Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 767
Filter
1.
J Med Chem ; 67(10): 8201-8224, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38736187

ABSTRACT

Although vaccination remains the prevalent prophylactic means for controlling Influenza A virus (IAV) infections, novel structural antivirus small-molecule drugs with new mechanisms of action for treating IAV are highly desirable. Herein, we describe a modular biomimetic strategy to expeditiously achieve a new class of macrocycles featuring oxime, which might target the hemagglutinin (HA)-mediated IAV entry into the host cells. SAR analysis revealed that the size and linker of the macrocycles play an important role in improving potency. Particularly, as a 14-membered macrocyclic oxime, 37 exhibited potent inhibitory activity against IAV H1N1 with an EC50 value of 23 nM and low cytotoxicity, which alleviated cytopathic effects and protected cell survival obviously after H1N1 infection. Furthermore, 37 showed significant synergistic activity with neuraminidase inhibitor oseltamivir in vitro.


Subject(s)
Antiviral Agents , Influenza A Virus, H1N1 Subtype , Macrocyclic Compounds , Oximes , Influenza A Virus, H1N1 Subtype/drug effects , Oximes/pharmacology , Oximes/chemistry , Oximes/chemical synthesis , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Structure-Activity Relationship , Humans , Dogs , Macrocyclic Compounds/pharmacology , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/chemical synthesis , Animals , Madin Darby Canine Kidney Cells , Drug Discovery , Biomimetics , Oseltamivir/pharmacology , Oseltamivir/chemistry
2.
Bioorg Med Chem Lett ; 106: 129773, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38677561

ABSTRACT

Hypoxia is a common phenomenon in solid tumors, and its presence inhibits the efficacy of tumor chemotherapy and radiotherapy. Accurate measurement of hypoxia before tumor treatment is essential. Three propylene amine oxime (PnAO) derivatives with different substituents attached to 2-nitroimidazole were synthesized in the work, they are 3,3,9,9-tetramethyl-1,11-bis(4-bromo-2-nitro-1H-imidazol-1-yl)-4,8-diazaundecane-2,10-dione dioxime (Br2P2), 3,3,9,9-tetramethyl-1,11-bis(4-methyl-2-nitro-1H-imidazol-1-yl)-4,8-diazaundecane-2,10-dione dioxime (Me2P2) and 3,3,9,9-tetramethyl-1,11-bis(4,5-dimethyl-2-nitro-1H-imidazol-1-yl)-4,8-diazaundecane-2,10-dione dioxime (2Me2P2). The three compounds were radiolabeled with 99mTc to give three complexes([99mTc]Tc-Br2P2, [99mTc]Tc-Me2P2 and [99mTc]Tc-2Me2P2) with good in vitro stability. [99mTc]Tc-Me2P2 with a more suitable reduction potential had the highest hypoxic cellular uptake, compared with [99mTc]Tc-2P2 that have been previously reported, [99mTc]Tc-Br2P2 and [99mTc]Tc-2Me2P2. Biodistribution results in S180 tumor-bearing mice demonstrated that [99mTc]Tc-Me2P2 had the highest tumor-to-muscle (T/M) ratio (12.37 ± 1.16) at 2 h in the four complexes. Autoradiography and immunohistochemical staining results revealed that [99mTc]Tc-Me2P2 specifically targeted tumor hypoxic regions. The SPECT/CT imaging results showed that [99mTc]Tc-Me2P2 could target the tumor site. [99mTc]Tc-Me2P2 may become a potential hypoxia imaging agent.


Subject(s)
Nitroimidazoles , Organotechnetium Compounds , Oximes , Tumor Hypoxia , Oximes/chemistry , Oximes/chemical synthesis , Nitroimidazoles/chemistry , Nitroimidazoles/chemical synthesis , Animals , Mice , Organotechnetium Compounds/chemistry , Organotechnetium Compounds/chemical synthesis , Tumor Hypoxia/drug effects , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacology , Humans , Tissue Distribution , Molecular Structure , Cell Line, Tumor , Structure-Activity Relationship
3.
Chem Biodivers ; 21(5): e202400355, 2024 May.
Article in English | MEDLINE | ID: mdl-38453645

