Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.356
Filter
1.
Eur J Med Res ; 29(1): 304, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822441

ABSTRACT

PURPOSE: Respiratory dysfunction is one of the most frequent symptoms observed during sepsis reflecting hypoxemia and/or acidosis that may be assessed by the ROX index (ratio of oxygen saturation by pulse oximetry/fraction of inspired oxygen to respiratory rate). This study aimed to describe the relationship between the prehospital ROX index and 30-day mortality rate among septic shock patients cared for in the prehospital setting by a mobile intensive care unit (MICU). METHODS: From May 2016 to December 2021, 530 septic shock patients cared for by a prehospital MICU were retrospectively analysed. Initial ROX index value was calculated at the first contact with MICU. A Cox regression analysis after propensity score matching was performed to assess the relationship between 30-day mortality rate and a ROX index ≤ 10. RESULTS: Pulmonary, digestive and urinary sepsis were suspected among 43%, 25% and 17% patients, respectively. The 30-day overall mortality reached 31%. Cox regression analysis showed a significant association between 30-day mortality and a ROX index ≤ 10: adjusted hazard ratio of 1.54 [1.08-2.31], p < 0.05. CONCLUSIONS: During the prehospital stage of septic shock patients cared for by a MICU, ROX index is significantly associated with 30-day mortality. A prehospital ROX ≤ 10 value is associated with a 1.5-fold 30-day mortality rate increase. Prospective studies are needed to confirm the ability of prehospital ROX to predict sepsis outcome since the prehospital setting.


Subject(s)
Shock, Septic , Humans , Shock, Septic/mortality , Male , Female , Aged , Middle Aged , Retrospective Studies , Oximetry/methods , Oxygen Saturation , Aged, 80 and over , Respiratory Rate , Emergency Medical Services/statistics & numerical data , Emergency Medical Services/methods , Intensive Care Units/statistics & numerical data , Oxygen
2.
JMIR Hum Factors ; 11: e54983, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38825834

ABSTRACT

Background: Pulse oximeters noninvasively measure blood oxygen levels, but these devices have rarely been designed for low-resource settings and are inconsistently available at outpatient clinics. Objective: The Phefumla project aims to develop and validate a pediatric smartphone-based pulse oximeter designed specifically for this context. We present the process of human-centered oximeter design with health care workers in South Africa. Methods: We purposively sampled 19 health care workers from 5 clinics in Khayelitsha, Cape Town. Using a human-centered design approach, we conducted participatory workshops with four activities with health care workers: (1) they received 3D-printed prototypes of potential oximeter designs to provide feedback; (2) we demonstrated on dolls how they would use the novel oximeter; (3) they used pile sorting to rank design features and suggest additional features they desired; and (4) they designed their preferred user interface using a whiteboard, marker, and magnetized features that could be repositioned. We audio recorded the workshops, photographed outputs, and took detailed field notes. Analysis involved iterative review of these data to describe preferences, identify key design updates, and provide modifications. Results: Participants expressed a positive sentiment toward the idea of a smartphone pulse oximeter and suggested that a pediatric device would address an important gap in outpatient care. Specifically, participants expressed a preference for the prototype that they felt enabled more diversity in the way it could be used. There was a strong tendency to prioritize pragmatic design features, such as robustness, which was largely dictated by health care worker context. They also added features that would allow the oximeter device to serve other clinical functions in addition to oxygen saturation measurement, such as temperature and respiratory rate measurements. Conclusions: Our end user-centered rapid participatory approach led to tangible design changes and prompted design discussions that the team had not previously considered. Overall, health care workers prioritized pragmatism for pediatric pulse oximeter device design.


Subject(s)
Health Personnel , Oximetry , Smartphone , Humans , South Africa , Oximetry/instrumentation , Oximetry/methods , Equipment Design , Qualitative Research , User-Centered Design , Child , Female , Male
3.
Physiol Meas ; 45(5)2024 May 28.
Article in English | MEDLINE | ID: mdl-38749458

