Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.784
Filter
1.
BMC Genomics ; 25(1): 469, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745121

ABSTRACT

Carotenoid cleavage oxygenases (CCOs) enzymes play a vital role in plant growth and development through the synthesis of apocarotenoids and their derivative. These chemicals are necessary for flower and fruit coloration, as well as the manufacture of plant hormones such as abscisic acid (ABA) and strigolactones, which control a variety of physiological processes. The CCOs gene family has not been characterized in Arachis hypogaea. Genome mining of A. hypogaea identifies 24 AhCCO gene members. The AhCCO gene family was divided into two subgroups based on the recent study of the Arabidopsis thaliana CCO gene family classification system. Twenty-three AhCCO genes, constituting 95.8% of the total, were regulated by 29 miRNAs, underscoring the significance of microRNAs (miRNAs) in governing gene expression in peanuts. AhCCD19 is the only gene that lacks a miRNA target site. The physicochemical characteristics of CCO genes and their molecular weights and isoelectric points were studied further. The genes were then characterized regarding chromosomal distribution, structure, and promoter cis-elements. Light, stress development, drought stress, and hormone responsiveness were discovered to be associated with AhCCO genes, which can be utilized in developing more resilient crops. The investigation also showed the cellular location of the encoded proteins and discovered that the peanut carotenoid oxygenase gene family's expansion was most likely the result of tandem, segmental, and whole-genome duplication events. The localization expresses the abundance of genes mostly in the cytoplasm and chloroplast. Expression analysis shows that AhCCD7 and AhCCD14 genes show the maximum expression in the apical meristem, lateral leaf, and pentafoliate leaf development, while AhNCED9 and AhNCED13 express in response to Aspergillus flavus resistance. This knowledge throws light on the evolutionary history of the AhCCO gene family and may help researchers better understand the molecular processes behind gene duplication occurrences in plants. An integrated synteny study was used to find orthologous carotenoid oxygenase genes in A. hypogaea, whereas Arabidopsis thaliana and Beta vulgaris were used as references for the functional characterization of peanut CCO genes. These studies provide a foundation for future research on the regulation and functions of this gene family. This information provides valuable insights into the genetic regulation of AhCCO genes. This technology could create molecular markers for breeding programs to develop new peanut lines.


Subject(s)
Arachis , Gene Expression Regulation, Plant , Multigene Family , Oxygenases , Stress, Physiological , Arachis/genetics , Arachis/enzymology , Stress, Physiological/genetics , Oxygenases/genetics , Oxygenases/metabolism , Carotenoids/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Phylogeny , Genome, Plant , Promoter Regions, Genetic , Plant Proteins/genetics , Plant Proteins/metabolism
2.
PeerJ ; 12: e17337, 2024.
Article in English | MEDLINE | ID: mdl-38784401

ABSTRACT

Chinese cabbage (Brassica campestris L. ssp. chinensis (L.) Makino) stands as a widely cultivated leafy vegetable in China, with its leaf morphology significantly influencing both quality and yield. Despite its agricultural importance, the precise mechanisms governing leaf wrinkling development remain elusive. This investigation focuses on 'Wutacai', a representative cultivar of the Tacai variety (Brassica campestris L. ssp. chinensis var. rosularis Tsen et Lee), renowned for its distinct leaf wrinkling characteristics. Within the genome of 'Wutacai', we identified a total of 18 YUCs, designated as BraWTC_YUCs, revealing their conservation within the Brassica genus, and their close homology to YUCs in Arabidopsis. Expression profiling unveiled that BraWTC_YUCs in Chinese Cabbage exhibited organ-specific and leaf position-dependent variation. Additionally, transcriptome sequencing data from the flat leaf cultivar 'Suzhouqing' and the wrinkled leaf cultivar 'Wutacai' revealed differentially expressed genes (DEGs) related to auxin during the early phases of leaf development, particularly the YUC gene. In summary, this study successfully identified the YUC gene family in 'Wutacai' and elucidated its potential function in leaf wrinkling trait, to provide valuable insights into the prospective molecular mechanisms that regulate leaf wrinkling in Chinese cabbage.


