB J ; 38(11): e23681, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38814725

ABSTRACT

Ischemia-reperfusion (IR) injury is primarily characterized by the restoration of blood flow perfusion and oxygen supply to ischemic tissue and organs, but it paradoxically leads to tissue injury aggravation. IR injury is a challenging pathophysiological process that is difficult to avoid clinically and frequently occurs during organ transplantation, surgery, shock resuscitation, and other processes. The major causes of IR injury include increased levels of free radicals, calcium overload, oxidative stress, and excessive inflammatory response. Ghrelin is a newly discovered brain-intestinal peptide with anti-inflammatory and antiapoptotic effects that improve blood supply. The role and mechanism of ghrelin in intestinal ischemia-reperfusion (IIR) injury remain unclear. We hypothesized that ghrelin could attenuate IIR-induced oxidative stress and apoptosis. To investigate this, we established IIR by using a non-invasive arterial clip to clamp the root of the superior mesenteric artery (SMA) in mice. Ghrelin was injected intraperitoneally at a dose of 50 µg/kg 20 min before IIR surgery, and [D-Lys3]-GHRP-6 was injected intraperitoneally at a dose of 12 nmol/kg 20 min before ghrelin injection. We mimicked the IIR process with hypoxia-reoxygenation (HR) in Caco-2 cells, which are similar to intestinal epithelial cells in structure and biochemistry. Our results showed that ghrelin inhibited IIR/HR-induced oxidative stress and apoptosis by activating GHSR-1α. Moreover, it was found that ghrelin activated the GHSR-1α/Sirt1/FOXO1 signaling pathway. We further inhibited Sirt1 and found that Sirt1 was critical for ghrelin-mediated mitigation of IIR/HR injury. Overall, our data suggest that pretreatment with ghrelin reduces oxidative stress and apoptosis to attenuate IIR/HR injury by binding with GHSR-1α to further activate Sirt1.


Subject(s)
Apoptosis , Forkhead Box Protein O1 , Ghrelin , Mice, Inbred C57BL , Oxidative Stress , Receptors, Ghrelin , Reperfusion Injury , Sirtuin 1 , Ghrelin/pharmacology , Ghrelin/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Sirtuin 1/metabolism , Animals , Mice , Receptors, Ghrelin/metabolism , Humans , Male , Forkhead Box Protein O1/metabolism , Apoptosis/drug effects , Oxidative Stress/drug effects , Signal Transduction/drug effects , Intestines/drug effects , Caco-2 Cells
6.
Front Immunol ; 15: 1407782, 2024.
Article in English | MEDLINE | ID: mdl-38799436

ABSTRACT

Introduction: The new topical formula is urgent needed to meet clinical needs for majority mild patients with psoriasis. Deucravacitinib exerts outstanding anti-psoriatic capacity as an oral TYK2 inhibitor; however, single therapy is insufficient to target the complicated psoriatic skin, including excessive reactive oxygen species (ROS) and persistent inflammation. To address this need, engineered smart nano-therapeutics hold potential for the topical delivery of deucravacitinib. Methods: hydrophobic Deucravacitinib was loaded into polyethylene glycol block-polypropylene sulphide (PEG-b-PPS) for transdermal delivery in the treatment of psoriasis. The oxidative stress model of HaCaT psoriasis was established by TNF-α and IL-17A in vitro. JC-1 assay, DCFH-DA staining and mtDNA copy number were utilized to assess mitochondrial function. 0.75% Carbopol®934 was incorporated into SPMs to produce hydrogels and Rhb was labeled to monitor penetration by Immunofluorescence. In vivo, we established IMQ-induced psoriatic model to evaluate therapeutic effect of Car@Deu@PEPS. Results: Deu@PEPS exerted anti-psoriatic effects by restoring mitochondrial DNA copy number and mitochondrial membrane potential in HaCaT. In vivo, Car@Deu@PEPS supramolecular micelle hydrogels had longer retention time in the dermis in the IMQ-induced ROS microenvironment. Topical application of Car@Deu@PEPS significantly restored the normal epidermal architecture of psoriatic skin with abrogation of splenomegaly in the IMQ-induced psoriatic dermatitis model. Car@Deu@PEPS inhibited STAT3 signaling cascade with a corresponding decrease in the levels of the differentiation and proliferative markers Keratin 17 and Cyclin D1, respectively. Meanwhile, Car@Deu@PEPS alleviated IMQ-induced ROS generation and subsequent NLRP3 inflammasome-mediated pyroptosis. Conclusion: Deu@PEPS exerts prominent anti-inflammatory and anti-oxidative effects, which may offers a more patient-acceptable therapy with fewer adverse effects compared with oral deucravacitinib.