ABSTRACT

Objective.Diagnosis of incipient acute hypovolemia is challenging as vital signs are typically normal and patients remain asymptomatic at early stages. The early identification of this entity would affect patients' outcome if physicians were able to treat it precociously. Thus, the development of a noninvasive, continuous bedside monitoring tool to detect occult hypovolemia before patients become hemodynamically unstable is clinically relevant. We hypothesize that pulse oximeter's alternant (AC) and continuous (DC) components of the infrared light are sensitive to acute and small changes in patient's volemia. We aimed to test this hypothesis in a cohort of healthy blood donors as a model of slight hypovolemia.Approach.We planned to prospectively study blood donor volunteers removing 450 ml of blood in supine position. Noninvasive arterial blood pressure, heart rate, and finger pulse oximetry were recorded. Data was analyzed before donation, after donation and during blood auto-transfusion generated by the passive leg-rising (PLR) maneuver.Main results.Sixty-six volunteers (44% women) accomplished the protocol successfully. No clinical symptoms of hypovolemia, arterial hypotension (systolic pressure < 90 mmHg), brady-tachycardia (heart rate <60 and >100 beats-per-minute) or hypoxemia (SpO2< 90%) were observed during donation. The AC signal before donation (median 0.21 and interquartile range 0.17 a.u.) increased after donation [0.26(0.19) a.u;p< 0.001]. The DC signal before donation [94.05(3.63) a.u] increased after blood extraction [94.65(3.49) a.u;p< 0.001]. When the legs' blood was auto-transfused during the PLR, the AC [0.21(0.13) a.u.;p= 0.54] and the DC [94.25(3.94) a.u.;p= 0.19] returned to pre-donation levels.Significance.The AC and DC components of finger pulse oximetry changed during blood donation in asymptomatic volunteers. The continuous monitoring of these signals could be helpful in detecting occult acute hypovolemia. New pulse oximeters should be developed combining the AC/DC signals with a functional hemodynamic monitoring of fluid responsiveness to define which patient needs fluid administration.


Subject(s)
Blood Donors , Fingers , Photoplethysmography , Humans , Pilot Projects , Female , Male , Adult , Fingers/blood supply , Hemorrhage/diagnosis , Middle Aged , Hypovolemia/diagnosis , Hypovolemia/physiopathology , Oximetry , Acute Disease , Young Adult , Heart Rate
4.
J Biomed Opt ; 29(Suppl 3): S33302, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38707651

ABSTRACT

Significance: Cerebral oximeters have the potential to detect abnormal cerebral blood oxygenation to allow for early intervention. However, current commercial systems have two major limitations: (1) spatial coverage of only the frontal region, assuming that surgery-related hemodynamic effects are global and (2) susceptibility to extracerebral signal contamination inherent to continuous-wave near-infrared spectroscopy (NIRS). Aim: This work aimed to assess the feasibility of a high-density, time-resolved (tr) NIRS device (Kernel Flow) to monitor regional oxygenation changes across the cerebral cortex during surgery. Approach: The Flow system was assessed using two protocols. First, digital carotid compression was applied to healthy volunteers to cause a rapid oxygenation decrease across the ipsilateral hemisphere without affecting the contralateral side. Next, the system was used on patients undergoing shoulder surgery to provide continuous monitoring of cerebral oxygenation. In both protocols, the improved depth sensitivity of trNIRS was investigated by applying moment analysis. A dynamic wavelet filtering approach was also developed to remove observed temperature-induced signal drifts. Results: In the first protocol (28±5 years; five females, five males), hair significantly impacted regional sensitivity; however, the enhanced depth sensitivity of trNIRS was able to separate brain and scalp responses in the frontal region. Regional sensitivity was improved in the clinical study given the age-related reduction in hair density of the patients (65±15 years; 14 females, 13 males). In five patients who received phenylephrine to treat hypotension, different scalp and brain oxygenation responses were apparent, although no regional differences were observed. Conclusions: The Kernel Flow has promise as an intraoperative neuromonitoring device. Although regional sensitivity was affected by hair color and density, enhanced depth sensitivity of trNIRS was able to resolve differences in scalp and brain oxygenation responses in both protocols.


Subject(s)
Cerebrovascular Circulation , Spectroscopy, Near-Infrared , Humans , Spectroscopy, Near-Infrared/methods , Spectroscopy, Near-Infrared/instrumentation , Female , Male , Adult , Cerebrovascular Circulation/physiology , Hemodynamics/physiology , Oximetry/methods , Oximetry/instrumentation , Oxygen/blood , Oxygen/metabolism , Brain/diagnostic imaging , Brain/blood supply , Equipment Design
5.
Crit Care Explor ; 6(5): e1094, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38727717