Subject(s)
Brassica , Gene Expression Regulation, Plant , Plant Leaves , Brassica/genetics , Brassica/growth & development , Plant Leaves/genetics , Plant Leaves/anatomy & histology , Gene Expression Profiling , Plant Proteins/genetics , Plant Proteins/metabolism , China , Oxygenases/genetics , Oxygenases/metabolism , Genes, Plant
3.
Nat Commun ; 15(1): 4399, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782897

ABSTRACT

Soluble methane monooxygenase (sMMO) oxidizes a wide range of carbon feedstocks (C1 to C8) directly using intracellular NADH and is a useful means in developing green routes for industrial manufacturing of chemicals. However, the high-throughput biosynthesis of active recombinant sMMO and the ensuing catalytic oxidation have so far been unsuccessful due to the structural and functional complexity of sMMO, comprised of three functionally complementary components, which remains a major challenge for its industrial applications. Here we develop a catalytically active miniature of sMMO (mini-sMMO), with a turnover frequency of 0.32 s-1, through an optimal reassembly of minimal and modified components of sMMO on catalytically inert and stable apoferritin scaffold. We characterise the molecular characteristics in detail through in silico and experimental analyses and verifications. Notably, in-situ methanol production in a high-cell-density culture of mini-sMMO-expressing recombinant Escherichia coli resulted in higher yield and productivity (~ 3.0 g/L and 0.11 g/L/h, respectively) compared to traditional methanotrophic production.


Subject(s)
Escherichia coli , Methanol , Oxygenases , Escherichia coli/genetics , Escherichia coli/metabolism , Oxygenases/metabolism , Oxygenases/genetics , Methanol/metabolism , Methanol/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Oxidation-Reduction
4.
Biotechnol Adv ; 73: 108374, 2024.
Article in English | MEDLINE | ID: mdl-38729229

ABSTRACT

Indigo is a natural dye extensively used in the global textile industry. However, the conventional synthesis of indigo using toxic compounds like aniline, formaldehyde, and hydrogen cyanide has led to environmental pollution and health risks for workers. This method also faces growing economic, sustainability, and environmental challenges. To address these issues, the concept of bio-indigo or indigo biosynthesis has been proposed as an alternative to aniline-based indigo synthesis. Among various enzymes, Flavin-containing Monooxygenases (FMOs) have shown promise in achieving a high yield of bio-indigo. However, the industrialization of indigo biosynthesis still encounters several challenges. This review focuses on the historical development of indigo biosynthesis mediated by FMOs. It highlights several factors that have hindered industrialization, including the use of unsuitable chassis (Escherichia coli), the toxicity of indole, the high cost of the substrate L-tryptophan, the water-insolubility of the product indigo, the requirement of reducing reagents such as sodium dithionite, and the relatively low yield and high cost compared to chemical synthesis. Additionally, this paper summarizes various strategies to enhance the yield of indigo synthesized by FMOs, including redundant sequence deletion, semi-rational design, cheap precursor research, NADPH regeneration, large-scale fermentation, and enhancement of water solubility of indigo.


Subject(s)
Indigo Carmine , Indigo Carmine/metabolism , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/genetics , Oxygenases/metabolism , Oxygenases/genetics , Coloring Agents/chemistry , Coloring Agents/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism
5.
J Agric Food Chem ; 72(21): 12209-12218, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38751167

ABSTRACT

One-pot biosynthesis of vanillin from ferulic acid without providing energy and cofactors adds significant value to lignin waste streams. However, naturally evolved carotenoid cleavage oxygenase (CCO) with extreme catalytic conditions greatly limited the above pathway for vanillin bioproduction. Herein, CCO from Thermothelomyces thermophilus (TtCCO) was rationally engineered for achieving high catalytic activity under neutral pH conditions and was further utilized for constructing a one-pot synthesis system of vanillin with Bacillus pumilus ferulic acid decarboxylase. TtCCO with the K192N-V310G-A311T-R404N-D407F-N556A mutation (TtCCOM3) was gradually obtained using substrate access channel engineering, catalytic pocket engineering, and pocket charge engineering. Molecular dynamics simulations revealed that reducing the site-blocking effect in the substrate access channel, enhancing affinity for substrates in the catalytic pocket, and eliminating the pocket's alkaline charge contributed to the high catalytic activity of TtCCOM3 under neutral pH conditions. Finally, the one-pot synthesis of vanillin in our study could achieve a maximum rate of up to 6.89 ± 0.3 mM h-1. Therefore, our study paves the way for a one-pot biosynthetic process of transforming renewable lignin-related aromatics into valuable chemicals.


