Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.389
Filter
1.
J Ethnopharmacol ; 331: 118336, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38750983

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium officinale Kimura et Migo, known as "Tiepi Shihu" in traditional Chinese medicine, boasts an extensive history of medicinal use documented in the Chinese Pharmacopoeia. "Shen Nong Ben Cao Jing" records D. officinale as a superior herbal medicine for fortifying "Yin" and invigorating the five viscera. Erianin, a benzidine compound, emerges as a prominent active constituent derived from D. officinale, with the pharmacological efficacy of D. officinale closely linked to the anti-inflammatory properties of erianin. AIM OF THE STUDY: Acute lung injury (ALI) is a substantial threat to global public health, while P-selectin stands out as a promising novel target for treating acute inflammatory conditions. This investigation aims to explore the therapeutic potential of erianin in ALI treatment and elucidate the underlying mechanisms. EXPERIMENTAL DESIGN: The effectiveness of erianin in conferring protection against ALI was investigated through comprehensive histopathological and biochemical analyses of lung tissues and bronchoalveolar lavage fluid (BALF) in an in vivo model of LPS-induced ALI in mice. The impact of erianin on fMLP-induced neutrophil chemotaxis was quantitatively assessed using the Transwell and Zigmond chamber, respectively. To determine the therapeutic target of erianin and elucidate their binding capability, a series of sophisticated assays were employed, including drug affinity responsive target stability (DARTS) assay, cellular thermal shift assay (CETSA), and molecular docking analyses. RESULTS: Erianin demonstrated a significant alleviation of LPS-induced acute lung injury, characterized by reduced total cell and neutrophil counts and diminished total protein contents in BALF. Moreover, erianin exhibited a capacity to decrease proinflammatory cytokine production in both lung tissues and BALF. Notably, erianin effectively suppressed the activation of NF-κB signaling in the lung tissues of LPS- challenged mice; however, it did not exhibit in vitro inhibitory effects on inflammation in LPS-induced human pulmonary microvascular endothelial cells (HPMECs). Additionally, erianin blocked the adhesion and rolling of neutrophils on HPMECs. While erianin did not influence endothelial P-selectin expression or cytomembrane translocation, it significantly reduced the ligand affinity between P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1). CONCLUSIONS: Erianin inhibits P-selectin-mediated neutrophil adhesion to activated endothelium, thereby alleviating ALI. The present study highlights the potential of erianin as a promising lead for ALI treatment.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Neutrophils , P-Selectin , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Animals , Lipopolysaccharides/toxicity , Neutrophils/drug effects , Neutrophils/metabolism , P-Selectin/metabolism , Male , Mice , Cell Adhesion/drug effects , Anti-Inflammatory Agents/pharmacology , Humans , Lung/drug effects , Lung/metabolism , Lung/pathology , Bronchoalveolar Lavage Fluid , Mice, Inbred C57BL , Molecular Docking Simulation , Mice, Inbred BALB C , NF-kappa B/metabolism , Bibenzyls/pharmacology , Phenol
2.
J Transl Med ; 22(1): 412, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693516

ABSTRACT

BACKGROUND: Thromboinflammation involving platelet adhesion to endothelial surface-associated von Willebrand factor (VWF) has been implicated in the accelerated progression of non-culprit plaques after MI. The aim of this study was to use arterial endothelial molecular imaging to mechanistically evaluate endothelial-associated VWF as a therapeutic target for reducing remote plaque activation after myocardial infarction (MI). METHODS: Hyperlipidemic mice deficient for the low-density lipoprotein receptor and Apobec-1 underwent closed-chest MI and were treated chronically with either: (i) recombinant ADAMTS13 which is responsible for proteolytic removal of VWF from the endothelial surface, (ii) N-acetylcysteine (NAC) which removes VWF by disulfide bond reduction, (iii) function-blocking anti-factor XI (FXI) antibody, or (iv) no therapy. Non-ischemic controls were also studied. At day 3 and 21, ultrasound molecular imaging was performed with probes targeted to endothelial-associated VWF A1-domain, platelet GPIbα, P-selectin and vascular cell adhesion molecule-1 (VCAM-1) at lesion-prone sites of the aorta. Histology was performed at day 21. RESULTS: Aortic signal for P-selectin, VCAM-1, VWF, and platelet-GPIbα were all increased several-fold (p < 0.01) in post-MI mice versus sham-treated animals at day 3 and 21. Treatment with NAC and ADAMTS13 significantly attenuated the post-MI increase for all four molecular targets by > 50% (p < 0.05 vs. non-treated at day 3 and 21). On aortic root histology, mice undergoing MI versus controls had 2-4 fold greater plaque size and macrophage content (p < 0.05), approximately 20-fold greater platelet adhesion (p < 0.05), and increased staining for markers of platelet transforming growth factor-ß1 signaling. Accelerated plaque growth and inflammatory activation was almost entirely prevented by ADAMTS13 and NAC. Inhibition of FXI had no significant effect on molecular imaging signal or plaque morphology. CONCLUSIONS: Plaque inflammatory activation in remote arteries after MI is strongly influenced by VWF-mediated platelet adhesion to the endothelium. These findings support investigation into new secondary preventive therapies for reducing non-culprit artery events after MI.