ABSTRACT

OBJECTIVES: Near-infrared spectroscopy (NIRS) is a potentially valuable modality to monitor the adequacy of oxygen delivery to the brain and other tissues in critically ill patients, but little is known about the physiologic determinants of NIRS-derived tissue oxygen saturations. The purpose of this study was to assess the contribution of routinely measured physiologic parameters to tissue oxygen saturation measured by NIRS. DESIGN: An observational sub-study of patients enrolled in the Role of Active Deresuscitation After Resuscitation-2 (RADAR-2) randomized feasibility trial. SETTING: Two ICUs in the United Kingdom. PATIENTS: Patients were recruited for the RADAR-2 study, which compared a conservative approach to fluid therapy and deresuscitation with usual care. Those included in this sub-study underwent continuous NIRS monitoring of cerebral oxygen saturations (SctO2) and quadriceps muscle tissue saturations (SmtO2). INTERVENTION: Synchronized and continuous mean arterial pressure (MAP), heart rate (HR), and pulse oximetry (oxygen saturation, Spo2) measurements were recorded alongside NIRS data. Arterial Paco2, Pao2, and hemoglobin concentration were recorded 12 hourly. Linear mixed effect models were used to investigate the association between these physiologic variables and cerebral and muscle tissue oxygen saturations. MEASUREMENTS AND MAIN RESULTS: Sixty-six patients were included in the analysis. Linear mixed models demonstrated that Paco2, Spo2, MAP, and HR were weakly associated with SctO2 but only explained 7.1% of the total variation. Spo2 and MAP were associated with SmtO2, but together only explained 0.8% of its total variation. The remaining variability was predominantly accounted for by between-subject differences. CONCLUSIONS: Our findings demonstrated that only a small proportion of variability in NIRS-derived cerebral and tissue oximetry measurements could be explained by routinely measured physiologic variables. We conclude that for NIRS to be a useful monitoring modality in critical care, considerable further research is required to understand physiologic determinants and prognostic significance.


Subject(s)
Critical Illness , Oximetry , Oxygen Saturation , Spectroscopy, Near-Infrared , Humans , Spectroscopy, Near-Infrared/methods , Male , Female , Oxygen Saturation/physiology , Middle Aged , Aged , Oximetry/methods , Monitoring, Physiologic/methods , Brain/metabolism , Brain/blood supply , United Kingdom , Oxygen/metabolism , Oxygen/blood , Oxygen/analysis , Intensive Care Units , Quadriceps Muscle/metabolism , Quadriceps Muscle/blood supply
6.
West J Emerg Med ; 25(3): 325-331, 2024 May.
Article in English | MEDLINE | ID: mdl-38801037

ABSTRACT

Background: Patients with coronavirus 2019 (COVID-19) are at high risk for respiratory dysfunction. The pulse oximetry/fraction of inspired oxygen (SpO2/FiO2) ratio is a non-invasive assessment of respiratory dysfunction substituted for the PaO2:FiO2 ratio in Sequential Organ Failure Assessment scoring. We hypothesized that emergency department (ED) SpO2/FiO2 ratios correlate with requirement for mechanical ventilation in COVID-19 patients. Our objective was to identify COVID-19 patients at greatest risk of requiring mechanical ventilation, using SpO2/FiO2 ratios. Methods: We performed a retrospective review of patients admitted with COVID-19 at two hospitals. Highest and lowest SpO2/FiO2 ratios (percent saturation/fraction of inspired O2) were calculated on admission. We performed chi-square, univariate, and multiple regression analysis to evaluate the relationship of admission SpO2/FiO2 ratios with requirement for mechanical ventilation and intensive care unit (ICU) care. Results: A total of 539 patients (46% female; 84% White), with a mean age 67.6 ± 18.6 years, met inclusion criteria. Patients who required mechanical ventilation during their hospital stay were statistically younger in age (P = 0.001), had a higher body mass index (P < .001), and there was a higher percentage of patients who were obese (P = 0.03) and morbidly obese (P < .001). Shortness of breath, cough, and fever were the most common presenting symptoms with a median temperature of 99°F. Average white blood count was higher in patients who required ventilation (P = <0.001). A highest obtained ED SpO2/FiO2 ratio of ≤300 was associated with a requirement for mechanical ventilation. A lowest obtained ED SpO2/FiO2 ratio of ≤300 was associated with a requirement for intensive care unit care. There was no statistically significant correlation between ED SpO2/FiO2 ratios >300 and mechanical ventilation or intensive care unit (ICU) requirement. Conclusion: The ED SpO2/FiO2 ratios correlated with mechanical ventilation and ICU requirements during hospitalization for COVID-19. These results support ED SpO2/FiO2 as a possible triage tool and predictor of hospital resource requirements for patients admitted with COVID-19. Further investigation is warranted.