Subject(s)
Bacterial Proteins , Benzaldehydes , Coumaric Acids , Oxygenases , Benzaldehydes/metabolism , Benzaldehydes/chemistry , Coumaric Acids/metabolism , Coumaric Acids/chemistry , Oxygenases/genetics , Oxygenases/metabolism , Oxygenases/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Protein Engineering , Biocatalysis , Fungal Proteins/genetics , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Bacillus/enzymology , Bacillus/genetics
6.
Nat Commun ; 15(1): 4226, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762502

ABSTRACT

Aerobic methanotrophic bacteria are considered strict aerobes but are often highly abundant in hypoxic and even anoxic environments. Despite possessing denitrification genes, it remains to be verified whether denitrification contributes to their growth. Here, we show that acidophilic methanotrophs can respire nitrous oxide (N2O) and grow anaerobically on diverse non-methane substrates, including methanol, C-C substrates, and hydrogen. We study two strains that possess N2O reductase genes: Methylocella tundrae T4 and Methylacidiphilum caldifontis IT6. We show that N2O respiration supports growth of Methylacidiphilum caldifontis at an extremely acidic pH of 2.0, exceeding the known physiological pH limits for microbial N2O consumption. Methylocella tundrae simultaneously consumes N2O and CH4 in suboxic conditions, indicating robustness of its N2O reductase activity in the presence of O2. Furthermore, in O2-limiting conditions, the amount of CH4 oxidized per O2 reduced increases when N2O is added, indicating that Methylocella tundrae can direct more O2 towards methane monooxygenase. Thus, our results demonstrate that some methanotrophs can respire N2O independently or simultaneously with O2, which may facilitate their growth and survival in dynamic environments. Such metabolic capability enables these bacteria to simultaneously reduce the release of the key greenhouse gases CO2, CH4, and N2O.


Subject(s)
Methane , Nitrous Oxide , Nitrous Oxide/metabolism , Methane/metabolism , Hydrogen-Ion Concentration , Oxidoreductases/metabolism , Oxidoreductases/genetics , Oxygen/metabolism , Oxidation-Reduction , Anaerobiosis , Methanol/metabolism , Hydrogen/metabolism , Oxygenases/metabolism , Oxygenases/genetics
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167188, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657913

ABSTRACT

The incidence of gallbladder cholesterol stones (GCS) increases rapidly among people living in high-altitude hypoxic environments compared to those in normoxic areas. Upregulation of hepatic hypoxia inducible factor 1α (Hif-1α) plays a key role in the formation of GCS. High plasma trimethylamine-N-oxide (TMAO) levels are positively correlated with the occurrence of GCS. We hypothesized that HIF-1α may upregulate TMAO levels by promoting the transcription of flavin-containing monooxygenase 3 (Fmo3), which eventually leads to GCS formation. Our study shows that in women, high plasma total cholesterol and apolipoprotein B were positively correlated with cholecystolithiasis and hypoxia. Hif-1α binds to the Fmo3 promoter and promotes Fmo3 expression. Hypoxia and lithogenic diet induce the expression of Hif-1α, Fmo3, TMAO and cholesterol tube transporters in the livers of mice, disturb the proportion of bile and plasma components, and induce the formation of GCS. In cell experiments, silencing Hif-1α downregulates the expression of Fmo3, TMAO and cholesterol tube transporters. In a mouse model of hypoxic cholecystolithiasis, silencing Hif-1α downregulates the expression of related genes, restores the proportion of bile and plasma lipid components, and reduces the formation of GCS. Our study shows that Hif-1α binds to the promoter region of Fmo3 and promotes Fmo3 transcription. Thus, it mediates the transcriptional activation of the TMA/Fmo3/TMAO pathway, upregulates the expression of ATP-binding cassettes (Abc) g5 and g8, and participates in the regulation of the occurrence of GCS in the plateau region.


Subject(s)
Cholesterol , Gallstones , Hypoxia-Inducible Factor 1, alpha Subunit , Methylamines , Oxygenases , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Animals , Humans , Female , Mice , Cholesterol/metabolism , Gallstones/metabolism , Gallstones/genetics , Gallstones/pathology , Oxygenases/metabolism , Oxygenases/genetics , Methylamines/metabolism , Male , Gallbladder/metabolism , Gallbladder/pathology , Middle Aged , Promoter Regions, Genetic , Hypoxia/metabolism , Hypoxia/genetics , Adult , Mice, Inbred C57BL , Cholecystolithiasis/metabolism , Cholecystolithiasis/genetics
8.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1076-1088, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658150