ABSTRACT

In an attempt to search for new natural products-based antifungal agents, fifty-three nootkatone derivatives were designed, synthesized, and evaluated for their antifungal activity against Phytophthora parasitica var nicotianae, Fusarium oxysporum, Fusarium graminearum and Phomopsis sp. by the mycelium growth rate method. Nootkatone derivatives N17 exhibited good inhibitory activity against Phomopsis. sp. with EC50 values of 2.02 µM. The control effect of N17 against Phomopsis. sp. on kiwifruit showed that N17 exhibited a good curative effect in reducing kiwifruit rot at the concentration of 202 µM(100×EC50 ), with the curative effect of 41.11 %, which was better than commercial control of pyrimethanil at the concentration of 13437 µM(100×EC50 ) with the curative effect of 38.65 %. Phomopsis. sp. mycelium treated with N17 showed irregular surface collapse and shrinkage, and the cell membrane crinkled irregularly, vacuoles expanded significantly, mitochondria contracted, and organelles partially swollen by the SEM and TEM detected. Preliminary pharmacological experiments show that N17 exerted antifungal effects by altering release of cellular contents, and altering cell membrane permeability and integrity. The cytotoxicity test demonstrated that N17 showed almost no toxicity to K562 cells. The presented results implied that N17 may be as a potential antifungal agents for developing more efficient fungicides to control Phomopsis sp.


Subject(s)
Antifungal Agents , Drug Design , Fusarium , Microbial Sensitivity Tests , Oximes , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Fusarium/drug effects , Oximes/chemistry , Oximes/pharmacology , Oximes/chemical synthesis , Structure-Activity Relationship , Hydrazones/pharmacology , Hydrazones/chemistry , Hydrazones/chemical synthesis , Phytophthora/drug effects , Molecular Structure , Polycyclic Sesquiterpenes/pharmacology , Polycyclic Sesquiterpenes/chemistry , Polycyclic Sesquiterpenes/chemical synthesis , Dose-Response Relationship, Drug , Ascomycota/drug effects
4.
J Enzyme Inhib Med Chem ; 37(1): 760-767, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35193448

ABSTRACT

The organophosphorus antidotes, so-called oximes, are able to restore the enzymatic function of acetylcholinesterase (AChE) or butyrylcholinesterase (BChE) via cleavage of organophosphate from the active site of the phosphylated enzyme. In this work, the charged pyridinium oximes containing thiocarboxamide moiety were designed, prepared and tested. Their stability and pKa properties were found to be analogous to parent carboxamides (K027, K048 and K203). The inhibitory ability of thiocarboxamides was found in low µM levels for AChE and high µM levels for BChE. Their reactivation properties were screened on human recombinant AChE and BChE inhibited by nerve agent surrogates and paraoxon. One thiocarboxamide was able to effectively restore function of NEMP- and NEDPA-AChE, whereas two thiocarboxamides were able to reactivate BChE inhibited by all tested organophosphates. These results were confirmed by reactivation kinetics, where thiocarboxamides were proved to be effective, but less potent reactivators if compared to carboxamides.


Subject(s)
Cholinesterase Inhibitors/pharmacology , Organophosphates/pharmacology , Oximes/pharmacology , Pyridinium Compounds/pharmacology , Sulfhydryl Compounds/pharmacology , Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Organophosphates/chemical synthesis , Organophosphates/chemistry , Oximes/chemical synthesis , Oximes/chemistry , Pyridinium Compounds/chemical synthesis , Pyridinium Compounds/chemistry , Structure-Activity Relationship , Sulfhydryl Compounds/chemical synthesis , Sulfhydryl Compounds/chemistry
5.
J Enzyme Inhib Med Chem ; 37(1): 451-461, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35012401

ABSTRACT

Different oleanolic acid (OA) oxime ester derivatives (3a-3t) were designed and synthesised to develop inhibitors against α-glucosidase and α-amylase. All the synthesised OA derivatives were evaluated against α-glucosidase and α-amylase in vitro. Among them, compound 3a showed the highest α-glucosidase inhibition with an IC50 of 0.35 µM, which was ∼1900 times stronger than that of acarbose, meanwhile compound 3f exhibited the highest α-amylase inhibitory with an IC50 of 3.80 µM that was ∼26 times higher than that of acarbose. The inhibition kinetic studies showed that the inhibitory mechanism of compounds 3a and 3f were reversible and mixed types towards α-glucosidase and α-amylase, respectively. Molecular docking studies analysed the interaction between compound and two enzymes, respectively. Furthermore, cytotoxicity evaluation assay demonstrated a high level of safety profile of compounds 3a and 3f against 3T3-L1 and HepG2 cells.HighlightsOleanolic acid oxime ester derivatives (3a-3t) were synthesised and screened against α-glucosidase and α-amylase.Compound 3a showed the highest α-glucosidase inhibitory with IC50 of 0.35 µM.Compound 3f presented the highest α-amylase inhibitory with IC50 of 3.80 µM.Kinetic studies and in silico studies analysed the binding between compounds and α-glucosidase or α-amylase.