Subject(s)
Micelles , Mitochondria , Oxidative Stress , Psoriasis , Reactive Oxygen Species , Reactive Oxygen Species/metabolism , Psoriasis/drug therapy , Psoriasis/metabolism , Humans , Oxidative Stress/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Animals , Mice , Skin/metabolism , Skin/drug effects , Skin/pathology , Polymers/chemistry , HaCaT Cells , Administration, Cutaneous , Male
7.
J Int Med Res ; 52(5): 3000605241253733, 2024 May.
Article in English | MEDLINE | ID: mdl-38811356

ABSTRACT

OBJECTIVE: To investigate the hepatic effects of high-dose intravenous (IV) iron, including those on liver function and the degree of fibrosis, in a rat model of cirrhosis. METHODS: We evenly allocated 25 Sprague-Dawley rats into five groups: normal rats (control group), cirrhotic rats receiving IV normal saline (liver cirrhosis [LC] group), and cirrhotic rats receiving 20, 40, or 80 mg/kg IV ferric carboxymaltose (LC-iron20, LC-iron40, and LC-iron80 group, respectively). Biochemical parameters were compared at 0, 7, 14, 21, and 28 days. The degrees of hepatic fibrosis and iron deposition were evaluated. Inflammatory and oxidative stress markers were also compared. RESULTS: There were no significant differences in the 28-day serum alanine aminotransferase levels among the LC-iron20, LC-iron40, and LC-iron80 groups (69 ± 7, 1003 ± 127, 1064 ± 309, 919 ± 346, and 820 ± 195 IU/L in the control, LC, LC-iron20, LC-iron40, and LC-iron80 groups, respectively). Hepatic iron accumulation increased in a dose-dependent manner, but the degree of hepatic fibrosis was comparable among the groups. The inflammatory and oxidative stress marker levels did not differ significantly according to the IV iron dose. CONCLUSIONS: Administration of IV iron at various high doses appears safe in our rat model of cirrhosis.


Subject(s)
Disease Models, Animal , Ferric Compounds , Iron , Liver Cirrhosis , Liver , Oxidative Stress , Rats, Sprague-Dawley , Animals , Liver/metabolism , Liver/drug effects , Liver/pathology , Oxidative Stress/drug effects , Male , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Rats , Ferric Compounds/administration & dosage , Ferric Compounds/pharmacology , Iron/metabolism , Injections, Intravenous , Alanine Transaminase/blood , Maltose/analogs & derivatives , Maltose/administration & dosage , Biomarkers/metabolism , Biomarkers/blood , Liver Function Tests , Dose-Response Relationship, Drug
8.
Environ Sci Pollut Res Int ; 31(23): 34200-34213, 2024 May.
Article in English | MEDLINE | ID: mdl-38702484

ABSTRACT

Arsenic (As) pollution in cultivated soils poses a significant risk to the sustainable growth of agriculture and jeopardizes food security. However, the mechanisms underlying how zinc (Zn) regulates the toxic effects induced by As in plants remain poorly understood. Hence, this study aimed to explore the potential of ZnO as an effective and environmentally friendly amendment to alleviate As toxicity in rice, thereby addressing the significant risk posed by As pollution in cultivated soils. Through a hydroponic experiment, the study assessed the mitigating effects of different ZnO dosages (Zn5, 5 mg L-1; Zn15, 15 mg L-1; Zn30, 30 mg L-1) on rice seedlings exposed to varying levels of As stress (As0, 0 µM L-1; As25, 25 µM L-1). The findings of the study demonstrate significant improvements in plant height and biomass (shoot and root), with a notable increase of 16-40% observed in the Zn15 treatment, and an even more substantial enhancement of 29-53% observed in the Zn30 treatment under As stress, compared to respective control treatment. Furthermore, in the Zn30 treatment, the shoot and root As contents substantially reduced by 47% and 63%, respectively, relative to the control treatment. The elevated Zn contents in shoots and roots enhanced antioxidant enzyme activities (POD, SOD, and CAT), and decreased MDA contents (13-25%) and H2O2 contents (11-27%), indicating the mitigation of oxidative stress. Moreover, the expression of antioxidant-related genes, OsSOD-Cu/Zn, OsCATA, OsCATB, and OsAPX1 was reduced when rice seedlings were exposed to As stress and significantly enhanced after Zn addition. Overall, the research suggests that ZnO application could effectively mitigate As uptake and toxicity in rice plants cultivated in As-contaminated soils, offering potential solutions for sustainable agriculture and food security.


Subject(s)
Arsenic , Oryza , Oxidative Stress , Soil Pollutants , Zinc Oxide , Oryza/drug effects , Oxidative Stress/drug effects , Soil Pollutants/toxicity , Soil/chemistry , Antioxidants/metabolism
9.
Chemosphere ; 358: 142208, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704042

ABSTRACT

Metal nanomaterials (MNMs) have been released into the environment during their usage in various products, and their environmental behaviors directly impact their toxicity. Numerous environmental factors potentially affect the behaviors and toxicity of MNMs with dissolved organic matter (DOM) playing the most essential role. Abundant facts showing contradictory results about the effects of DOM on MNMs, herein the occurrence of DOM on the environmental process change of MNMs such as dissolution, dispersion, aggregation, and surface transformation were summarized. We also reviewed the effects of MNMs on organisms and their mechanisms in the environment such as acute toxicity, oxidative stress, oxidative damage, growth inhibition, photosynthesis, reproductive toxicity, and malformation. The presence of DOM had the potential to reduce or enhance the toxicity of MNMs by altering the reactive oxygen species (ROS) generation, dissolution, stability, and electrostatic repulsion of MNMs. Furthermore, we summarized the factors that affected different toxicity including specific organisms, DOM concentration, DOM types, light conditions, detection time, and production methods of MNMs. However, the more detailed mechanism of interaction between DOM and MNMs needs further investigation.