ABSTRACT

Flavin-containing monooxygenase (FMO) is the key enzyme in the biosynthesis pathway of CSOs with sulfur oxidation. In order to explore the molecular regulatory mechanism of FMO in the synthesis of onion CSOs, based on transcriptome database and phylogenetic analysis, one AcFMO gene that may be involved in alliin synthesis was obtained, the AcFMO had a cDNA of 1 374 bp and encoded 457 amino acids, which was evolutionarily closest to the AsFMO of garlic. Real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) indicated that AcFMO was the highest in the flowers and the lowest in the leaf sheaths. The results of subcellular localization showed that the AcFMO gene product was widely distributed throughout the cell A yeast expression vector was constructed, and the AcFMO gene was ecotopically overexpressed in yeast to further study the enzyme function in vitro and could catalyze the synthesis of alliin by S-allyl-l-cysteine. In summary, the cloning and functional identification of AcFMO have important reference value for understanding the biosynthesis of CSOs in onions.


Subject(s)
Cloning, Molecular , Cysteine/analogs & derivatives , Onions , Onions/genetics , Onions/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Cysteine/biosynthesis , Cysteine/metabolism , Oxygenases/genetics , Oxygenases/metabolism , Amino Acid Sequence , Phylogeny , Disulfides/metabolism , Molecular Sequence Data , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
9.
J Am Chem Soc ; 146(11): 7313-7323, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38452252

ABSTRACT

DUF692 multinuclear iron oxygenases (MNIOs) are an emerging family of tailoring enzymes involved in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs). Three members, MbnB, TglH, and ChrH, have been characterized to date and shown to catalyze unusual and complex transformations. Using a co-occurrence-based bioinformatic search strategy, we recently generated a sequence similarity network of MNIO-RiPP operons that encode one or more MNIOs adjacent to a transporter. The network revealed >1000 unique gene clusters, evidence of an unexplored biosynthetic landscape. Herein, we assess an MNIO-RiPP cluster from this network that is encoded in Proteobacteria and Actinobacteria. The cluster, which we have termed mov (for methanobactin-like operon in Vibrio), encodes a 23-residue precursor peptide, two MNIOs, a RiPP recognition element, and a transporter. Using both in vivo and in vitro methods, we show that one MNIO, homologous to MbnB, installs an oxazolone-thioamide at a Thr-Cys dyad in the precursor. Subsequently, the second MNIO catalyzes N-Cα bond cleavage of the penultimate Asn to generate a C-terminally amidated peptide. This transformation expands the reaction scope of the enzyme family, marks the first example of an MNIO-catalyzed modification that does not involve Cys, and sets the stage for future exploration of other MNIO-RiPPs.


Subject(s)
Imidazoles , Oligopeptides , Oxygenases , Protein Processing, Post-Translational , Oxygenases/genetics , Peptides/chemistry , Multigene Family , Catalysis
10.
Chemphyschem ; 25(11): e202400008, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38514394

ABSTRACT

Structure-guided engineering of a CHMO from Amycolatopsis methanolica (AmCHMO) was performed for asymmetric sulfoxidation activity and stereoselectivity toward omeprazole sulfide. Initially, combinatorial active-site saturation test (CASTing) and iteratively saturation mutagenesis (ISM) were performed on 5 residues at the "bottleneck" of substrate tunnel, and MT3 was successfully obtained with a specific activity of 46.19 U/g and R-stereoselectivity of 99 % toward OPS. Then, 4 key mutations affecting the stereoselectivity were identified through multiple rounds of ISM on residues at the substrate binding pocket region, resulting MT8 with an inversed stereoselectivity from 99 % (R) to 97 % (S). MT8 has a greatly compromised specific activity of 0.08 U/g. By introducing additional beneficial mutations, MT11 was constructed with significantly increased specific activity of 2.29 U/g and stereoselectivity of 97 % (S). Enlarged substrate tunnel is critical to the expanded substrate spectrum of AmCHMO, while reshaping of substrate binding pocket is important for stereoselective inversion. Based on MD simulation, pre-reaction states of MT3-OPSproR, MT8-OPSproS, and MT11-OPSproS were calculated to be 45.56 %, 17.94 %, and 28.65 % respectively, which further confirm the experimental data on activity and stereoselectivity. Our results pave the way for engineering distinct activity and stereoselectivity of BVMOs toward bulky prazole thioethers.