Subject(s)
ADAMTS13 Protein , Myocardial Infarction , von Willebrand Factor , Animals , von Willebrand Factor/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/complications , ADAMTS13 Protein/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Mice , Plaque, Atherosclerotic/pathology , P-Selectin/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Male , Molecular Imaging , Aorta/pathology , Aorta/drug effects , Acetylcysteine/pharmacology , Acetylcysteine/therapeutic use , Mice, Inbred C57BL
3.
Biochem Biophys Res Commun ; 712-713: 149946, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38643717

ABSTRACT

Platelets are small anucleate cells that play a key role in thrombosis and hemostasis. Our group previously identified apolipoprotein A-IV (apoA-IV) as an endogenous inhibitor of thrombosis by competitive blockade of the αIIbß3 integrin on platelets. ApoA-IV inhibition of platelets was dependent on the N-terminal D5/D13 residues, and enhanced with absence of the C-terminus, suggesting it sterically hinders its N-terminal platelet binding site. The C-terminus is also the site of common apoA-IV polymorphisms apoA-IV-1a (T347S) and apoA-IV-2 (Q360H). Interestingly, both are linked with an increased risk of cardiovascular disease, however, the underlying mechanism remains unclear. Here, we generated recombinant apoA-IV and found that the Q360H or T347S polymorphisms dampened its inhibition of platelet aggregation in human platelet-rich plasma and gel-filtered platelets, reduced its inhibition of platelet spreading, and its inhibition of P-selectin on activated platelets. Using an ex vivo thrombosis assay, we found that Q360H and T347S attenuated its inhibition of thrombosis at both high (1800s-1) and low (300s-1) shear rates. We then demonstrate a conserved monomer-dimer distribution among apoA-IV WT, Q360H, and T347S and use protein structure modelling software to show Q360H and T347S enhance C-terminal steric hindrance over the N-terminal platelet-binding site. These data provide critical insight into increased cardiovascular risk for individuals with Q360H or T347S polymorphisms.


Subject(s)
Apolipoproteins A , Blood Platelets , Platelet Aggregation , Thrombosis , Humans , Thrombosis/genetics , Thrombosis/metabolism , Platelet Aggregation/drug effects , Platelet Aggregation/genetics , Blood Platelets/metabolism , Blood Platelets/drug effects , Polymorphism, Genetic , Apoprotein(a)/genetics , Apoprotein(a)/metabolism , Apoprotein(a)/chemistry , P-Selectin/genetics , P-Selectin/metabolism
4.
J Leukoc Biol ; 115(6): 996-998, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38527802

ABSTRACT

Glycosylated RNA molecules that can be bound by lectins have been demonstrated on the surfaces of leukocytes, but their physiologic function(s) was not known. A recent study (PMID 38262409) demonstrates that at least 1 function is to promote capture and rolling of neutrophils in the vasculature. Of interest, the neutrophil glycosylated RNA molecules bind to P-selectin but not E-selectin.


Subject(s)
Neutrophils , Humans , Neutrophils/metabolism , Animals , Glycosylation , Leukocyte Rolling , RNA/metabolism , E-Selectin/metabolism , P-Selectin/metabolism , Cell Membrane/metabolism
5.
Biorheology ; 59(3-4): 63-80, 2024.
Article in English | MEDLINE | ID: mdl-38461497

ABSTRACT

Leukocytes and platelets must adhere to the wall of blood vessels to carry out their protective functions in inflammation and haemostasis. Recruitment is critically dependent on rheological variables (wall shear rate and stress, red cell aggregation and haematocrit) which affect delivery to the vessel wall as well as velocities and forces experienced there. Leukocyte recruitment is efficient only up to wall shear rates of about 300 s-1 and usually restricted to low-shear post-capillary venules in inflammation. Being smaller, platelets experience lower velocities and shear forces adjacent to the wall and can adhere at much higher shear rates for haemostasis in arteries. In addition, we found quite different effects of variations in haematocrit or red cell aggregation on attachment of neutrophils or platelets, which also assist their separate recruitment in venules or arteries. However, it has become increasingly evident that inflammatory and thrombotic responses may occur together, with platelets promoting the adhesion and activation of neutrophils and monocytes. Indeed, it is 30 years since we demonstrated that platelets could cause neutrophils to aggregate in suspension and, when attached to a surface, could support selectin-mediated rolling of all leukocytes. Thrombin-activated platelets could further induce neutrophil activation and immobilisation. In some conditions, platelets could bind to intact endothelial monolayers and capture neutrophils or monocytes. Subsequently, we found that extracellular vesicles released by activated platelets (PEV) fulfilled similar functions when deposited on surfaces or bound to endothelial cells. In murine models, platelets or PEV could act as bridges for monocytes in inflamed vessels. Thus, leukocytes and platelets are rheologically adapted for their separate functions, while novel thrombo-inflammatory pathways using platelets or PEV may underlie pathogenic leukocyte recruitment.