Subject(s)
Nanostructures , Nanostructures/toxicity , Nanostructures/chemistry , Metals/toxicity , Metals/chemistry , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Organic Chemicals/toxicity , Organic Chemicals/chemistry , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Environmental Pollutants/toxicity , Environmental Pollutants/chemistry , Humic Substances
10.
Eur J Pharmacol ; 974: 176633, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38703975

ABSTRACT

Cardiac arrest (CA) remains a leading cause of death, with suboptimal survival rates despite efforts involving cardiopulmonary resuscitation and advanced life-support technology. Post-resuscitation myocardial dysfunction (PRMD) is an important determinant of patient outcomes. Myocardial ischemia/reperfusion injury underlies this dysfunction. Previous reports have shown that ruthenium red (RR) has a protective effect against cardiac ischemia-reperfusion injury; however, its precise mechanism of action in PRMD remains unclear. This study investigated the effects of RR on PRMD and analyzed its underlying mechanisms. Ventricular fibrillation was induced in rats, which were then subjected to cardiopulmonary resuscitation to establish an experimental CA model. At the onset of return of spontaneous circulation, RR (2.5 mg/kg) was administered intraperitoneally. Our study showed that RR improved myocardial function and reduced the production of oxidative stress markers such as malondialdehyde (MDA), glutathione peroxidase (GSSG), and reactive oxygen species (ROS) production. RR also helped maintain mitochondrial structure and increased ATP and GTP levels. Additionally, RR effectively attenuated myocardial apoptosis. Furthermore, we observed downregulation of proteins closely related to mitophagy, including ubiquitin-specific protease 33 (USP33) and P62, whereas LC3B (microtubule-associated protein light chain 3B) was upregulated. The upregulation of mitophagy may play a critical role in reducing myocardial injury. These results demonstrate that RR may attenuate PRMD by promoting mitophagy through the inhibition of USP33. These effects are likely mediated through diverse mechanisms, including antioxidant activity, apoptosis suppression, and preservation of mitochondrial integrity and energy metabolism. Consequently, RR has emerged as a promising therapeutic approach for addressing post-resuscitation myocardial dysfunction.


Subject(s)
Disease Models, Animal , Heart Arrest , Mitophagy , Rats, Sprague-Dawley , Ruthenium Red , Animals , Mitophagy/drug effects , Heart Arrest/complications , Heart Arrest/drug therapy , Heart Arrest/metabolism , Heart Arrest/physiopathology , Rats , Male , Ruthenium Red/pharmacology , Ruthenium Red/therapeutic use , Oxidative Stress/drug effects , Ubiquitin Thiolesterase/metabolism , Cardiopulmonary Resuscitation , Up-Regulation/drug effects , Myocardium/pathology , Myocardium/metabolism , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/physiopathology
11.
Plant Cell Rep ; 43(6): 152, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806834

ABSTRACT

KEY MESSAGE: Sodium nitroprusside mediates drought stress responses in tomatoes by modulating nitrosative and oxidative pathways, highlighting the interplay between nitric oxide, hydrogen sulfide, and antioxidant systems for enhanced drought tolerance. While nitric oxide (NO), a signalling molecule, enhances plant tolerance to abiotic stresses, its precise contribution to improving tomato tolerance to drought stress (DS) through modulating oxide-nitrosative processes is not yet fully understood. We aimed to examine the interaction of NO and nitrosative signaling, revealing how sodium nitroprusside (SNP) could mitigate the effects of DS on tomatoes. DS-seedlings endured 12% polyethylene glycol (PEG) in a 10% nutrient solution (NS) for 2 days, then transitioned to half-strength NS for 10 days alongside control plants. DS reduced total plant dry weight, chlorophyll a and b, Fv/Fm, leaf water potential (ΨI), and relative water content, but improved hydrogen peroxide (H2O2), proline, and NO content. The SNP reduced the DS-induced H2O2 generation by reducing thiol (-SH) and the carbonyl (-CO) groups. SNP increased not only NO but also the activity of L-cysteine desulfhydrase (L-DES), leading to the generation of H2S. Decreases in S-nitrosoglutathione reductase (GSNOR) and NADPH oxidase (NOX) suggest a potential regulatory mechanism in which S-nitrosylation [formation of S-nitrosothiol (SNO)] may influence protein function and signaling pathways during DS. Moreover, SNP improved ascorbate (AsA) and glutathione (GSH) and reduced oxidized glutathione (GSSG) levels in tomato plants under drought. Furthermore, the interaction of NO and H2S, mediated by L-DES activity, may serve as a vital cross-talk mechanism impacting plant responses to DS. Understanding these signaling interactions is crucial for developing innovative drought-tolerance strategies in crops.