Subject(s)
COVID-19 , Emergency Service, Hospital , Intensive Care Units , Oximetry , Respiration, Artificial , Humans , COVID-19/therapy , COVID-19/blood , COVID-19/epidemiology , COVID-19/diagnosis , Female , Retrospective Studies , Male , Aged , SARS-CoV-2 , Middle Aged , Oxygen Saturation , Oxygen/blood , Aged, 80 and over
7.
J Vis Exp ; (207)2024 May 10.
Article in English | MEDLINE | ID: mdl-38801263

ABSTRACT

The detection of levels of impairment in microvascular oxygen consumption and reactive hyperemia is vital in critical care. However, there are no practical means for a robust and quantitative evaluation. This paper describes a protocol to evaluate these impairments using a hybrid near-infrared diffuse optical device. The device contains modules for near-infrared time-resolved and diffuse correlation spectroscopies and pulse-oximetry. These modules allow the non-invasive, continuous, and real-time measurement of the absolute, microvascular blood/tissue oxygen saturation (StO2) and the blood flow index (BFI) along with the peripheral arterial oxygen saturation (SpO2). This device uses an integrated, computer-controlled tourniquet system to execute a standardized protocol with optical data acquisition from the brachioradialis muscle. The standardized vascular occlusion test (VOT) takes care of the variations in the occlusion duration and pressure reported in the literature, while the automation minimizes inter-operator differences. The protocol we describe focuses on a 3-min occlusion period but the details described in this paper can readily be adapted to other durations and cuff pressures, as well as other muscles. The inclusion of an extended baseline and post-occlusion recovery period measurement allows the quantification of the baseline values for all the parameters and the blood/tissue deoxygenation rate that corresponds to the metabolic rate of oxygen consumption. Once the cuff is released, we characterize the tissue reoxygenation rate, magnitude, and duration of the hyperemic response in BFI and StO2. These latter parameters correspond to the quantification of the reactive hyperemia, which provides information about the endothelial function. Furthermore, the above-mentioned measurements of the absolute concentration of oxygenated and deoxygenated hemoglobin, BFI, the derived metabolic rate of oxygen consumption, StO2, and SpO2 provide a yet-to-be-explored rich data set that can exhibit disease severity, personalized therapeutics, and management interventions.


Subject(s)
Critical Care , Hyperemia , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Hyperemia/metabolism , Humans , Critical Care/methods , Oxygen/metabolism , Oxygen/blood , Oxygen Consumption/physiology , Oximetry/methods , Oximetry/instrumentation , Muscle, Skeletal/metabolism , Muscle, Skeletal/blood supply , Microcirculation/physiology , Microvessels/metabolism , Oxygen Saturation/physiology
8.
Harm Reduct J ; 21(1): 89, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702702

ABSTRACT

BACKGROUND: In British Columbia, Canada, smoking is the most common modality of drug use among people who die of opioid toxicity. We aimed to assess oxygen saturation (SpO2) while people smoked opioids during a pilot study that introduced continuous pulse oximetry at overdose prevention services (OPS) sites. METHODS: This was an observational cohort study, using a participatory design. We implemented our monitoring protocol from March to August 2021 at four OPS. We included adults (≥ 18 years) presenting to smoke opioids. A sensor taped to participants' fingers transmitted real-time SpO2 readings to a remote monitor viewed by OPS staff. Peer researchers collected baseline data and observed the timing of participants' inhalations. We analyzed SpO2 on a per-event basis. In mixed-effects logistic regression models, drop in minimum SpO2 ≤ 90% in the current minute was our main outcome variable. Inhalation in that same minute was our main predictor. We also examined inhalation in the previous minute, cumulative inhalations, inhalation rate, demographics, co-morbidities, and substance use variables. RESULTS: We recorded 599 smoking events; 72.8% (436/599) had analyzable SpO2 data. Participants' mean age was 38.6 years (SD 11.3 years) and 73.1% were male. SpO2 was highly variable within and between individuals. Drop in SpO2 ≤ 90% was not significantly associated with inhalation in that same minute (OR: 1.2 [0.8-1.78], p = 0.261) or inhalation rate (OR 0.47 [0.20-1.10], p = 0.082). There was an association of SpO2 drop with six cumulative inhalations (OR 3.38 [1.04-11.03], p = 0.043); this was not maintained ≥ 7 inhalations. Demographics, co-morbidities, and drug use variables were non-contributory. CONCLUSIONS: Continuous pulse oximetry SpO2 monitoring is a safe adjunct to monitoring people who smoke opioids at OPS. Our data reflect challenges of real-world monitoring, indicating that greater supports are needed for frontline responders at OPS. Inconsistent association between inhalations and SpO2 suggests that complex factors (e.g., inhalation depth/duration, opioid tolerance, drug use setting) contribute to hypoxemia and overdose risk while people smoke opioids.