Subject(s)
Omeprazole , Oxygenases , Stereoisomerism , Oxygenases/metabolism , Oxygenases/chemistry , Oxygenases/genetics , Omeprazole/chemistry , Omeprazole/metabolism , Substrate Specificity , Actinomycetales/enzymology , Actinomycetales/metabolism , Catalytic Domain
11.
Int J Biochem Cell Biol ; 169: 106538, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38320728

ABSTRACT

Circadian genes play an important role in the field of drug metabolism. Flavin-containing monooxygenase 3 is a well-known phase I enzyme which participates in metabolism of many exogenous and endogenous substances, especially production of trimethylamine N-oxide. Here, we aimed to decipher diurnal rhythms of flavin-containing monooxygenase 3 expression and activity, and explore the regulation mechanism by clock genes. Our results showed that its mRNA and protein exhibited robust diurnal rhythms in mouse liver and cell lines. Consistently, significant alterations were observed for in vitro microsomal N-oxidation rates of procainamide, which kept in line with its protein expression at different time in wild-type and reverse erythroblastosis virus α knockout mice. Further, flavin-containing monooxygenase 3 was negatively regulated by E4 promoter-binding protein 4 in AML12 and Hepa1-6 cells, while it was positively influenced by reverse erythroblastosis virus α and brain and muscle ARNT-like protein-1. Moreover, luciferase reporter assays and electrophoretic mobility shift assays showed E4 promoter-binding protein 4 inhibited the transcription of flavin-containing monooxygenase 3 by binding to a D-box1 element (-1606/-1594 bp), while brain and muscle ARNT-like protein-1 positively activated the transcription via direct binding to three E-boxes (-863/-858 bp, -507/-498 bp, and -115/-104 bp) in this enzyme promoter. Taken together, this study would be helpful to reveal the mechanism of clock-controlled drug metabolism and facilitate the practice of chrono-therapeutics.


Subject(s)
Circadian Rhythm , Oxygenases , Animals , Mice , Mice, Inbred Strains , Oxygenases/genetics , Oxygenases/metabolism , Liver/metabolism
12.
Environ Res ; 250: 118492, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38373550

ABSTRACT

Dioxin-like pollutants (DLPs), such as polychlorinated biphenyl 126 (PCB 126), are synthetic chemicals classified as persistent organic pollutants. They accumulate in adipose tissue and have been linked to cardiometabolic disorders, including fatty liver disease. The toxicity of these compounds is associated with activation of the aryl hydrocarbon receptor (Ahr), leading to the induction of phase I metabolizing enzyme cytochrome P4501a1 (Cyp1a1) and the subsequent production of reactive oxygen species (ROS). Recent research has shown that DLPs can also induce the xenobiotic detoxification enzyme flavin-containing monooxygenase 3 (FMO3), which plays a role in metabolic homeostasis. We hypothesized whether genetic deletion of Fmo3 could protect mice, particularly in the liver, where Fmo3 is most inducible, against PCB 126 toxicity. To test this hypothesis, male C57BL/6 wild-type (WT) mice and Fmo3 knockout (Fmo3 KO) mice were exposed to PCB 126 or vehicle (safflower oil) during a 12-week study, at weeks 2 and 4. Various analyses were performed, including hepatic histology, RNA-sequencing, and quantitation of PCB 126 and F2-isoprostane concentrations. The results showed that PCB 126 exposure caused macro and microvesicular fat deposition in WT mice, but this macrovesicular fatty change was absent in Fmo3 KO mice. Moreover, at the pathway level, the hepatic oxidative stress response was significantly different between the two genotypes, with the induction of specific genes observed only in WT mice. Notably, the most abundant F2-isoprostane, 8-iso-15-keto PGE2, increased in WT mice in response to PCB 126 exposure. The study's findings also demonstrated that hepatic tissue concentrations of PCB 126 were higher in WT mice compared to Fmo3 KO mice. In summary, the absence of FMO3 in mice led to a distinctive response to dioxin-like pollutant exposure in the liver, likely due to alterations in lipid metabolism and storage, underscoring the complex interplay of genetic factors in the response to environmental toxins.


Subject(s)
Mice, Inbred C57BL , Mice, Knockout , Oxidative Stress , Oxygenases , Polychlorinated Biphenyls , Animals , Oxygenases/genetics , Oxygenases/metabolism , Polychlorinated Biphenyls/toxicity , Oxidative Stress/drug effects , Mice , Male , Liver/drug effects , Liver/metabolism , Environmental Pollutants/toxicity
13.
Org Lett ; 26(9): 1807-1812, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38393343

ABSTRACT

We have identified the biosynthetic gene cluster (hvm) for the sterol O-acyltransferase inhibitor helvamide (1) from the genome of Aspergillus rugulosus MST-FP2007. Heterologous expression of hvm in A. nidulans produced a previously unreported analog helvamide B (5). An α-ketoglutarate-dependent oxygenase Hvm1 was shown to catalyze intramolecular cyclization of 1 to yield 5. The biosynthetic branch to the related hancockiamides and helvamides was found to be controlled by the substrate selectivity of monomodular nonribosomal peptide synthetases.