Subject(s)
Erythrocyte Aggregation , Platelet Adhesiveness , Humans , Animals , Mice , Platelet Adhesiveness/physiology , Endothelial Cells , Blood Platelets/physiology , Leukocytes/physiology , Neutrophils , Rheology , Inflammation/metabolism , Cell Adhesion , P-Selectin/metabolism
6.
Vox Sang ; 119(5): 439-446, 2024 May.
Article in English | MEDLINE | ID: mdl-38385820

ABSTRACT

BACKGROUND AND OBJECTIVES: Platelet storage lesion (PSL) adversely affects the quality of platelet concentrates (PCs). Platelets are prone to activation during storage. Moreover, elevated free mitochondrial DNA (mtDNA) levels in PCs are associated with a higher risk of adverse transfusion reactions. Therefore, we aimed to evaluate the correlation between platelet activation markers and mtDNA release during PC storage. MATERIALS AND METHODS: Six PCs prepared by the platelet-rich plasma method were assessed for free mtDNA copy number using quantitative real-time PCR and CD62P (P-selectin) expression by flow cytometry on days 0 (PC collection day), 3, 5 and 7 of storage. Lactate dehydrogenase (LDH) activity, pH, platelet count, mean platelet volume (MPV) and platelet distribution width (PDW) were measured as well. The correlation between free mtDNA and other PSL parameters, and the correlation between all parameters, was determined. RESULTS: Significant increases in free mtDNA, MPV and PDW, and a significant decrease in platelet count and pH were observed. CD62P expression and LDH activity elevated significantly, particularly on storage days 5-7 and 0-3, respectively. Moreover, a moderate positive correlation (r = 0.61) was observed between free mtDNA and CD62P expression. The r values between free mtDNA and LDH, pH, platelet count, MPV and PDW were 0.81, -0.72, -0.49, 0.81 and 0.77, respectively. CONCLUSION: The interplay between platelet activation and mtDNA release in promoting PSL in PCs may serve as a promising target for future research on applying additive solutions and evaluating the quality of PCs to improve transfusion and clinical outcomes.


Subject(s)
Blood Platelets , Blood Preservation , DNA, Mitochondrial , P-Selectin , Platelet Activation , Humans , DNA, Mitochondrial/blood , DNA, Mitochondrial/metabolism , Blood Preservation/methods , Blood Platelets/metabolism , P-Selectin/metabolism , P-Selectin/blood , Male , Female , Platelet Count , Adult
7.
Microvasc Res ; 153: 104669, 2024 May.
Article in English | MEDLINE | ID: mdl-38360131

ABSTRACT

BACKGROUND: Coronary artery bypass grafting (CABG) is considered the choice treatment for patients suffering from coronary artery disease (CAD). In the inflammatory milieu of cardiopulmonary bypass (CPB), systemic inflammatory response syndrome (SIRS) can induce a platelet pro-inflammatory state which could exacerbate post-CABG inflammatory status while affecting hemostatic function in patients. Therefore, focusing on platelets, the study presented here attempted to evaluate the pro-inflammatory and immunomodulatory profile of platelets as well as pro-aggregatory status during CABG. METHODS: Platelets from patients undergoing CABG were subjected to flowcytometry analysis to evaluate P-selectin and CD40L expressions and PAC-1 binding in five intervals of 24 h before surgery, immediately, 2 h, 24 h, and one week after surgery. Moreover, intra-platelet TGF-ß1 was also examined with western blotting. RESULTS: Data showed increases of P-selectin and CD40L expressions in patients, with the meaningful loss of platelet contents of TGF-ß1 after CABG (p < 0.001), where the changes tended to recover by day 7 of surgery while remaining above baseline (p < 0.001). Meanwhile, no significant change in PAC-1 binding capacity was shown. CONCLUSION: The study presented here suggests that although the release of pro-inflammatory substances from platelets during CABG supports the post-operative inflammatory state, platelets are not pro-aggregatory enough to enhance thrombotic events after surgery. Whilst these observations could be due to successful medical interventions to optimize hemostasis during and after surgery, post-CABG reversal of anticoagulant by protamine is considered as another factor that may also have contributed to preventing pro-aggregatory but not pro-inflammatory and immunomodulatory functions of platelets.