Subject(s)
Enzyme Inhibitors/pharmacology , Esters/pharmacology , Oleanolic Acid/pharmacology , Oximes/pharmacology , alpha-Amylases/antagonists & inhibitors , alpha-Glucosidases/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Esters/chemical synthesis , Esters/chemistry , Humans , Molecular Structure , Oleanolic Acid/chemical synthesis , Oleanolic Acid/chemistry , Oximes/chemical synthesis , Oximes/chemistry , Structure-Activity Relationship , alpha-Amylases/metabolism
6.
Org Biomol Chem ; 20(4): 870-876, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35006233

ABSTRACT

Seventeen C20-O-alkyl/benzyl oxime derivatives were synthesized by a concise and effective method. Most of these derivatives showed tens to several hundred nanomolar IC50 values against HT-29 colorectal, HGC-27 gastric and MDA-MB-231 breast cancer cells, whose antiproliferative activity is 15-240 fold better than that of salinomycin. The C20-oxime etherified derivatives can coordinate potassium ions, and further adjust the cytosolic Ca2+ concentrations in HT-29 cells. The significant improvement of the potency should be attributed to the better ion binding and transport ability of the modified derivatives. In addition, the C20-O-alkyl/benzyl oxime derivatives showed much better selectivity indexes (SI) than salinomycin, indicating that they present lower neurotoxic risk.


Subject(s)
Antineoplastic Agents/pharmacology , Oximes/pharmacology , Pyrans/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Conformation , Oximes/chemical synthesis , Oximes/chemistry , Pyrans/chemical synthesis , Pyrans/chemistry
7.
Eur J Med Chem ; 228: 114031, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34875520

ABSTRACT

Alzheimer's disease (AD) possesses a complex pathogenetic mechanism. Nowadays, multitarget agents are considered to have potential in effectively treating AD via triggering molecules in functionally complementary pathways at the same time. Here, based on the screening (∼1400 compounds) against neuroinflammation, an imidazolylacetophenone oxime ether (IOE) was discovered as a novel hit. In order to obtain SARs, a series of imidazolylacetophenone oxime derivatives were constructed, and their C=N bonds were confirmed as the Z configuration by single crystals. These derivatives exhibited potential multifunctional neuroprotective effects including anti-neuroinflammatory, antioxidative damage, metal-chelating, inhibition of acetylcholinesterase (AChE) properties. Among these derivatives, compound 12i displayed the most potent inhibitory activity against nitric oxide (NO) production with EC50 value of 0.57 µM 12i can dose-dependently suppress the expression of iNOS and COX-2 but not change the expression of HO-1 protein. Moreover, 12i exhibited evidently neuroprotective effects on H2O2-induced PC12 cells damage and ferroptosis without cytotoxicity at 10 µM, as well as selectively metal chelating properties via chelating Cu2+. In addition, 12i showed a mixed-type inhibitory effect on AChE in vitro. The structure-activity relationships (SARs) analysis indicated that dioxolane groups on benzene ring and rigid oxime ester can improve the activity. Parallel artificial membrane permeation assay (PAMPA) also verified that 12i can overcome the blood-brain barrier (BBB). Overall, this is the first report on imidazolylacetophenone oxime-based multifunctional neuroprotective effects, suggesting that this type of compounds might be novel multifunctional agents against AD.