Subject(s)
Ketoglutaric Acids , Oxygenases , Oxygenases/genetics , Oxygenases/metabolism , Sterol O-Acyltransferase/genetics , Sterol O-Acyltransferase/metabolism , Cyclization , Multigene Family , Peptide Synthases/metabolism
14.
Drug Metab Pharmacokinet ; 55: 100539, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38280279

ABSTRACT

Genetic variants of human flavin-containing monooxygenase 3 (FMO3) were investigated using an updated Japanese population panel containing 54,000 subjects (the previous panel contained 38,000 subjects). One stop codon mutation and six amino acid-substituted FMO3 variants were newly identified in the updated databank. Of these, two substituted variants (p.Thr329Ala and p.Arg492Trp) were previously identified in compound haplotypes with p.[(Glu158Lys; Glu308Gly)] and were associated with the metabolic disorder trimethylaminuria. Three recombinant FMO3 protein variants (p.Ser137Leu, p.Ala334Val, and p.Ile426Val) expressed in bacterial membranes had similar activities toward trimethylamine N-oxygenation (∼75-125 %) as wild-type FMO3 (117 min-1); however, the recombinant novel FMO3 variant Phe313Ile showed moderately decreased FMO3 catalytic activity (∼20 % of wild-type). Because of the known deleterious effects of FMO3 C-terminal stop codons, the novel truncated FMO3 Gly184Ter variant was suspected to be inactive. To easily identify the four impaired FMO3 variants (one stop codon mutation and three amino-acid substitutions) in the clinical setting, simple confirmation methods for these FMO3 variants are proposed using polymerase chain reaction/restriction fragment length polymorphism or allele-specific PCR methods. The updated whole-genome sequence data and kinetic analyses revealed that four of the seven single-nucleotide nonsense or missense FMO3 variants had moderately or severely impaired activity toward trimethylamine N-oxygenation.


Subject(s)
Methylamines , Oxygenases , Humans , Codon, Terminator , Japan , Oxygenases/genetics , Oxygenases/metabolism
15.
Article in English | MEDLINE | ID: mdl-38215804

ABSTRACT

Flavin-containing monooxygenases (FMOs) are a family of important drug oxygenation enzymes that, in humans, consist of five functional enzymes (FMO1-5) and a pseudogene (FMO6P). The tree shrew is a non-rodent primate-like species that is used in various biomedical studies, but its usefulness in drug metabolism research has not yet been investigated. In this study, tree shrew FMO1-6 cDNAs were isolated and characterized by sequence analysis, tissue expression, and metabolic function. Compared with human FMOs, tree shrew FMOs showed sequence identities of 85-90 % and 81-89 %, respectively, for cDNA and amino acids. Phylogenetic analysis showed that each tree shrew and human FMO were closely clustered. The genomic and genetic structures of the FMO genes were conserved in tree shrews and humans. Among the five tissue types analyzed (lung, heart, kidney, small intestine, and liver), FMO3 and FMO1 mRNAs were most abundant in liver and kidney, respectively. Recombinant tree shrew FMO1-6 proteins expressed in bacterial membranes all mediated benzydamine and trimethylamine N-oxygenations and methyl p-tolyl sulfide S-oxygenation. The selective human FMO3 substrate trimethylamine was predominantly metabolized by tree shrew FMO3. Additionally, tree shrew FMO6 was active toward trimethylamine, as is cynomolgus macaque FMO6, in contrast with the absence of activity of the human FMO6P pseudogene product. Tree shrew FMO1-6, which are orthologous to human FMOs (FMO1-5 and FMO6P) were identified, and tree shrew FMO3 has functional and molecular features generally comparable to those of human FMO3 as the predominant FMO in liver.