Subject(s)
P-Selectin , Transforming Growth Factor beta1 , Humans , Transforming Growth Factor beta1/metabolism , P-Selectin/metabolism , CD40 Ligand , Coronary Artery Bypass/adverse effects , Phenotype , Blood Platelets/metabolism
8.
Mol Biotechnol ; 66(5): 932-947, 2024 May.
Article in English | MEDLINE | ID: mdl-38184492

ABSTRACT

Platelets are one of the coagulation cells. When platelet activation occurs, many mediators are released and affect endothelial cells (ECs) and lead to endothelial dysfunction (ED). ED plays an important role in the pathogenesis of many diseases, including cardiovascular disease (CVD). Platelet are of important factors in ED. The release of mediators by platelets causes the stimulation of inflammatory pathways, oxidative stress, and apoptosis, which ultimately result in ED.On the other hand, platelet activation in CVD patients can be associated with a bad prognosis. Platelet activation can increase the level of markers such as p-selectin in the serum. Also, in this study, we have discussed the role of platelet as a diagnostic factor, as well as its use as a treatment option. In addition, we discussed some of the molecular pathways that are used to target platelet activation.


Subject(s)
Blood Platelets , Platelet Activation , Humans , Blood Platelets/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/blood , Endothelial Cells/metabolism , Oxidative Stress , Biomarkers/blood , P-Selectin/metabolism
9.
Sci Rep ; 14(1): 1756, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38243063

ABSTRACT

Dissemination of multiple myeloma into the bone marrow proceeds through sequential steps mediated by a variety of adhesion molecules and chemokines that eventually results in the extravasation of malignant plasma cells into this protective niche. Selectins are a class of C-type lectins that recognize carbohydrate structures exposed on blood borne cells and participate in the first step of the extravasation cascade, serving as brakes to slow down circulating cells enabling them to establish firm adhesion onto the endothelium. Myeloma cells enriched for the expression of selectin ligands present an aggressive disease in vivo that is refractory to bortezomib treatment and can be reverted by small molecules targeting E-selectin. In this study, we have defined the molecular determinants of the selectin ligands expressed on myeloma cells. We show that PSGL-1 is the main protein carrier of sialyl Lewisa/x-related structures in myeloma. PSGL-1 decorated with sialyl Lewisa/x is essential for P-selectin binding but dispensable for E-selectin binding. Moreover, sialylation is required for E-selectin engagement whereas high affinity binding to P-selectin occurs even in the absence of sialic acid. This study provides further knowledge on the biology of selectin ligands in myeloma, opening the way to their clinical application as diagnostic tools and therapeutic targets.


Subject(s)
E-Selectin , Membrane Glycoproteins , Multiple Myeloma , P-Selectin , Sialyl Lewis X Antigen , Humans , Cell Adhesion , E-Selectin/metabolism , Ligands , Multiple Myeloma/metabolism , P-Selectin/metabolism , Membrane Glycoproteins/metabolism , Cell Line, Tumor
10.
Biomed Pharmacother ; 171: 116108, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218079

ABSTRACT

Metastasis is the leading cause of cancer-related deaths. Despite this relevance, there is no specific therapy targeting metastasis. The interaction of the tumor cell with platelets, forming microemboli is crucial for successful hematogenous dissemination. Heparin disrupts it by a P-selectin-mediated event. However, its clinical use for this purpose is hindered by the requirement of high doses, leading to anticoagulant-related side effects. In this study, we obtained a low-anticoagulant heparin through the fractionation of a pharmaceutical bovine heparin. This derivative was referred to as LA-hep and we investigated its efficacy in inhibiting metastases and explored its capacity of suppressing the interaction between tumor cells and platelets. Our data revealed that LA-hep is as efficient as porcine unfractionated heparin in attenuating lung metastases from melanoma and colon adenocarcinoma cells in an assay with a single intravenous administration. It also prevents platelet arrest shortly after cell injection in wild-type mice and suppresses melanoma-platelets interaction in vitro. Moreover, LA-hep blocks P-selectin's direct binding to tumor cells and platelet aggregation, providing further evidence for the role of P-selectin as a molecular target. Even in P-selectin-depleted mice which developed a reduced number of metastatic foci, both porcine heparin and LA-hep further inhibited metastasis burden. This suggests evidence of an additional mechanism of antimetastatic action. Therefore, our results indicate a dissociation between the heparin anticoagulant and antimetastatic effects. Considering the simple and highly reproducible methodology used to purify LA-hep along with the data presented here, LA-hep emerges as a promising drug for future use in preventing metastasis in cancer patients.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Melanoma , Humans , Animals , Cattle , Mice , Heparin/pharmacology , Anticoagulants/pharmacology , P-Selectin/metabolism , Melanoma/pathology , Adenocarcinoma/pathology , Colonic Neoplasms/pathology , Blood Platelets/metabolism , Pharmaceutical Preparations/metabolism , Neoplasm Metastasis/pathology
11.
Br J Haematol ; 204(1): 346-351, 2024 01.
Article in English | MEDLINE | ID: mdl-37722599