Subject(s)
Acetophenones/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Imidazoles/pharmacology , Neuroprotective Agents/pharmacology , Oximes/pharmacology , Acetophenones/chemical synthesis , Acetophenones/chemistry , Acetylcholinesterase/metabolism , Animals , Biphenyl Compounds/antagonists & inhibitors , Cell Line , Cyclooxygenase 2/metabolism , Dose-Response Relationship, Drug , Electrophorus , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Mice , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Oximes/chemical synthesis , Oximes/chemistry , Picrates/antagonists & inhibitors , Rats , Structure-Activity Relationship
8.
Bioorg Med Chem ; 53: 116521, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34844036

ABSTRACT

Novel O-acylated (E)-3-aryl-6,7-dihydrobenzisoxazol-4(5H)-one oximes were designed as potential HSP90 inhibitors. A series of the compounds was synthesized by oximation of (E)-3-aryl-6,7-dihydrobenzisoxazol-4(5H)-ones followed by O-acylation with acylamidobenzoic acids. The obtained compounds showed an antiproliferative effect on three breast cancer cell lines (MCF7, MDA-MB-231 and HCC1954). Compound 16s exhibited high antiproliferative potency against HCC1954 breast cancer cells with the IC50 value of 6 µM was selected for in-depth evaluation. Compound 16s did not inhibit the growth of normal epithelial cells. We have demonstrated that the compound 16s can induce apoptosis in cancer cells via inhibition of HSP90 "client" proteins including a key oncogenic receptor, HER2/neu. Described here compounds can be considered for further basic and preclinical investigation as a part of HSP90/HER2-targeted therapies.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Oxazoles/pharmacology , Oximes/pharmacology , Acylation , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , HSP90 Heat-Shock Proteins/metabolism , Humans , Models, Molecular , Molecular Structure , Oxazoles/chemical synthesis , Oxazoles/chemistry , Oximes/chemical synthesis , Oximes/chemistry , Structure-Activity Relationship
9.
J Enzyme Inhib Med Chem ; 37(1): 287-298, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34894959

ABSTRACT

We synthesised and screened 18 aromatic derivatives of guanylhydrazones and oximes aromatic for their capacity to bind to dengue virus capsid protein (DENVC). The intended therapeutic target was the hydrophobic cleft of DENVC, which is a region responsible for its anchoring in lipid droplets in the infected cells. The inhibition of this process completely suppresses virus infectivity. Using NMR, we describe five compounds able to bind to the α1-α2 interface in the hydrophobic cleft. Saturation transfer difference experiments showed that the aromatic protons of the ligands are important for the interaction with DENVC. Fluorescence binding isotherms indicated that the selected compounds bind at micromolar affinities, possibly leading to binding-induced conformational changes. NMR-derived docking calculations of ligands showed that they position similarly in the hydrophobic cleft. Cytotoxicity experiments and calculations of in silico drug properties suggest that these compounds may be promising candidates in the search for antivirals targeting DENVC.


Subject(s)
Antiviral Agents/pharmacology , Capsid Proteins/antagonists & inhibitors , Dengue Virus/drug effects , Hydrazones/pharmacology , Oximes/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Capsid Proteins/metabolism , Dengue Virus/metabolism , Dose-Response Relationship, Drug , Hydrazones/chemical synthesis , Hydrazones/chemistry , Hydrophobic and Hydrophilic Interactions , Microbial Sensitivity Tests , Molecular Structure , Oximes/chemical synthesis , Oximes/chemistry , Structure-Activity Relationship
10.
Bioorg Med Chem Lett ; 55: 128465, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34808389

ABSTRACT

This article describes the synthesis and antiviral activity evaluation of new substituted 1,2,4-oxadiazoles containing a bicyclic substituent at position 5 of the heterocycle and O-acylated amidoximes as precursors for their synthesis. New compounds were obtained from the (+)-camphor derivative (+)-ketopinic acid. The chemical library was tested in vitro for cytotoxicity against the MDCK cell line and for antiviral activity against influenza viruses of H1N1 and H7N9 subtypes. The synthesised compounds exhibited high virus-inhibiting activity against the H1N1 influenza virus. Some synthesised compounds were also active against the influenza virus of a different antigenic subtype: H7N9. The mechanism of the virus-inhibiting activity of these compounds is based on their interference with the fusion activity of viral hemagglutinin (HA). No interference with the receptor-binding activity of HA has been demonstrated. According to molecular docking results, the selective antiviral activity of O-acylated amidoximes and 1,2,4-oxadiazoles is associated with their structural features. O-Acylated amidoximes are likely more complementary to the binding site located at the site of the fusion peptide, and 1,2,4-oxadiazoles are more complimentary to the site located at the site of proteolysis. Significant differences in the amino acid residues of the binding sites of HA's of different types allow us to explain the selective antiviral activity of the compounds under study.