Subject(s)
Droughts , Hydrogen Peroxide , Nitric Oxide , Nitroprusside , Solanum lycopersicum , Nitroprusside/pharmacology , Solanum lycopersicum/physiology , Solanum lycopersicum/metabolism , Solanum lycopersicum/drug effects , Hydrogen Peroxide/metabolism , Nitric Oxide/metabolism , Glutathione/metabolism , Antioxidants/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Stress, Physiological/drug effects , Seedlings/drug effects , Seedlings/physiology , Seedlings/metabolism , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/physiology , Nitrosation/drug effects , Chlorophyll/metabolism
12.
Article in English | MEDLINE | ID: mdl-38821673

ABSTRACT

Diabetes mellitus is a complex metabolic disorder resulting from the interplay of environmental, genetic, and epigenetic factors that increase the risk of cancer development. However, it is unclear whether the increased cancer risk is due to poor glycemic control or the use of some antidiabetic medications. Therefore, we investigated the genetic and epigenetic changes in somatic cells in a mouse model of diabetes and studied whether multiple exposures to the antidiabetic medication dapagliflozin influence these changes. We also elucidated the mechanism(s) of these ameliorations. The micronucleus test and modified comet assay were used to investigate bone marrow DNA damage and methylation changes. These assays revealed that dapagliflozin is non-genotoxic in the tested regimen, and oxidative DNA damage and hypermethylation were significantly higher in diabetic mice. Spectrophotometry also evaluated oxidative DNA damage and global DNA methylation, revealing similar significant alterations induced by diabetes. Conversely, the dapagliflozin-treated diabetic animals significantly reduced these changes. The expression of some genes involved in DNA repair and DNA methylation was disrupted considerably in the somatic cells of diabetic animals. In contrast, dapagliflozin treatment significantly restored these disruptions and enhanced DNA repair. The simultaneous effects of decreased oxidative DNA damage and hypermethylation levels suggest that dapagliflozin can be used as a safe antidiabetic drug to reduce DNA damage and hypermethylation in diabetes, demonstrating its usefulness in patients with diabetes to control hyperglycemia and decrease the development of its subsequent complications.


Subject(s)
Benzhydryl Compounds , DNA Damage , DNA Methylation , Diabetes Mellitus, Experimental , Glucosides , Oxidative Stress , Animals , Benzhydryl Compounds/pharmacology , Glucosides/pharmacology , DNA Methylation/drug effects , DNA Damage/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/genetics , Mice , Oxidative Stress/drug effects , Male , Hypoglycemic Agents/pharmacology , Micronucleus Tests , DNA Repair/drug effects , Comet Assay
13.
Article in English | MEDLINE | ID: mdl-38821667

ABSTRACT

Hairdressers are constantly occupationally exposed to many chemicals have the potential to cause allergies and carcinogenic effects, act as skin and eye irritants and induce oxidative stress and DNA damage. This study aimed to evaluate occupation-induced genotoxicity based on the presence of micronucleus (MN) and other nuclear anomalies in urothelial cells and measure oxidative DNA damage based on the 8-hydroxy-2'-deoxyguanosine level in the urine of Turkish hairdressers. Originality of this study comes from that there was no study on MN and other nuclear anomalies frequencies and oxidative DNA damage in urine samples of hairdressers in the literature. The mean±standard deviation frequency (‰) of micronucleated (MNed) cells was higher in the hairdresser group (n=56) (4.81±7.87, p<0.001) than in the control group (n=56) (0.93±1.85). Nuclear buds were not observed in either group. While the frequency of basal cells was higher in the control group (446.6±106.21) than in the hairdresser group (367.78±101.51, p<0.001), the frequency of binuclear, karyolytic, pycnotic and karyorrhectic cells were higher in the hairdresser group (0.41±0.80, p<0.001; 438.02±118.27, p<0.001; 0.43±0.76, p<0.001; and 47.27±28.40, p<0.001) than in the control group (0.04±0.27, 358.57±95.71, 0.05±0.23 and 24.41±14.50). Condensed chromatins were observed only in the hairdresser group. Specific gravity adjusted 8-hydroxy-2'-deoxyguanosine level was statistically lower in the hairdresser group (908.21±403.25 ng/mL-SG) compared to the control group (1003.09±327.09 ng/mL-SG) (p=0.024). No significant correlation was found between the 8-hydroxy-2'-deoxyguanosine level and the frequency MN. The amount of formaldehyde released during Brazilian keratin treatment was higher than the American Conference of Governmental Industrial Hygienists -Threshold Limit Value (ACGIH-TLV; 0.1 ppm). Similarly, the amount of ethyl acetate released in three salons was above the recommended limit (400 ppm). These findings suggest that hairdressers have an increased risk of genotoxicity and cytotoxicity owing to occupational exposure, regardless of age, working hours, smoking and alcohol consumption.