Subject(s)
Analgesics, Opioid , Drug Overdose , Oximetry , Humans , Male , Female , British Columbia/epidemiology , Adult , Middle Aged , Drug Overdose/prevention & control , Oxygen Saturation , Pilot Projects , Smoking/epidemiology , Cohort Studies , Oxygen/blood , Harm Reduction
9.
J Magn Reson ; 362: 107690, 2024 May.
Article in English | MEDLINE | ID: mdl-38692250

ABSTRACT

This research report describes a novel surface dielectric resonator (SDR) with a flexible connector for in vivo electron paramagnetic resonance (EPR) spectroscopy. Contrary to the conventional cavity or surface loop-gap resonators, the newly developed SDR is constructed from a ceramic dielectric material, and it is tuned to operate at the L-band frequency band (1.15 GHz) in continuous-wave mode. The SDR is designed to be critically coupled and capable of working with both very lossy samples, such as biological tissues, and non-lossy materials. The SDR was characterized using electromagnetic field simulations, assessed for sensitivity with a B1 field-perturbation method, and validated with tissue phantoms using EPR measurements. The results showed remarkably higher sensitivity in lossy tissue phantoms than the previously reported multisegment surface-loop resonators. The new SDR can provide potential new insights for advancements in the application of in vivo EPR spectroscopy for biological measurements, including clinical oximetry.


Subject(s)
Electromagnetic Fields , Equipment Design , Phantoms, Imaging , Electron Spin Resonance Spectroscopy/methods , Electron Spin Resonance Spectroscopy/instrumentation , Reproducibility of Results , Oximetry/instrumentation , Oximetry/methods
10.
BMC Pulm Med ; 24(1): 262, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816826

ABSTRACT

BACKGROUND: Chronic obstructive lung disease (COPD) has diverse molecular pathomechanisms and clinical courses which, however, are not fully mirrored by current therapy. Intermittent hypoxemia is a driver of lung function decline and poor outcome, e.g., in patients with concomitant obstructive sleep apnea. Transient hypoxemia during physical exercise has been suggested to act in a similar manner. The PROSA study is designed to prospectively assess whether the clinical course of COPD patients with or without exertional desaturation differs, and to address potential pathophysiological mechanisms and biomarkers. METHODS: 148 COPD patients (GOLD stage 2-3, groups B or C) will undergo exercise testing with continuous pulse oximetry. They will be followed for 36 months by spirometry, echocardiography, endothelial function testing, and biomarker analyses. Exercise testing will be performed by comparing the 6-min walk test (6MWT), bicycle ergometry, and a 15-sec breath-hold test. Exertional desaturation will be defined as SpO2 < 90% or delta-SpO2 ≥ 4% during the 6MWT. The primary endpoint will be the rate of decline of FEV1(LLN) between COPD patients with and without exertional desaturation. DISCUSSION: The PROSA Study is an investigator-initiated prospective study that was designed to prove or dismiss the hypothesis that COPD patients with exertional desaturation have a significantly more rapid rate of decline of lung function as compared to non-desaturators. A 20% difference in the primary endpoint was considered clinically significant; it can be detected with a power of 90%. If the primary endpoint will be met, exercise testing with continuous pulse oximetry can be used as a ubiquitously available, easy screening tool to prospectively assess the risk of rapid lung function decline in COPD patients at an early disease stage. This will allow to introduce personalized, risk-adapted therapy to improve COPD outcome in the long run. PROSA is exclusively funded by public funds provided by the European Research Council through an ERC Advanced Grant. Patient recruitment is ongoing; the PROSA results are expected to be available in 2028. TRIAL REGISTRATION: The PROSA Study has been prospectively registered at clinicaltrials.gov (register no. NCT06265623, dated 09.02.2024).


Subject(s)
Hypoxia , Oximetry , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/complications , Hypoxia/physiopathology , Prospective Studies , Vasoconstriction , Walk Test , Exercise Test , Male , Female , Lung/physiopathology , Middle Aged , Aged , Forced Expiratory Volume , Spirometry
11.
BMC Oral Health ; 24(1): 613, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802767

ABSTRACT

BACKGROUND: One of the most important steps in deciding on the treatment of a tooth is to determine the vitality and health status of the pulp. Since immature teeth innervation is not completed, the response to sensitivity tests may not yield definite results. Pulse oximetry (PO) which is considered as a vitality test, measures the arterial oxygen saturation (SpO2). This study aims to compare PO, electric pulp test (EPT) and cold test in mature and immature permanent teeth. METHODS: 20 immature and 20 mature permanent incisors of 6-12-year-old ASA1 children who did not use any analgesics, were included in the study. Pulp vitality of the teeth was determined by EPT, cold test and PO. An infant probe of PO device (CMS60D, Contec Medical Systems Co. Ltd, China) was used to determine the SpO2 of the teeth. The SpO2 level is controlled on the patient's finger by a children's probe and an infant probe of PO. Shapiro-Wilk, Spearman rank correlation test and Kruskal-Wallis test/Dunn post-hoc analysis were used for statistical comparisons. RESULTS: There was no significant correlation between finger SpO2 and the mature/immature teeth SpO2 (r=-0.026, r = 0.253). Arterial oxygen saturation values in the immature teeth were significantly higher than in the mature teeth (p = 0.002). There was a high correlation between the vitality response of the EPT, cold test and PO. CONCLUSIONS: Pulse oximetry can be used as an effective vitality test compared to sensitivity tests in both immature and mature permanent incisors.