Subject(s)
Antiviral Agents/pharmacology , Bridged-Ring Compounds/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H7N9 Subtype/drug effects , Ketones/pharmacology , Oxadiazoles/pharmacology , Oximes/pharmacology , Acylation , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Bridged-Ring Compounds/chemistry , Dose-Response Relationship, Drug , Ketones/chemistry , Microbial Sensitivity Tests , Molecular Structure , Oxadiazoles/chemical synthesis , Oxadiazoles/chemistry , Oximes/chemical synthesis , Oximes/chemistry , Structure-Activity Relationship
11.
Molecules ; 26(23)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34885719

ABSTRACT

A novel series of 1-[3-{3,5-bis(benzylidene)-4-oxo-1-piperidino}-3-oxopropyl]-4-piperidone oximes 3a-h and related quaternary ammonium salts 4a-h were prepared as candidate antineoplastic agents. Evaluation against neoplastic Ca9-22, HSC-2 and HSC-4 cells revealed the compounds in series 3 and 4 to be potent cytotoxins with submicromolar CC50 values in virtually all cases. In contrast, the compounds were less cytocidal towards HGF, HPLF and HPC non-malignant cells revealing their tumour-selective toxicity. Quantitative structure-activity relationships revealed that, in general, both cytotoxic potency and selectivity index figures increased as the magnitude of the Hammett sigma values rose. In addition, 3a-h are cytotoxic towards a number of leukemic and colon cancer cells. 4b,c lowered the mitochondrial membrane potential in CEM cells, and 4d induced transient G2/M accumulation in Ca9-22 cells. Five compounds, namely 3c,d and 4c-e, were identified as lead molecules that have drug-like properties.


Subject(s)
Antineoplastic Agents/chemical synthesis , Colonic Neoplasms/drug therapy , Oximes/chemical synthesis , Quaternary Ammonium Compounds/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Oximes/chemistry , Oximes/pharmacology , Quantitative Structure-Activity Relationship , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology
12.
Molecules ; 26(21)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34771067

ABSTRACT

Gastrointestinal tract infection caused by Helicobacter pylori is a common virulent disease found worldwide, and the infection rate is much higher in developing countries than in developed ones. In the pathogenesis of H. pylori in the gastrointestinal tract, the secretion of the urease enzyme plays a major role. Therefore, inhibition of urease is a better approach against H. pylori infection. In the present study, a series of syn and anti isomers of N-substituted indole-3-carbaldehyde oxime derivatives was synthesized via Schiff base reaction of appropriate carbaldehyde derivatives with hydroxylamine hydrochloride. The in vitro urease inhibitory activities of those derivatives were evaluated against that of Macrotyloma uniflorum urease using the modified Berthelot reaction. Out of the tested compounds, compound 8 (IC50 = 0.0516 ± 0.0035 mM) and compound 9 (IC50 = 0.0345 ± 0.0008 mM) were identified as the derivatives with potent urease inhibitory activity with compared to thiourea (IC50 = 0.2387 ± 0.0048 mM). Additionally, in silico studies for all oxime compounds were performed to investigate the binding interactions with the active site of the urease enzyme compared to thiourea. Furthermore, the drug-likeness of the synthesized oxime compounds was also predicted.


Subject(s)
Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Helicobacter pylori/drug effects , Indoles/pharmacology , Oximes/pharmacology , Urease/antagonists & inhibitors , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Helicobacter pylori/enzymology , Indoles/chemical synthesis , Indoles/chemistry , Microbial Sensitivity Tests , Molecular Structure , Oximes/chemical synthesis , Oximes/chemistry , Stereoisomerism , Urease/metabolism
13.
Bioorg Med Chem ; 46: 116360, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34425478