ABSTRACT

Plasma histamine levels are increased in patients with sickle cell disease (SCD), potentially promoting endothelial P-selectin expression and vaso-occlusion via histamine type 2 (H2) receptors. We conducted a prospective, non-comparative, single-centre study to determine whether famotidine, a H2 receptor antagonist, reduces P-selectin expression in SCD children. The median plasma P-selectin level was significantly reduced after 29 days of oral famotidine (53.2 ng/mL [IQR: 46.7-63.4] vs. 69.9 ng/mL [IQR: 53.6-84.2], median difference -10.2 ng/mL [IQR: -21.8 to -2.7], p = 0.005) in 28 patients. No effect was observed on other adhesion molecules, inflammation or haemolysis markers, except decreased reticulocyte count. No adverse events deemed related to famotidine were observed. Randomized controlled trials are now needed to assess the efficacy of famotidine in preventing vaso-occlusion in SCD.


Subject(s)
Anemia, Sickle Cell , Famotidine , Child , Humans , Famotidine/therapeutic use , P-Selectin/metabolism , Histamine , Prospective Studies
12.
Bioorg Med Chem ; 98: 117553, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38128297

ABSTRACT

Neutrophil binding to vascular P- and E-selectin is the rate-limiting step in the recruitment of immune cells to sites of inflammation. Many diseases, including sickle cell anemia, post-myocardial infarction reperfusion injury, and acute respiratory distress syndrome are characterized by dysregulated inflammation. We have recently reported sialyl Lewisx analogues as potent antagonists of P- and E-selectin and demonstrated their in vivo immunosuppressive activity. A key component of these molecules is a tartrate diester that serves as an acyclic tether to orient the fucoside and the galactoside moiety in the required gauche conformation for optimal binding. The next stage of our study involved attaching an extended carbon chain onto one of the esters. This chain could be utilized to tether other pharmacophores, lipids, and contrast agents in the context of enhancing pharmacological applications through the sialyl Lewisx / receptor-mediated mechanism. Herein, we report our preliminary studies to generate a small library of tartrate based sialyl Lewisx analogues bearing extended carbon chains. Anionic charged chemical entities are attached to take advantage of proximal charged amino acids in the carbohydrate recognition domain of the selectin receptors. Starting with a common azido intermediate, synthesized using copper-catalyzed Huisgen 1,3-dipolar cycloadditions, these molecules demonstrate E- and P-selectin binding properties.


Subject(s)
E-Selectin , P-Selectin , Humans , P-Selectin/metabolism , E-Selectin/metabolism , Tartrates , Sialyl Lewis X Antigen , Oligosaccharides/chemistry , Binding Sites , Carbon , Inflammation , Cell Adhesion
13.
Cell Rep ; 42(12): 113501, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38039128

ABSTRACT

Upon proinflammatory challenges, endothelial cell surface presentation of the leukocyte receptor P-selectin, together with the stabilizing co-factor CD63, is needed for leukocyte capture and is mediated via demand-driven exocytosis from the Weibel-Palade bodies that fuse with the plasma membrane. We report that neutrophil recruitment to activated endothelium is significantly reduced in mice deficient for the endolysosomal cation channel TPC2 and in human primary endothelial cells with pharmacological TPC2 block. We observe less CD63 signal in whole-mount stainings of proinflammatory-activated cremaster muscles from TPC2 knockout mice. We find that TPC2 is activated and needed to ensure the transfer of CD63 from endolysosomes via Weibel-Palade bodies to the plasma membrane to retain P-selectin on the cell surface of human primary endothelial cells. Our findings establish TPC2 as a key element to leukocyte interaction with the endothelium and a potential pharmacological target in the control of inflammatory leukocyte recruitment.


Subject(s)
P-Selectin , Two-Pore Channels , Mice , Humans , Animals , P-Selectin/metabolism , Endothelial Cells/metabolism , Weibel-Palade Bodies/metabolism , Cell Adhesion , Leukocytes/metabolism , Endothelium, Vascular/metabolism
14.
Front Immunol ; 14: 1265344, 2023.
Article in English | MEDLINE | ID: mdl-37841279