Subject(s)
Dental Pulp Test , Oximetry , Humans , Oximetry/methods , Child , Dental Pulp Test/methods , Male , Female , Incisor , Dental Pulp/blood supply , Cold Temperature , Oxygen Saturation
12.
Dimens Crit Care Nurs ; 43(4): 176-183, 2024.
Article in English | MEDLINE | ID: mdl-38787772

ABSTRACT

BACKGROUND: Continuous pulse oximetry (Spo2) is a commonly utilized tool to obtain an indirect, noninvasive measurement of hemoglobin oxygen saturation. Difficulty obtaining measurement with Spo2 sensors can lead nurses to try off-label sites until they find placement that provides a signal. Currently, there is limited evidence to support this application. PURPOSE: The purpose of this study was to evaluate the accuracy of off-label placement of pulse oximetry sensors in comparison to on-label placement in adult cardiac intensive care patients. METHODS: Data were collected on 24 participants. At the time of a medically necessary arterial blood gas laboratory draws, 4 Spo2 measurements were gathered from an on-label finger sensor, an off-label finger sensor, an on-label ear sensor, and an off-label ear sensor. Results were analyzed using 4 Pearson correlation coefficients, Bland-Altman plots, and 2 linear mixed-effect models. RESULTS: Our study found that while both our on-label finger and off-label finger pulse oximetry sensor overestimated when compared to the arterial hemoglobin saturation (gold standard), there was greater overestimation found with the off-label placement. Though there was not a significant difference observed between the ear probe on the nose and the gold standard, figures examining off-label ear probe and gold standard measures show that, in lower ranges of oxygen saturation, the off-site probe substantially overestimates true oxygen saturation, while in higher ranges of oxygen saturation, the off-site ear probe underestimates true oxygen saturation. CONCLUSIONS: No changes should be made to the current practice of using pulse oximetry sensor placement.


Subject(s)
Intensive Care Units , Oximetry , Humans , Male , Female , Middle Aged , Adult , Aged , Monitoring, Physiologic/methods , Monitoring, Physiologic/instrumentation
13.
BMC Anesthesiol ; 24(1): 187, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796436

ABSTRACT

PURPOSE: Oxygen delivery (DO2) and its monitoring are highlighted to aid postoperative goal directed therapy (GDT) to improve perioperative outcomes such as acute kidney injury (AKI) after high-risk cardiac surgeries associated with multiple morbidities and mortality. However, DO2 monitoring is neither routine nor done postoperatively, and current methods are invasive and only produce intermittent DO2 trends. Hence, we proposed a novel algorithm that simultaneously integrates cardiac output (CO), hemoglobin (Hb) and oxygen saturation (SpO2) from the Edwards Life Sciences ClearSight System® and Masimo SET Pulse CO-Oximetry® to produce a continuous, real-time DO2 trend. METHODS: Our algorithm was built systematically with 4 components - machine interface to draw data with PuTTY, data extraction with parsing, data synchronization, and real-time DO2 presentation using a graphic-user interface. Hb readings were validated. RESULTS: Our algorithm was implemented successfully in 93% (n = 57 out of 61) of our recruited cardiac surgical patients. DO2 trends and AKI were studied. CONCLUSION: We demonstrated a novel proof-of-concept and feasibility of continuous, real-time, non-invasive DO2 monitoring, with each patient serving as their own control. Our study also lays the foundation for future investigations aimed at identifying personalized critical DO2 thresholds and optimizing DO2 as an integral part of GDT to enhance outcomes in perioperative cardiac surgery.


Subject(s)
Algorithms , Cardiac Surgical Procedures , Feasibility Studies , Oximetry , Oxygen , Humans , Cardiac Surgical Procedures/methods , Male , Female , Oxygen/metabolism , Oxygen/administration & dosage , Oxygen/blood , Oximetry/methods , Aged , Middle Aged , Proof of Concept Study , Acute Kidney Injury , Monitoring, Physiologic/methods , Cardiac Output/physiology , Hemoglobins/metabolism , Hemoglobins/analysis , Oxygen Saturation/physiology
14.
Sci Data ; 11(1): 535, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789452