Subject(s)
8-Hydroxy-2'-Deoxyguanosine , DNA Damage , Deoxyguanosine , Micronuclei, Chromosome-Defective , Micronucleus Tests , Occupational Exposure , Urothelium , Humans , 8-Hydroxy-2'-Deoxyguanosine/urine , Occupational Exposure/adverse effects , Adult , Turkey , Urothelium/drug effects , Urothelium/pathology , Urothelium/metabolism , Urothelium/cytology , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/urine , Male , Micronuclei, Chromosome-Defective/chemically induced , DNA Damage/drug effects , Oxidative Stress/drug effects , Middle Aged , Female , Young Adult , Case-Control Studies , Cell Nucleus/drug effects
14.
Cochrane Database Syst Rev ; 5: CD013590, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38775255

ABSTRACT

BACKGROUND: Sickle cell disease (SCD) refers to a group of genetic disorders characterized by the presence of an abnormal haemoglobin molecule called haemoglobin S (HbS). When subjected to oxidative stress from low oxygen concentrations, HbS molecules form rigid polymers, giving the red cell the typical sickle shape. Antioxidants have been shown to reduce oxidative stress and improve outcomes in other diseases associated with oxidative stress. Therefore, it is important to review and synthesize the available evidence on the effect of antioxidants on the clinical outcomes of people with SCD. OBJECTIVES: To assess the effectiveness and safety of antioxidant supplementation for improving health outcomes in people with SCD. SEARCH METHODS: We used standard, extensive Cochrane search methods. The latest search date was 15 August 2023. SELECTION CRITERIA: We included randomized and quasi-randomized controlled trials comparing antioxidant supplementation to placebo, other antioxidants, or different doses of antioxidants, in people with SCD. DATA COLLECTION AND ANALYSIS: Two authors independently extracted data, assessed the risk of bias and certainty of the evidence, and reported according to Cochrane methodological procedures. MAIN RESULTS: The review included 1609 participants in 26 studies, with 17 comparisons. We rated 13 studies as having a high risk of bias overall, and 13 studies as having an unclear risk of bias overall due to study limitations. We used GRADE to rate the certainty of evidence. Only eight studies reported on our important outcomes at six months. Vitamin C (1400 mg) plus vitamin E (800 mg) versus placebo Based on evidence from one study in 83 participants, vitamin C (1400 mg) plus vitamin E (800 mg) may not be better than placebo at reducing the frequency of crisis (risk ratio (RR) 1.18, 95% confidence interval (CI) 0.64 to 2.18), the severity of pain (RR 1.33, 95% CI 0.40 to 4.37), or adverse effects (AE), of which the most common were headache, nausea, fatigue, diarrhoea, and epigastric pain (RR 0.56, 95% CI 0.31 to 1.00). Vitamin C plus vitamin E may increase the risk of SCD-related complications (acute chest syndrome: RR 2.66, 95% CI 0.77 to 9.13; 1 study, 83 participants), and increase haemoglobin level (median (interquartile range) 90 (81 to 96) g/L versus 93.5 (84 to 105) g/L) (1 study, 83 participants) compared to placebo. However, the evidence for all the above effects is very uncertain. The study did not report on quality of life (QoL) of participants and their caregivers, nor on frequency of hospitalization. Zinc versus placebo Zinc may not be better than placebo at reducing the frequency of crisis at six months (rate ratio 0.62, 95% CI 0.17 to 2.29; 1 study, 36 participants; low-certainty evidence). We are uncertain whether zinc is better than placebo at improving sickle cell-related complications (complete healing of leg ulcers at six months: RR 2.00, 95% CI 0.60 to 6.72; 1 study, 34 participants; very low-certainty evidence). Zinc may be better than placebo at increasing haemoglobin level (g/dL) (MD 1.26, 95% CI 0.44 to 1.26; 1 study, 36 participants; low-certainty evidence). The study did not report on severity of pain, QoL, AE, and frequency of hospitalization. N-acetylcysteine versus placebo N-acetylcysteine (NAC) 1200 mg may not be better than placebo at reducing the frequency of crisis in SCD, reported as pain days (rate ratio 0.99 days, 95% CI 0.53 to 1.84; 1 study, 96 participants; low-certainty evidence). Low-certainty evidence from one study (96 participants) suggests NAC (1200 mg) may not be better than placebo at reducing the severity of pain (MD 0.17, 95% CI -0.53 to 0.87). Compared to placebo, NAC (1200 mg) may not be better at improving physical QoL (MD -1.80, 95% CI -5.01 to 1.41) and mental QoL (MD 2.00, 95% CI -1.45 to 5.45; very low-certainty evidence), reducing the risk of adverse effects (gastrointestinal complaints, pruritus, or rash) (RR 0.92, 95% CI 0.75 to 1.14; low-certainty evidence), reducing the frequency of hospitalizations (rate ratio 0.98, 95% CI 0.41 to 2.38; low-certainty evidence), and sickle cell-related complications (RR 5.00, 95% CI 0.25 to 101.48; very low-certainty evidence), or increasing haemoglobin level (MD -0.18 g/dL, 95% CI -0.40 to 0.04; low-certainty evidence). L-arginine versus placebo L-arginine may not be better than placebo at reducing the frequency of crisis (monthly pain) (RR 0.71, 95% CI 0.26 to 1.95; 1 study, 50 participants; low-certainty evidence). However, L-arginine may be better than placebo at reducing the severity of pain (MD -1.41, 95% CI -1.65 to -1.18; 2 studies, 125 participants; low-certainty evidence). One participant allocated to L-arginine developed hives during infusion of L-arginine, another experienced acute clinical deterioration, and a participant in the placebo group had clinically relevant increases in liver function enzymes. The evidence is very uncertain whether L-arginine is better at reducing the mean number of days in hospital compared to placebo (MD -0.85 days, 95% CI -1.87 to 0.17; 2 studies, 125 participants; very low-certainty evidence). Also, L-arginine may not be better than placebo at increasing haemoglobin level (MD 0.4 g/dL, 95% CI -0.50 to 1.3; 2 studies, 106 participants; low-certainty evidence). No study in this comparison reported on QoL and sickle cell-related complications. Omega-3 versus placebo Very low-certainty evidence shows no evidence of a difference in the risk of adverse effects of omega-3 compared to placebo (RR 1.05, 95% CI 0.74 to 1.48; 1 study, 67 participants). Very low-certainty evidence suggests that omega-3 may not be better than placebo at increasing haemoglobin level (MD 0.36 g/L, 95% CI -0.21 to 0.93; 1 study, 67 participants). The study did not report on frequency of crisis, severity of pain, QoL, frequency of hospitalization, and sickle cell-related complications. AUTHORS' CONCLUSIONS: There was inconsistent evidence on all outcomes to draw conclusions on the beneficial and harmful effects of antioxidants. However, L-arginine may be better than placebo at reducing the severity of pain at six months, and zinc may be better than placebo at increasing haemoglobin level. We are uncertain whether other antioxidants are beneficial for SCD. Larger studies conducted on each comparison would reduce the current uncertainties.