ABSTRACT

Steroidal compounds were proven to be efficient drugs against several types of cancer. Oximes are also chemical structures frequently associated with anticancer activity. The main goal of this work was to combine the two referred structures by synthesizing steroidal oximes and evaluating them in several cancer cell lines. Compounds (17E)-5α-androst-3-en-17-one oxime (3,4 - OLOX), (17E)-3α,4α-epoxy-5α-androstan-17-one oxime (3,4 - EPOX), (17E)-androst-4-en-17-one oxime (4,5 - OLOX) and (17E)-4α,5α-epoxyandrostan-17-one oxime (4,5 - EPOX) were synthesized and their cytotoxicity evaluated in four human cancer cell lines, namely colorectal adenocarcinoma (WiDr), non-small cell lung cancer (H1299), prostate cancer (PC3) and hepatocellular carcinoma (HepG2). A human non-tumour cell line, CCD841 CoN (normal colon cell line) was also used. MTT assay, flow cytometry, fluorescence and hemocompatibility techniques were performed to further analyse the cytotoxicity of the compounds. 3,4 - OLOX was the most effective compound in decreasing tumour cell proliferation in all cell lines, especially in WiDr (IC50 = 9.1 µM) and PC3 (IC50 = 13.8 µM). 4,5 - OLOX also showed promising results in the same cell lines (IC50 = 16.1 µM in WiDr and IC50 = 14.5 µM in PC3). Further studies also revealed that 3,4 - OLOX and 4,5 - OLOX induced a decrease in cell viability accompanied by an increase in cell death, mainly by apoptosis/necroptosis for 3,4 - OLOX in both cell lines and for 4,5 - OLOX in WiDr cells, and by necrosis for 4,5 - OLOX in PC3 cells. These compounds might also exert their cytotoxicity by ROS production and are not toxic for non-tumour CCD841 CoN cells. Additionally, both compounds did not induce haemoglobin release, proving to be safe for intravenous administration. 3,4 - OLOX and 4,5 - OLOX might be the starting point for an optimization program towards the discover of new steroidal oximes for anticancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Oximes/pharmacology , Steroids/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Oxidative Stress/drug effects , Oximes/chemical synthesis , Oximes/chemistry , Steroids/chemical synthesis , Steroids/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
14.
Bioorg Chem ; 116: 105288, 2021 11.
Article in English | MEDLINE | ID: mdl-34454299

ABSTRACT

Infections caused due to multidrug resistant organisms have emerged as a constant menace to human health. Even though numerous antibiotics are currently available for treating infectious diseases, a great number of bacterial strains have acquired resistance to many of them. Among these, infections caused due to Staphylococcus aureus are predominant in adult and paediatric population. Indole is a prominent chemical scaffold found in many pharmacologically active natural products and synthetic drugs. A number of oxime ether containing compounds have attracted attention of researchers owing to their interesting biological properties. Current work details the synthesis of indole containing oxime ether derivatives and their evaluation for antimicrobial activity against a panel of bacterial and mycobacterial strains. Synthesized compounds demonstrated good to moderate activity against drug-resistant S. aureus including resistant to vancomycin. Among all, compound 5h was found to possess potent activity against susceptible as well as MRSA and VRSA strains of S. aureus with MIC of 1 µg/mL and 2-4 µg/mL respectively. In addition, compound 5h was found to be non-toxic to Vero cells and exhibited good selectivity index of >40. Further, 5h, E-9a and E-9b possessed good biofilm inhibition against S. aureus. With these assuring biological properties, synthesized compounds could be potential prospective antimicrobial agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Oximes/pharmacology , Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Chlorocebus aethiops , Dose-Response Relationship, Drug , Methicillin Resistance/drug effects , Microbial Sensitivity Tests , Molecular Structure , Oximes/chemical synthesis , Oximes/chemistry , Structure-Activity Relationship , Vancomycin Resistance/drug effects , Vero Cells
15.
Eur J Med Chem ; 224: 113695, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34298282