ABSTRACT

Background: Excessive neutrophil extracellular traps (NETs) is involved in the progression of acute pancreatitis (AP) but the mechanisms controlling NETs formation in AP are not fully understood. Therefore, our study sought to investigate the mechanism of the highly expressed P-selectin stimulating the formation of NETs in AP. Methods: NETs formation was detected by flow cytometry, immunofluorescence staining, and cf-DNA and MPO-DNA complexes were measured as biomarkers of NETs formation. Neutrophils treated with P-selectin and pharmacological inhibitors were examined by western blot, immunofluorescence staining and flow cytometry. Mouse model of AP was established by caerulein and the effect of inhibiting P-selectin by PSI-697 on the level of NETs and PAD4 in pancreatic tissue was observed. The severity of AP was evaluated by histopathological score and the detection of serum amylase and lipase. Results: Patients with AP had elevated levels of NETs and P-selectin compared with healthy volunteers. Stimulation of P-selectin up-regulated the expression of PSGL-1, increased the phosphorylation of Syk, mediated intracellular calcium signal and led to the activation and expression of PAD4, which modulated NETs formation in neutrophils. Pretreament with PSI-697 blunted NETs formation and PAD4 expression in the pancreatic tissue, and ameliorated the severity of AP in mice. Conclusion: Taken together, these results suggest that P-selectin induces NETs through PSGL-1 and its downstream Syk/Ca2+/PAD4 signaling pathway, and that targeting this pathway might be a promising strategy for the treatment of AP.


Subject(s)
Extracellular Traps , Pancreatitis , Humans , Mice , Animals , Extracellular Traps/metabolism , Pancreatitis/metabolism , Acute Disease , P-Selectin/metabolism , DNA/metabolism
15.
Med Oncol ; 40(11): 338, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37870739

ABSTRACT

P-selectin, a cell adhesion molecule of the selectin family, is expressed on the surface of activated endothelial cells (ECs) and platelets. Binding of P-selectin to P-selectin glycoprotein ligand-1 (PSGL-1) supports the leukocytes capture and rolling on stimulated ECs and increases the aggregation of leukocytes and activated platelets. Cancer cachexia is a systemic inflammation disorder characterized by metabolic disturbances, reduced body weight, loss of appetite, fat depletion, and progressive muscle atrophy. Cachexia status is associated with increased pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), which activates ECs to release P-selectin. Single-nucleotide polymorphisms (SNPs) loci of P-selectin encoding gene SELP are associated with higher level of plasma P-selectin and increase the susceptibility to cachexia in cancer patients. Elevated P-selectin expression has been observed in the hypothalamus, liver, and gastrocnemius muscle in animal models with cancer cachexia. Increased P-selectin may cause excessive inflammatory processes, muscle atrophy, and blood hypercoagulation, thus facilitating the development of cancer cachexia. In this review, physiological functions of P-selectin and its potential roles in cancer cachexia have been summarized. We also discuss the therapeutic potential of P-selectin inhibitors for the treatment of cancer cachexia.


Subject(s)
Cachexia , Neoplasms , Animals , Humans , Cachexia/etiology , P-Selectin/genetics , P-Selectin/metabolism , Endothelial Cells/metabolism , Neoplasms/complications , Muscular Atrophy
16.
Stem Cell Res Ther ; 14(1): 300, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37864264

ABSTRACT

BACKGROUND: Granulocyte colony-stimulating factor (G-CSF)-mediated mobilization of hematopoietic stem cells (HSCs) is a well-established method to prepare HSCs for transplantation nowadays. A sufficient number of HSCs is critical for successful HSC transplantation. However, approximately 2-6% of healthy stem cell donors are G-CSF-poor mobilizers for unknown reasons; thus increasing the uncertainties of HSC transplantation. The mechanism underlining G-CSF-mediated HSC mobilization remains elusive, so detailed mechanisms and an enhanced HSC mobilization strategy are urgently needed. Evidence suggests that P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) are one of the cell-cell adhesion ligand-receptor pairs for HSCs to keep contacting bone marrow (BM) stromal cells before being mobilized into circulation. This study hypothesized that blockage of PSGL-1 and P-selectin may disrupt HSC-stromal cell interaction and facilitate HSC mobilization. METHODS: The plasma levels of soluble P-selectin (sP-sel) before and after G-CSF administration in humans and male C57BL/6J mice were analyzed using enzyme-linked immunosorbent assay. Male mice with P-selectin deficiency (Selp-/-) were further employed to investigate whether P-selectin is essential for G-CSF-induced HSC mobilization and determine which cell lineage is sP-sel derived from. Finally, wild-type mice were injected with either G-CSF or recombinant sP-sel to investigate whether sP-sel alone is sufficient for inducing HSC mobilization and whether it accomplishes this by binding to HSCs and disrupting their interaction with stromal cells in the BM. RESULTS: A significant increase in plasma sP-sel levels was observed in humans and mice following G-CSF administration. Treatments of G-CSF induced a decrease in the level of HSC mobilization in Selp-/- mice compared with the wild-type (Selp+/+) controls. Additionally, the transfer of platelets derived from wild-type mice can ameliorate the defected HSC mobilization in the Selp-/- recipients. G-CSF induces the release of sP-sel from platelets, which is sufficient to mobilize BM HSCs into the circulation of mice by disrupting the PSGL-1 and P-selectin interaction between HSCs and stromal cells. These results collectively suggested that P-selectin is a critical factor for G-CSF-induced HSC mobilization. CONCLUSIONS: sP-sel was identified as a novel endogenous HSC-mobilizing agent. sP-sel injections achieved a relatively faster and more convenient regimen to mobilize HSCs in mice than G-CSF. These findings may serve as a reference for developing and optimizing human HSC mobilization in the future.