Subject(s)
Anemia, Sickle Cell , Antioxidants , Dietary Supplements , Randomized Controlled Trials as Topic , Humans , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/blood , Antioxidants/therapeutic use , Ascorbic Acid/therapeutic use , Bias , Oxidative Stress/drug effects , Placebos/therapeutic use , Quality of Life
15.
Theriogenology ; 224: 58-67, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38749260

ABSTRACT

Ovarian tissue vitrification is associated with multiple events that promote accumulation of ROS (reactive oxygen species) which culminate in follicular apoptosis. Thus, this study was aimed at evaluating the role of melatonin in vitrification and culture of feline (Felis catus) ovarian tissue. In phase 1, domestic cat ovaries were fragmented into equal circular pieces of 1.5 mm diameter by 1 mm thickness and divided into four groups (fresh control and 3 treatments). The treatments were exposed to vitrification solutions supplemented with melatonin at 0 M, 10-9 M, and 10-7 M, then vitrified-warmed, histologically evaluated and assayed for ROS. Consequently, phase 2 experiment was designed wherein ovarian fragments were divided into two groups. One group was exposed to vitrification solution without melatonin and the other with 10-7 M melatonin supplementation, then vitrified-warmed and cultured for ten days with fresh ovarian fragments as control prior to assessment for histology, immunohistochemistry (Ki-67, MCM-7 and caspase-3) and ROS. Concentration of ROS was lower (p = 0.0009) in 10-7 M supplemented group in addition to higher proportion of grade 1 follicles. After culture, proportions of intact and activated follicles were higher (p < 0.05) in melatonin supplemented group evidenced by higher expression of Ki-67 and MCM-7. Follicular apoptosis was lower in melatonin supplemented group. In conclusion, melatonin at 10-7 M concentration preserved follicular morphological integrity while reducing ROS concentration in vitrified-warmed feline ovarian tissue. It has also promoted the follicular viability and activation with reduced apoptosis during in vitro culture of vitrified-warmed feline ovarian tissue.


Subject(s)
Melatonin , Ovarian Follicle , Oxidative Stress , Vitrification , Animals , Female , Cats , Melatonin/pharmacology , Oxidative Stress/drug effects , Ovarian Follicle/drug effects , Cryopreservation/veterinary , Cryopreservation/methods , Ovary/drug effects , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Tissue Culture Techniques/veterinary , Apoptosis/drug effects
16.
Cell Rep Methods ; 4(5): 100778, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38749443