ABSTRACT

The flavivirus genus of the Flaviviridae family comprises Dengue, Zika and West-Nile viruses which constitute unmet medical needs as neither appropriate antivirals nor safe vaccines are available. The dengue NS2BNS3 protease is one of the most promising validated targets for developing a dengue treatment however reported protease inhibitors suffer from toxicity and cellular inefficacy. Here we report SAR on our previously reported Zika-active carbazole scaffold, culminating prodrug compound SP-471P (EC50 1.10 µM, CC50 > 100 µM) that generates SP-471; one of the most potent, non-cytotoxic and cell-active protease inhibitors described in the dengue literature. In cell-based assays, SP-471P leads to inhibition of viral RNA replication and complete abolishment of infective viral particle production even when administered 6 h post-infection. Mechanistically, SP-471 appears to inhibit both normal intermolecular protease processes and intramolecular cleavage events at the NS2BNS3 junction, as well as at NS3 internal sites, all critical for virus replication. These render SP-471 a unique to date multimodal inhibitor of the dengue protease.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Oximes/pharmacology , Peptide Hydrolases/metabolism , Prodrugs/pharmacology , Protease Inhibitors/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Dengue Virus/enzymology , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Oximes/chemical synthesis , Oximes/chemistry , Prodrugs/chemical synthesis , Prodrugs/chemistry , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Structure-Activity Relationship
16.
Molecules ; 26(9)2021 May 04.
Article in English | MEDLINE | ID: mdl-34064380

ABSTRACT

The interest in the introduction of the oxime group in molecules aiming to improve their biological effects is increasing. This work aimed to develop new steroidal oximes of the estrane series with potential antitumor interest. For this, several oximes were synthesized by reaction of hydroxylamine with the 17-ketone of estrone derivatives. Then, their cytotoxicity was evaluated in six cell lines. An estrogenicity assay, a cell cycle distribution analysis and a fluorescence microscopy study with Hoechst 3358 staining were performed with the most promising compound. In addition, molecular docking studies against estrogen receptor α, steroid sulfatase, 17ß-hydroxysteroid dehydrogenase type 1 and ß-tubulin were also accomplished. The 2-nitroestrone oxime showed higher cytotoxicity than the parent compound on MCF-7 cancer cells. Furthermore, the oximes bearing halogen groups in A-ring evidenced selectivity for HepaRG cells. Remarkably, the Δ9,11-estrone oxime was the most cytotoxic and arrested LNCaP cells in the G2/M phase. Fluorescence microscopy studies showed the presence of condensed DNA typical of prophase and condensed and fragmented nuclei characteristic of apoptosis. However, this oxime promoted the proliferation of T47-D cells. Interestingly, molecular docking studies estimated a strong interaction between Δ9,11-estrone oxime and estrogen receptor α and ß-tubulin, which may account for the described effects.


Subject(s)
Molecular Docking Simulation , Oximes/chemical synthesis , Oximes/pharmacology , Cell Cycle/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA/metabolism , Estrogen Receptor alpha/metabolism , Estrogens/pharmacology , Estrone/chemical synthesis , Estrone/chemistry , Estrone/pharmacology , Fluorouracil/pharmacology , Humans , Inhibitory Concentration 50 , Oximes/chemistry
17.
ChemMedChem ; 16(18): 2781-2785, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34115919

ABSTRACT

Several naturally occurring cyclopentenones, such as palmenones and nigrosporiones, exhibit antimicrobial activity. Herein we describe the antimicrobial activity of cyclopentenones and derivatives that can be easily accessed from biomass derivatives furfural and 5-hydroxymethylfurfural. Upon screening a range of functionalized trans-diamino-cyclopentenones (DCPs) and δ-lactone-fused cyclopentenones (LCPs), an oxime ether derivative of DCP was identified that exhibited remarkable antimicrobial activity against Gram-positive bacteria, including resistant strains such as methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis (VRE) strains.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cyclopentanes/pharmacology , Enterococcus faecalis/drug effects , Ether/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Oximes/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Cyclopentanes/chemical synthesis , Cyclopentanes/chemistry , Dose-Response Relationship, Drug , Ether/chemical synthesis , Ether/chemistry , Microbial Sensitivity Tests , Molecular Structure , Oximes/chemical synthesis , Oximes/chemistry , Structure-Activity Relationship , Vancomycin Resistance/drug effects
18.
Acta Chim Slov ; 68(1): 88-101, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34057529

ABSTRACT

A detailed description of the two new pyridine ligands, (2E,3Z)-3-[2-(3-chloropyridin-2-yl)hydrazinylidene]-N-hydroxybutan-2-imine and 3-chloro-2-(2Z)-2-[1-(4 nitrophenyl)ethylidene]hydrazinyl, is reported. The synthesized compounds were characterized by spectroscopic studies, spectral features were performed by TD-DFT calculations. New-generation pyridine ligand of HL2 was also determinate by single-crystal X-ray diffraction and Hirshfeld surface analysis with two-dimensional fingerprint plots was used to analyze intermolecular interactions in crystals. Molecular-docking was performed to investigate the binding areas of chemical compounds, and the results showed the inhibitory activity of the studied HL1 and HL2 against E. coli. The results of the current study revealed the drug-likeness and bioactive properties of the ligands.