Subject(s)
Hematopoietic Stem Cell Mobilization , P-Selectin , Male , Mice , Humans , Animals , Hematopoietic Stem Cell Mobilization/methods , P-Selectin/genetics , P-Selectin/metabolism , Mice, Inbred C57BL , Hematopoietic Stem Cells/metabolism , Granulocyte Colony-Stimulating Factor/pharmacology , Granulocyte Colony-Stimulating Factor/metabolism , Recombinant Proteins/pharmacology
17.
Neurol Neurochir Pol ; 57(4): 379-386, 2023.
Article in English | MEDLINE | ID: mdl-37526174

ABSTRACT

INTRODUCTION: Our study assessed changes in concentrations of serum markers for brain damage and blood-brain barrier (BBB) dysfunction in untreated and treated Wilson's disease (WD) patients, and examined correlations between these changes and neurological impairment. OBJECTIVE: These results hold the potential to determine BBB impairment and neurological advancement in WD to develop the most effective treatment for patients with severe neurological deterioration. MATERIAL AND METHODS: The study groups included 171 patients with WD (77 with hepatic and 94 with neurological manifestations), treated either for up to 5 or 15 years, and 88 healthy controls. Serum concentrations of intercellular adhesion molecule 1 (ICAM1), P-selectin, matrix metallopeptidase 9 (MMP9), glial fibrillary acidic protein (GFAP), and S100 calcium-binding protein B (S100B) were measured before and during anti-copper treatment. The Unified Wilson's disease Rating Scale (UWDRS) was used to assess neurological advancement. RESULTS: ICAM1 concentrations were elevated before and during anti-copper treatment compared to controls (p < 0.01), but therapy led to substantial decreases both in patients with hepatic (p < 0.01) and in patients with neurological manifestations (p < < 0.05). P-selectin concentrations remained elevated before and during treatment (p < 0.05) regardless of the treatment duration and disease form. MMP9 concentrations before treatment were lower (p < 0.05), but reached control levels during treatment. GFAP concentrations were significantly elevated only in untreated patients with neurological symptoms in the longer-treated group compared to controls (p < 0.05). A significant reduction during treatment was observed only in the shorter-treated neurological group (p < 0.05). No substantial changes were observed in S100B. Only ICAM1 concentrations positively correlated (r = 0.27, p < 0.001) with the UWDRS. CONCLUSIONS: Our results provide evidence of endothelial activation in WD. However, inconclusive GFAP results, and no increase in S100B, do not allow us to conclude whether the reactive gliosis is not prominent or alternatively whether the BBB is disrupted. Elevated ICAM1 concentrations and their correlation with neurological advancement indicate BBB impairment. A decrease in ICAM1 during treatment suggests that the inflammatory process is reduced, and the BBB partially repaired. Decreased MMP9 concentrations may be the result of active liver fibrosis and higher copper concentrations. Elevated P-selectin concentrations indicate a systemic inflammatory process.


Subject(s)
Hepatolenticular Degeneration , Humans , Hepatolenticular Degeneration/complications , Hepatolenticular Degeneration/drug therapy , P-Selectin/metabolism , Blood-Brain Barrier/metabolism , Matrix Metalloproteinase 9/metabolism , Copper/metabolism
18.
Thromb Haemost ; 123(12): 1140-1150, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37517407

ABSTRACT

BACKGROUND: Cirrhotic patients display an increased risk for both bleeding and thrombosis. We investigated platelet activation across Child-Pugh stages (CPSs) and portal hypertension (PH) severity. MATERIAL AND METHODS: A total of 110 cirrhotic patients were prospectively included. CPS and hepatic venous pressure gradient (HVPG) were determined. Platelet surface expression of P-selectin and activated glycoprotein (GP) IIb/IIIa were measured by flow cytometry before/after stimulation with protease-activated receptor (PAR)-1 (thrombin receptor activating peptide, TRAP) and PAR-4 (AYPGKF) agonists, epinephrine, and lipopolysaccharide (LPS). RESULTS: Platelet count was similar across CPS but lower with increasing PH severity. Expression of P-selectin and activated GPIIb/IIIa in response to TRAP and AYPGKF was significantly reduced in platelets of CPS-B/C versus CPS-A patients (all p < 0.05). Platelet P-selectin expression upon epinephrine and LPS stimulation was reduced in CPS-C patients, while activated GPIIb/IIIa in response to these agonists was lower in CPS-B/C (all p < 0.05). Regarding PH severity, P-selectin and activated GPIIb/IIIa in response to AYPGKF were lower in HVPG ≥20 mmHg patients (both p < 0.001 vs. HVPG < 10 mmHg). Similarly, activated GPIIb/IIIa was lower in HVPG ≥20 mmHg patients after TRAP stimulation (p < 0.01 vs. HVPG < 10 mmHg). The lower platelet surface expression of P-selectin and activated GPIIb/IIIa upon stimulation of thrombin receptors (PAR-1/PAR-4) in CPS-B/C and HVPG ≥20 mmHg patients was paralleled by reduced antithrombin-III levels in those patients (all p < 0.05). Overall, PAR-1- and PAR-4-mediated platelet activation correlated with antithrombin-III levels (p < 0.001). CONCLUSION: Platelet responsiveness decreases with increasing severity of liver cirrhosis and PH but is potentially counterbalanced by lower antithrombin-III levels.