Subject(s)
Methylamines , Tupaia , Tupaiidae , Animals , Humans , Tupaia/genetics , Tupaia/metabolism , Tupaiidae/genetics , Tupaiidae/metabolism , Phylogeny , Oxygenases/genetics , Oxygenases/metabolism , Microsomes, Liver , Recombinant Proteins/metabolism , DNA, Complementary
16.
J Microbiol Biotechnol ; 34(4): 969-977, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38213292

ABSTRACT

Indigo is a valuable, natural blue dye that has been used for centuries in the textile industry. The large-scale commercial production of indigo relies on its extraction from plants and chemical synthesis. Studies are being conducted to develop methods for environment-friendly and sustainable production of indigo using genetically engineered microbes. Here, to enhance the yield of bioindigo from an E. coli whole-cell system containing tryptophanase (TnaA) and flavin-containing monooxygenase (FMO), we evaluated tryptophan transporters to improve the transport of aromatic compounds, such as indole and tryptophan, which are not easily soluble and passable through cell walls. Among the three transporters, Mtr, AroP, and TnaB, AroP enhanced indigo production the most. The combination of each transporter with AroP was also evaluated, and the combination of AroP and TnaB showed the best performance compared to the single transporters and two transporters. Bioindigo production was then optimized by examining the culture medium, temperature, isopropyl ß-D-1-thiogalactopyranoside concentration, shaking speed (rpm), and pH. The novel strain containing aroP and tnaB plasmid with tnaA and FMO produced 8.77 mM (2.3 g/l) of bioindigo after 66 h of culture. The produced bioindigo was further recovered using a simple method and used as a watercolor dye, showing good mixing with other colors and color retention for a relatively long time. This study presents an effective strategy for enhancing indigo production using a combination of transporters.


Subject(s)
Escherichia coli , Indigo Carmine , Indoles , Tryptophan , Tryptophan/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Indoles/metabolism , Indigo Carmine/metabolism , Tryptophanase/genetics , Tryptophanase/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Culture Media/chemistry , Oxygenases/genetics , Oxygenases/metabolism , Amino Acid Transport Systems/genetics , Amino Acid Transport Systems/metabolism , Plasmids/genetics , Metabolic Engineering/methods , Fermentation , Hydrogen-Ion Concentration , Coloring Agents/metabolism , Temperature
17.
Plant Physiol Biochem ; 206: 108253, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38086212

ABSTRACT

Durian (Durio zibethinus L.), popularly known as the "King of fruits," holds significant economic importance in Southeast Asia, including Thailand. During its ripening process, the phytohormone abscisic acid (ABA) content has been reported to increase. However, a comprehensive understanding of ABA's specific role in durian fruit ripening remains elusive. Furthermore, little is known about the molecular aspects of the carotenoid cleavage pathway in this iconic fruit. Therefore, we performed genome-wide identification of the carotenoid cleavage oxygenase (CCO) family in durian. This family includes the nine-cis-epoxycarotenoid dioxygenases (NCEDs) responsible for ABA production and the carotenoid cleavage dioxygenases exhibiting diverse substrate specificities. Through phylogenetic analysis, we classified 14 CCOs in durian into 8 distinct subfamilies. Notably, each DzCCO subfamily displayed a conserved motif composition. Cis-acting element prediction showed that cis-elements related to plant hormones and environmental stress responses were distributed in the DzCCO promoter. In addition, transcriptome analysis was performed to examine the expression pattern during the fruit development and ripening stages. Interestingly, DzNCED5a, a ripening-associated gene, exhibited the highest expression level at the ripe stage, outperforming other CCOs. Its expression markedly correlated with increased ABA contents during the ripening stages of both the "Monthong" variety and other durian cultivars. Transiently expressed DzNCED5a in Nicotiana benthamiana leaves confirmed its function in ABA biosynthesis. These findings highlight the involvement of DzNCED5a in ABA production and its potential importance in durian fruit ripening. Overall, this study provides insights into the significance of CCOs in durian fruit ripening.


Subject(s)
Bombacaceae , Dioxygenases , Bombacaceae/genetics , Fruit/metabolism , Phylogeny , Oxygenases/genetics , Oxygenases/metabolism , Dioxygenases/genetics , Carotenoids/metabolism , Abscisic Acid/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
18.
Bioresour Technol ; 393: 130098, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38040299

ABSTRACT

Isoprene has numerous industrial applications, including rubber polymer and potential biofuel. Microbial methane-based isoprene production could be a cost-effective and environmentally benign process, owing to a reduced carbon footprint and economical utilization of methane. In this study, Methylococcus capsulatus Bath was engineered to produce isoprene from methane by introducing the exogenous mevalonate (MVA) pathway. Overexpression of MVA pathway enzymes and isoprene synthase from Populus trichocarpa under the control of a phenol-inducible promoter substantially improved isoprene production. M. capsulatus Bath was further engineered using a CRISPR-base editor to disrupt the expression of soluble methane monooxygenase (sMMO), which oxidizes isoprene to cause toxicity. Additionally, optimization of the metabolic flux in the MVA pathway and culture conditions increased isoprene production to 228.1 mg/L, the highest known titer for methanotroph-based isoprene production. The developed methanotroph could facilitate the efficient conversion of methane to isoprene, resulting in the sustainable production of value-added chemicals.