ABSTRACT

Alcohol-associated liver disease (ALD) is a prevalent liver disease, yet research is hampered by the lack of suitable and reliable human ALD models. Herein, we generated human adipose stromal/stem cell (hASC)-derived hepatocellular organoids (hAHOs) and hASC-derived liver organoids (hALOs) in a three-dimensional system using hASC-derived hepatocyte-like cells and endodermal progenitor cells, respectively. The hAHOs were composed of major hepatocytes and cholangiocytes. The hALOs contained hepatocytes and nonparenchymal cells and possessed a more mature liver function than hAHOs. Upon ethanol treatment, both steatosis and inflammation were present in hAHOs and hALOs. The incubation of hALOs with ethanol resulted in increases in the levels of oxidative stress, the endoplasmic reticulum protein thioredoxin domain-containing protein 5 (TXNDC5), the alcohol-metabolizing enzymes ADH1B and ALDH1B1, and extracellular matrix accumulation, similar to those of liver tissues from patients with ALD. These results present a useful approach for understanding the pathogenesis of ALD in humans, thus facilitating the discovery of effective treatments.


Subject(s)
Adipose Tissue , Ethanol , Hepatocytes , Liver Diseases, Alcoholic , Organoids , Humans , Organoids/pathology , Organoids/drug effects , Ethanol/pharmacology , Ethanol/adverse effects , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/metabolism , Hepatocytes/drug effects , Hepatocytes/pathology , Hepatocytes/metabolism , Adipose Tissue/pathology , Adipose Tissue/cytology , Alcohol Dehydrogenase/metabolism , Oxidative Stress/drug effects , Liver/pathology , Liver/drug effects , Liver/metabolism , Stem Cells/drug effects , Stem Cells/metabolism , Stem Cells/pathology , Models, Biological , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Stromal Cells/pathology , Stromal Cells/drug effects , Stromal Cells/metabolism , Thioredoxins/metabolism
17.
Int J Med Sci ; 21(7): 1257-1264, 2024.
Article in English | MEDLINE | ID: mdl-38818460

ABSTRACT

Background: Ferroptosis is an iron-driven cell-death mechanism that plays a central role in various diseases. Recent studies have suggested that baicalein inhibits ferroptosis, making it a promising therapeutic candidate. Materials and Methods: Fibroblast cultures were treated with different agents to determine the effects of baicalein on ferroptosis. Ferroptosis-related gene expression, lipid peroxidation, and post-treatment cellular structural changes were measured using real-time quantitative polymerase chain reaction, C11-BODIPY dye, and transmission electron microscopy, respectively. Results: Baicalein significantly inhibited rat sarcoma virus selective lethal 3-induced ferroptosis in fibroblasts. Moreover, in baicalein-treated groups, reduced ferroptosis-related gene expression, decreased lipid peroxidation, and maintained cell structure was observed when compared with those of the controls. Discussion: The ability of baicalein to counteract RSL3-induced ferroptosis underscores its potential protective effects, especially in diseases characterized by oxidative stress and iron overload in fibroblasts. Conclusion: Baicalein may serve as a potent therapeutic agent against conditions in which ferroptosis is harmful. The compound's efficacy in halting RSL3-triggered ferroptosis in fibroblasts paves the way for further in vivo experiments and clinical trials.


Subject(s)
Ferroptosis , Fibroblasts , Flavanones , Lipid Peroxidation , Ferroptosis/drug effects , Flavanones/pharmacology , Flavanones/therapeutic use , Fibroblasts/drug effects , Fibroblasts/metabolism , Lipid Peroxidation/drug effects , Humans , Animals , Oxidative Stress/drug effects , Rats , Iron/metabolism , Carbolines
18.
Sci Total Environ ; 934: 173118, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38750757

ABSTRACT

The brominated flame retardant 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) is a ubiquitous environmental pollutant that causes neurotoxicity. However, incomplete understanding of the underlying mechanisms has hampered the development of effective intervention strategies. Oxidative stress and related cell death are the modes of action for PBDE-47 neurotoxicity, which are also the characteristics of ferroptosis. Nonetheless, the role of ferroptosis in PBDE-47-induced neurotoxicity remains unclear. In the present study, we found that PBDE-47 triggered ferroptosis in neuron-like PC12 cells, as evidenced by intracellular iron overload, lipid peroxidation, and mitochondrial damage. This was confirmed by ferroptosis inhibitors including the lipid reactive oxygen species scavenger ferrostatin-1 and iron chelator deferoxamine mesylate. Mechanistically, PBDE-47 impaired ferritinophagy by disrupting nuclear receptor coactivator 4-mediated lysosomal degradation of the iron storage protein ferritin. Moreover, PBDE-47 disturbed iron metabolism by increasing cellular iron import via upregulation of transferrin receptor 1 and decreasing cellular iron export via downregulation of ferroportin 1 (FPN1). Intriguingly, rescuing lysosomal function by overexpressing cathepsin B (CatB) mitigated PBDE-47-induced ferroptosis by partially restoring dysfunctional ferritinophagy and enhancing iron excretion via the upregulation of FPN1. However, FPN1 knockdown reversed the beneficial effects of CatB overexpression on the PBDE-47-induced iron overload. Finally, network pharmacology integrated with experimental validation revealed that Canolol, the main phenolic compound in canola oil, protected against PBDE-47-evoked iron overload, resulting in ferroptosis by restoring defective ferritinophagy and improving abnormal iron metabolism via lowering iron uptake and facilitating iron excretion. Overall, these data suggest that ferroptosis is a novel mechanism of PBDE-47-induced neuronal death and that manipulation of ferritinophagy and iron metabolism via Canolol represents a promising therapeutic strategy.