Subject(s)
Hypertension, Portal , P-Selectin , Humans , P-Selectin/metabolism , Prospective Studies , Lipopolysaccharides/pharmacology , Blood Platelets/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Platelet Activation , Receptor, PAR-1/metabolism , Anticoagulants/pharmacology , Liver Cirrhosis/complications , Liver Cirrhosis/diagnosis , Hypertension, Portal/diagnosis , Hypertension, Portal/etiology , Epinephrine/pharmacology , Antithrombins/metabolism , Platelet Aggregation
19.
J Chem Inf Model ; 63(17): 5604-5618, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37486087

ABSTRACT

Selectins and their ability to interact with specific ligands are a cornerstone in cell communication. Over the last three decades, a considerable wealth of experimental and molecular modeling insights into their structure and modus operandi were gathered. Nonetheless, explaining the role of individual selectin residues on a quantitative level remained elusive, despite its importance in understanding the structure-function relationship in these molecules and designing their inhibitors. This work explores essential interactions of selectin-ligand binding, employing a multiscale approach that combines molecular dynamics, quantum-chemical calculations, and residue interaction network models. Such an approach successfully reproduces most of the experimental findings. It proves to be helpful, with the potential for becoming an established tool for quantitative predictions of residue contribution to the binding of biomolecular complexes. The results empower us to quantify the importance of particular residues and functional groups in the protein-ligand interface and to pinpoint differences in molecular recognition by the three selectins. We show that mutations in the E-, L-, and P-selectins, e.g., different residues in positions 46, 85, 97, and 107, present a crucial difference in how the ligand is engaged. We assess the role of sulfation of tyrosine residues in PSGL-1 and suggest that TyrSO3- in position 51 interacting with Arg85 in P-selectin is a significant factor in the increased affinity of P-selectin to PSGL-1 compared to E- and L-selectins. We propose an original pharmacophore targeting five essential PSGL-binding sites based on the analysis of the selectin···PSGL-1 interactions.


Subject(s)
P-Selectin , Selectins , P-Selectin/metabolism , Sialyl Lewis X Antigen , Ligands , Cell Adhesion
20.
Int Immunopharmacol ; 122: 110610, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37453154

ABSTRACT

Identifying individuals and factors associated with severe cases of COVID-19 is crucial as the pandemic continues to spread globally. Effective biomarkers for predicting severe cases are essential for optimizing clinical management, therapy, and preventing unfavorable outcomes. This exploratory observational study aimed to investigate the expression of dysregulated immune response genes (ARG1, NOS2, ITGA4, and SELPLG) in total leukocytes, plasmatic levels of P-selectin and PSGL-1, and their clinical associations in patients with mild and severe COVID-19. Data from 117 confirmed COVID-19 patients (severe = 58, mild = 59) were collected upon admission. Gene expression was measured using RT-qPCR, and plasma protein levels assessed with ELISA assay. The severe COVID-19 patient group had a higher median age of 62.0 (p = 0.0001), a higher proportion of black individuals (86.2%, p < 0.0001), and more males (65.5%, p = 0.007). The neutrophil-lymphocyte ratio (NLR) and platelet-lymphocyte ratio (PLR) were significantly higher in the severe COVID-19 patient group (p < 0.0001), indicating ongoing systemic inflammation. Severe COVID-19 patients also exhibited increased expression of ARG1 (p < 0.05) and SELPLG (p < 0.0001) genes, as well as higher concentrations of soluble P-selectin (p < 0.005) and PSGL-1 (p < 0.05) proteins. Multivariate analysis revealed that NLR, PLR, the expression of SELPLG and sPSGL-1 were independent predictors of COVID-19 severity. In conclusion, this study suggests that biomarkers of endothelial dysfunction and dysregulated leukocyte responses are associated with COVID-19 severity, serving as promising predictive tools for optimizing clinical management and patient monitoring.


Subject(s)
COVID-19 , Vascular Diseases , Male , Humans , P-Selectin/metabolism , COVID-19/metabolism , Platelet Count , Biomarkers , Neutrophils/metabolism , Immunity , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...