Subject(s)
Methane , Methylococcus capsulatus , Methane/metabolism , Methylococcus capsulatus/genetics , Methylococcus capsulatus/metabolism , Oxygenases/genetics , Oxygenases/metabolism , Hemiterpenes/metabolism , Butadienes/metabolism
19.
Enzyme Microb Technol ; 174: 110381, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38134734

ABSTRACT

Indigo, an economically important dye, could be biosynthesized from indole by catalysis of the styrene monooxygenase StyAB. To enhance indigo biosynthesis, the styAB gene and its transcription regulator gene styS/styR in styrene catabolism were cloned from Pseudomonas putida and coexpressed in Escherichia coli. The presence of the intact regulator gene styS/styR dramatically increased the transcriptional levels of styA and styB by approximately 120-fold in the recombinant strain SRAB2 with coexpression of styS/styR and styAB compared to the control strain ABST with solo expression of styAB. A yield of 67.6 mg/L indigo was detected in strain SRAB2 after 24 h of fermentation with 120 µg/mL indole, which was approximately 14-fold higher than that in the control strain ABST. The maximum yield of indigo was produced from 160 µg/mL indole in fermentation of strain SRAB2. However, the addition of styrene to the media significantly inhibited the transcription of styA and styB and consequent indigo biosynthesis in recombinant E. coli strains. Furthermore, the substitution of indole with tryptophan as the fermentation substrate remarkably boosted indigo production, and the maximal yield of 565.6 mg/L was detected in strain SRAB2 in fermentation with 1.2 mg/mL tryptophan. The results revealed that the regulation of styAB transcription by the two-component regulator StyS/StyR in styrene catabolism in P. putida was effective in E. coli, which provided a new strategy for the development of engineered E. coli strains with the capacity for highly efficient indigo production.


Subject(s)
Escherichia coli , Indigo Carmine , Escherichia coli/genetics , Escherichia coli/metabolism , Tryptophan , Indoles/metabolism , Styrene/metabolism , Oxygenases/genetics , Oxygenases/metabolism
20.
BMC Plant Biol ; 23(1): 640, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38082240

ABSTRACT

Carotenoid cleavage oxygenase (CCO) is an enzyme capable of converting carotenoids into volatile, aromatic compounds and it plays an important role in the production of two significant plant hormones, i.e., abscisic acid (ABA) and strigolactone (SL). The cucumber plant genome has not been mined for genomewide identification of the CCO gene family. In the present study, we conducted a comprehensive genome-wide analysis to identify and thoroughly examine the CCO gene family within the genomic sequence of Cucumis sativus L. A Total of 10 CCO genes were identified and mostly localized in the cytoplasm and chloroplast. The CCO gene is divided into seven subfamilies i.e. 3 NCED, 3 CCD, and 1 CCD-like (CCDL) subfamily according to phylogenetic analysis. Cis-regulatory elements (CREs) analysis revealed the elements associated with growth and development as well as reactions to phytohormonal, biotic, and abiotic stress conditions. CCOs were involved in a variety of physiological and metabolic processes, according to Gene Ontology annotation. Additionally, 10 CCO genes were regulated by 84 miRNA. The CsCCO genes had substantial purifying selection acting upon them, according to the synteny block. In addition, RNAseq analysis indicated that CsCCO genes were expressed in response to phloem transportation and treatment of chitosan oligosaccharides. CsCCD7 and CsNCED2 showed the highest gene expression in response to the exogenous application of chitosan oligosaccharides to improve cold stress in cucumbers. We also found that these genes CsCCD4a and CsCCDL-a showed the highest expression in different plant organs with respect to phloem content. The cucumber CCO gene family was the subject of the first genome-wide report in this study, which may help us better understand cucumber CCO proteins and lay the groundwork for the gene family's future cloning and functional investigations.


Subject(s)
Arabidopsis , Chitosan , Cucumis sativus , Cucumis sativus/metabolism , Arabidopsis/genetics , Phylogeny , Chitosan/metabolism , Genome, Plant , Oxygenases/genetics , Plant Growth Regulators , Oligosaccharides , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL
...