ABSTRACT

Pulse oximeters measure peripheral arterial oxygen saturation (SpO2) noninvasively, while the gold standard (SaO2) involves arterial blood gas measurement. There are known racial and ethnic disparities in their performance. BOLD is a dataset that aims to underscore the importance of addressing biases in pulse oximetry accuracy, which disproportionately affect darker-skinned patients. The dataset was created by harmonizing three Electronic Health Record databases (MIMIC-III, MIMIC-IV, eICU-CRD) comprising Intensive Care Unit stays of US patients. Paired SpO2 and SaO2 measurements were time-aligned and combined with various other sociodemographic and parameters to provide a detailed representation of each patient. BOLD includes 49,099 paired measurements, within a 5-minute window and with oxygen saturation levels between 70-100%. Minority racial and ethnic groups account for ~25% of the data - a proportion seldom achieved in previous studies. The codebase is publicly available. Given the prevalent use of pulse oximeters in the hospital and at home, we hope that BOLD will be leveraged to develop debiasing algorithms that can result in more equitable healthcare solutions.


Subject(s)
Blood Gas Analysis , Oximetry , Humans , Oxygen Saturation , Intensive Care Units , Ethnicity , Oxygen/blood
15.
Zhonghua Yi Xue Za Zhi ; 104(15): 1221-1224, 2024 Apr 16.
Article in Chinese | MEDLINE | ID: mdl-38637159

ABSTRACT

Acute Respiratory Distress Syndrome (ARDS) is distinguished by hypoxemia, contributing to heightened morbidity, elevated mortality rates, and substantial healthcare expenses, thereby imposing a significant burden on patients and society. Presently, effective treatments for ARDS are lacking, emphasizing the pivotal role of early diagnosis and timely intervention in its successful management. The partial pressure of oxygen/fraction of inspired oxygen (PaO2/FiO2, P/F) has traditionally served as a crucial metric for assessing patient hypoxemia and disease severity. While relatively accurate, its reliance on advanced technical expertise and specific medical equipment conditions constrains its implementation in areas with underdeveloped medical standards, resulting in missed diagnoses and treatments for ARDS patients. Conversely, the Pulse oximetric saturation/fraction of inspired oxygen (SpO2/FiO2, S/F) has garnered increasing attention owing to its straightforward, non-invasive, and sustainable monitoring attributes. This article seeks to meticulously compare the correlation, accuracy, and clinical feasibility of S/F with P/F in ARDS diagnosis, so as to propose diagnostic indicators for more quickly and accurately assessing the oxygenation status of ARDS patients.


Subject(s)
Oxygen , Respiratory Distress Syndrome , Humans , Partial Pressure , Oximetry/methods , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/therapy , Hypoxia
16.
Trials ; 25(1): 236, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575977

ABSTRACT

BACKGROUND: The process of obtaining prior informed consent for experimental treatment does not fit well into the clinical reality of acute and intensive care. The therapeutic window of interventions is often short, which may reduce the validity of the consent and the rate of enrolled participants, to delay trial completion and reduce the external validity of the results. Deferred consent and 'opt-out' are alternative consent methods. The SafeBoosC-III trial was a randomised clinical trial investigating the benefits and harms of cerebral oximetry monitoring in extremely preterm infants during the first 3 days after birth, starting within the first 6 h after birth. Prior, deferred and opt-out consent were all allowed by protocol. This study aimed to evaluate the use of different consent methods in the SafeBoosC-III trial, Furthermore, we aimed to describe and analyse concerns or complaints that arose during the first 6 months of trial conduct. METHODS: All 70 principal investigators were invited to join this descriptive ancillary study. Each principal investigator received a questionnaire on the use of consent methods in their centre during the SafeBoosC-III trial, including the possibility to describe any concerns related to the consent methods used during the first 6 months of the trial, as raised by the parents or the clinical staff. RESULTS: Data from 61 centres were available. In 43 centres, only prior informed consent was used: in seven, only deferred consent. No centres used the opt-out method only, but five centres used prior and deferred, five used prior, deferred and opt-out (all possibilities) and one used both deferred and opt-out. Six centres applied to use the opt-out method by their local research ethics committee but were denied using it. One centre applied to use deferred consent but was denied. There were only 23 registered concerns during the execution of the trial. CONCLUSIONS: Consent by opt-out was allowed by the protocol in this multinational trial but only a few investigators opted for it and some research ethics boards did not accept its use. It is likely to need promotion by the clinical research community to unfold its potential.


Subject(s)
Cerebrovascular Circulation , Oximetry , Infant , Infant, Newborn , Humans , Infant, Extremely Premature , Parents , Surveys and Questionnaires , Informed Consent
17.
JAMA Netw Open ; 7(4): e245369, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38578643

ABSTRACT

This cross-sectional study investigates perioperative oxygen saturation differences in Black and White infants with single ventricles undergoing stage 1 palliation.