Subject(s)
Ferroptosis , Halogenated Diphenyl Ethers , Iron , Neurons , Ferroptosis/drug effects , Halogenated Diphenyl Ethers/toxicity , Iron/metabolism , Animals , PC12 Cells , Neurons/drug effects , Neurons/metabolism , Rats , Ferritins/metabolism , Flame Retardants/toxicity , Oxidative Stress/drug effects , Environmental Pollutants/toxicity
19.
Neurochem Res ; 49(7): 1863-1878, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38753259

ABSTRACT

The study aimed to assess 𝛾-Terpinene's (𝛾-TER) neuroprotective potential in acute cerebral ischemia, characterized by reduced cerebral blood flow in rats. Middle cerebral artery occlusion (MCAO), a standard method for inducing cerebral ischemia, was employed in male Wistar rats. 𝛾-TER at varying doses (5, 10, and 15 mg/kg) were intraperitoneally administered during reperfusion onset. Neurological outcomes, cerebral infarct size, edema, and enzymatic activities (SOD, GPx, and catalase) in the brain were evaluated using diverse techniques. The study examined gene expression and pathways associated with neuroinflammation and apoptosis using Cytoscape software, identifying the top 10 genes involved. Pro-inflammatory and pro-apoptotic factors were assessed through real-time PCR and ELISA, while apoptotic cell rates were measured using the TUNEL and Flow cytometry assay. Immunohistochemistry assessed apoptosis-related proteins like Bax and bcl-2 in the ischemic area. 𝛾-TER, particularly at doses of 10 and 15 mg/kg, significantly reduced neurological deficits and cerebral infarction size. The 15 mg/kg dose mitigated TNF-α, IL-1ß, Bax, and caspase-3 gene and protein levels in the cortex, hippocampus, and striatum compared to controls. Furthermore, Bcl-2 levels increased in these regions. 𝛾-TER show cased neuroprotective effects by suppressing inflammation, apoptosis, and oxidation. In conclusion, 𝛾-TER, possessing natural anti-inflammatory and anti-apoptotic properties, shields the brain against ischemic damage by reducing infarction, edema, oxidative stress, and inflammation. It modulates the expression of crucial genes and proteins associated with apoptosis in diverse brain regions. These findings position 𝛾-TER as a potential therapeutic agent for ischemic stroke.


Subject(s)
Apoptosis , Neuroprotective Agents , Rats, Wistar , Animals , Male , Apoptosis/drug effects , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Rats , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Brain Ischemia/pathology , Oxidative Stress/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Cyclohexane Monoterpenes/therapeutic use , Cyclohexane Monoterpenes/pharmacology , Oxidation-Reduction/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology
20.
Sci Total Environ ; 934: 173214, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38754507

ABSTRACT

Zinc oxide nanoparticles (ZnO-NPs) are one of the most widely used metal oxide nanomaterials. The increased use of ZnO-NPs has exacerbated environmental pollution and raised the risk of neurological disorders in organisms through food chains, and it is urgent to look for detoxification strategies. γ-Aminobutyric acid (GABA) is an inhibitory neurotransmitter that has been shown to have anxiolytic, anti-aging and inhibitory effects on nervous system excitability. However, there are few reports on the prevention and control of the toxicity of nano-metal ions by GABA. In zebrafish, ZnO-NPs exposure led to increased mortality and behavioral abnormalities of larva, which could be moderated by GABA intervention. Similar results were investigated in Caenorhabditis elegans, showing lifespan extension, abnormal locomotor frequency and behavior recovery when worms fed with GABA under ZnO-NPs exposure. Moreover, GABA enhanced antioxidant enzyme activities by upregulating the expression of antioxidant-related genes and thus scavenged excessive O2-. In the case of ZnO-NPs exposure, inhibition of nuclear translocation of DAF-16 and SKN-1 was restored by GABA. Meanwhile, the protective effect of GABA was blocked in daf-16 (-) and skn-1 (-) mutant, suggesting that DAF-16/FoxO and SKN-1/Nrf2 pathways is the key targets of GABA. This study provides a new solution for the application of GABA and mitigation of metal nanoparticle neurotoxicity.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Forkhead Transcription Factors , NF-E2-Related Factor 2 , Oxidative Stress , Zebrafish , Zinc Oxide , gamma-Aminobutyric Acid , Zinc Oxide/toxicity , Animals , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , gamma-Aminobutyric Acid/metabolism , Forkhead Transcription Factors/metabolism , Metal Nanoparticles/toxicity , Transcription Factors/metabolism , Transcription Factors/genetics , Signal Transduction/drug effects , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Nanoparticles/toxicity , DNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...