Subject(s)
Oximes/chemistry , Pyridines/chemistry , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , DNA Gyrase/metabolism , Density Functional Theory , Escherichia coli/drug effects , Escherichia coli/enzymology , Escherichia coli Proteins/metabolism , Ligands , Models, Chemical , Molecular Docking Simulation , Molecular Structure , Oximes/chemical synthesis , Oximes/metabolism , Oximes/pharmacokinetics , Protein Binding , Pyridines/chemical synthesis , Pyridines/metabolism , Pyridines/pharmacokinetics , X-Ray Diffraction
19.
Chem Biodivers ; 18(7): e2100235, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34047003

ABSTRACT

In search of novel natural product-based bioactive molecules, twenty (ten pairs) novel (Z)-/(E)-anisaldehyde-based oxime ester compounds were designed and synthesized by using anisaldehyde as starting material. Structural characterization of the target compounds was carried out by NMR, FT-IR, ESI-MS, and elemental analysis. Their herbicidal and antifungal activities were preliminarily tested. As a result, at 50 µg/mL, compound (E)-5b exhibited excellent to good inhibition rates of 92.3 %, 79.2 %, and 73.9 %, against Rhizoctonia solani, Fusarium oxysporum f. sp. cucumerinum, and Bipolaris maydis, respectively, better than or comparable to that of the positive control chlorothalonil. In addition, at 100 µg/mL, compounds (E)-5b, (E)-5f, (Z)-5f and (E)-5d exhibited excellent to good inhibition rates of 85.8 %, 82.9 %, 78.6 % and 64.2 %, respectively, against the root-growth of rape (B. campestris), much better than that of the positive control flumioxazin. The bioassay result also showed that the synthesized compounds had obvious differences in antifungal and herbicidal activities between (Z)- and (E)-isomers. Preliminary structure-activity relationship was also discussed by theoretical calculation.


Subject(s)
Antifungal Agents/pharmacology , Benzaldehydes/pharmacology , Esters/pharmacology , Herbicides/pharmacology , Oximes/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Benzaldehydes/chemical synthesis , Benzaldehydes/chemistry , Bipolaris/drug effects , Esters/chemical synthesis , Esters/chemistry , Fusarium/drug effects , Herbicides/chemical synthesis , Herbicides/chemistry , Microbial Sensitivity Tests , Molecular Structure , Oximes/chemical synthesis , Oximes/chemistry , Rhizoctonia/drug effects , Structure-Activity Relationship
20.
Bioorg Med Chem Lett ; 40: 127963, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33741464

ABSTRACT

Human indoleamine 2,3-dioxygenase 1 (hIDO1) and tryptophan dioxygenase (hTDO) are rate-limiting enzymes in the kynurenine pathway (KP) of l-tryptophan (l-Trp) metabolism and are becoming key drug targets in the combination therapy of checkpoint inhibitors in immunoncology. To discover a selective and potent IDO1 inhibitor, a structure-activity relationship (SAR) study of N-hydroxybenzofuran-5-carboximidamide as a novel scaffold was investigated in a systematic manner. Among the synthesized compounds, the N-3-bromophenyl derivative 19 showed the most potent inhibition, with an IC50 value of 0.44 µM for the enzyme and 1.1 µM in HeLa cells. The molecular modeling of 19 with the X-ray crystal structure of IDO1 indicated that dipole-ionic interactions with heme iron, halogen bonding with Cys129 and the two hydrophobic interactions were important for the high potency of 19.


Subject(s)
Amidines/pharmacology , Benzofurans/pharmacology , Enzyme Inhibitors/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Oximes/pharmacology , Amidines/chemical synthesis , Amidines/metabolism , Benzofurans/chemical synthesis , Benzofurans/metabolism , Catalytic Domain , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Indoleamine-Pyrrole 2,3,-Dioxygenase/chemistry , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Molecular Docking Simulation , Molecular Structure , Oximes/chemical synthesis , Oximes/metabolism , Protein Binding , Static Electricity , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...