Subject(s)
Oximetry , Oxygen , Infant , Humans
18.
Respir Res ; 25(1): 162, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622608

ABSTRACT

BACKGROUND: Remote monitoring of patient-recorded spirometry and pulse oximetry offers an alternative approach to traditional hospital-based monitoring of interstitial lung disease (ILD). Remote spirometry has been observed to reasonably reflect clinic spirometry in participants with ILD but remote monitoring has not been widely incorporated into clinical practice. We assessed the feasibility of remotely monitoring patients within a clinical ILD service. METHODS: Prospective, single-arm, open-label observational multi-centre study (NCT04850521). Inclusion criteria included ILD diagnosis, age ≥ 18 years, FVC ≥ 50% predicted. 60 participants were asked to record a single spirometry and oximetry measurement at least once daily, monitored weekly by their local clinical team. Feasibility was defined as ≥ 68% of participants with ≥ 70% adherence to study measurements and recording measurements ≥ 3 times/week throughout. RESULTS: A total of 60 participants were included in the analysis. 42/60 (70%) were male; mean age 67.8 years (± 11.2); 34/60 (56.7%) had idiopathic pulmonary fibrosis (IPF), Median ILD-GAP score was 3 (IQR 1-4.75). Spirometry adherence was achieved for ≥ 70% of study days in 46/60 participants (77%) and pulse oximetry adherence in 50/60 participants (83%). Recording ≥ 3 times/week every week was provided for spirometry in 41/60 participants (68%) and pulse oximetry in 43/60 participants (72%). Mean difference between recent clinic and baseline home spirometry was 0.31 L (± 0.72). 85.7% (IQR 63.9-92.6%) home spirometry attempts/patient were acceptable or usable according to ERS/ATS spirometry criteria. Positive correlation was observed between ILD-GAP score and adherence to spirometry and oximetry (rho 0.24 and 0.38 respectively). Adherence of weekly monitoring by clinical teams was 80.95% (IQR 64.19-95.79). All participants who responded to an experience questionnaire (n = 33) found remote measurements easy to perform and 75% wished to continue monitoring their spirometry at the conclusion of the study. CONCLUSION: Feasibility of remote monitoring within an ILD clinical service was demonstrated over 3 months for both daily home spirometry and pulse oximetry of patients. Remote monitoring may be more acceptable to participants who are older or have more advanced disease. TRIAL REGISTRATION: clinicaltrials.gov NCT04850521 registered 20th April 2021.


Subject(s)
Lung Diseases, Interstitial , Humans , Male , Aged , Adolescent , Female , Prospective Studies , Feasibility Studies , Vital Capacity , Lung Diseases, Interstitial/diagnosis , Spirometry , Oximetry
20.
Sci Rep ; 14(1): 8395, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38600099

ABSTRACT

The aim of the present study was to investigate retinal microcirculatory and functional metabolic changes in patients after they had recovered from a moderate to severe acute COVID-19 infection. Retinal perfusion was quantified using laser speckle flowgraphy. Oxygen saturation and retinal calibers were assessed with a dynamic vessel analyzer. Arterio-venous ratio (AVR) was calculated based on retinal vessel diameter data. Blood plasma samples underwent mass spectrometry-based multi-omics profiling, including proteomics, metabolomics and eicosadomics. A total of 40 subjects were included in the present study, of which 29 had recovered from moderate to severe COVID-19 within 2 to 23 weeks before inclusion and 11 had never had COVID-19, as confirmed by antibody testing. Perfusion in retinal vessels was significantly lower in patients (60.6 ± 16.0 a.u.) than in control subjects (76.2 ± 12.1 a.u., p = 0.006). Arterio-venous (AV) difference in oxygen saturation and AVR was significantly lower in patients compared to healthy controls (p = 0.021 for AVR and p = 0.023 for AV difference in oxygen saturation). Molecular profiles demonstrated down-regulation of cell adhesion molecules, NOTCH3 and fatty acids, and suggested a bisphasic dysregulation of nitric oxide synthesis after COVID-19 infection. The results of this study imply that retinal perfusion and oxygen metabolism is still significantly altered in patients well beyond the acute phase of COVID-19. This is also reflected in the molecular profiling analysis of blood plasma, indicating a down-regulation of nitric oxide-related endothelial and immunological cell functions.Trial Registration: ClinicalTrials.gov ( https://clinicaltrials.gov ) NCT05650905.


Subject(s)
COVID-19 , Oxygen , Humans , Oxygen/metabolism , Microcirculation , Nitric Oxide , Oximetry/methods , Retinal Vessels , Perfusion , Blood Proteins , Lipids
SELECTION OF CITATIONS
SEARCH DETAIL
...