Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 632
Filter
1.
Biomolecules ; 14(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38927010

ABSTRACT

Nuclear hormone receptors exist in dynamic equilibrium between transcriptionally active and inactive complexes dependent on interactions with ligands, proteins, and chromatin. The present studies examined the hypothesis that endogenous ligands activate peroxisome proliferator-activated receptor-ß/δ (PPARß/δ) in keratinocytes. The phorbol ester treatment or HRAS infection of primary keratinocytes increased fatty acids that were associated with enhanced PPARß/δ activity. Fatty acids caused PPARß/δ-dependent increases in chromatin occupancy and the expression of angiopoietin-like protein 4 (Angptl4) mRNA. Analyses demonstrated that stearoyl Co-A desaturase 1 (Scd1) mediates an increase in intracellular monounsaturated fatty acids in keratinocytes that act as PPARß/δ ligands. The activation of PPARß/δ with palmitoleic or oleic acid causes arrest at the G2/M phase of the cell cycle of HRAS-expressing keratinocytes that is not found in similarly treated HRAS-expressing Pparb/d-null keratinocytes. HRAS-expressing Scd1-null mouse keratinocytes exhibit enhanced cell proliferation, an effect that is mitigated by treatment with palmitoleic or oleic acid. Consistent with these findings, the ligand activation of PPARß/δ with GW0742 or oleic acid prevented UVB-induced non-melanoma skin carcinogenesis, an effect that required PPARß/δ. The results from these studies demonstrate that PPARß/δ has endogenous roles in keratinocytes and can be activated by lipids found in diet and cellular components.


Subject(s)
Keratinocytes , PPAR delta , PPAR-beta , Stearoyl-CoA Desaturase , Keratinocytes/metabolism , Keratinocytes/drug effects , PPAR-beta/metabolism , PPAR-beta/genetics , Animals , Mice , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , PPAR delta/metabolism , PPAR delta/genetics , Fatty Acids/metabolism , Angiopoietin-Like Protein 4/metabolism , Angiopoietin-Like Protein 4/genetics , Humans , Oleic Acid/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Fatty Acids, Monounsaturated/pharmacology , Fatty Acids, Monounsaturated/metabolism , Skin Neoplasms/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/pathology
2.
J Med Food ; 27(6): 521-532, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38651680

ABSTRACT

To probe the functions of Aster glehni (AG) extract containing various caffeoylquinic acids on dyslipidemia, obesity, and skeletal muscle-related diseases focused on the roles of skeletal muscle, we measured the levels of biomarkers involved in oxidative phosphorylation and type change of skeletal muscle in C2C12 cells and skeletal muscle tissues from apolipoprotein E knockout (ApoE KO) mice. After AG extract treatment in cell and animal experiments, western blotting, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA) were used to estimate the levels of proteins that participated in skeletal muscle type change and oxidative phosphorylation. AG extract elevated protein expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), phosphorylated 5'-AMP-activated protein kinase (p-AMPK), peroxisome proliferator-activated receptor beta/delta (PPARß/δ), myoblast determination protein 1 (MyoD), and myoglobin in skeletal muscle tissues. Furthermore, it elevated the ATP concentration. However, protein expression of myostatin was decreased by AG treatment. In C2C12 cells, increments of MyoD, myoglobin, myosin, ATP-producing pathway, and differentiation degree by AG were dependent on PPARß/δ and caffeoylquinic acids. AG extract can contribute to the amelioration of skeletal muscle inactivity and sarcopenia through myogenesis in skeletal muscle tissues from ApoE KO mice, and function of AG extract may be dependent on PPARß/δ, and the main functional constituents of AG are trans-5-O-caffeoylquinic acid and 3,5-O-dicaffeoylquinic acid. In addition, in skeletal muscle, AG has potent efficacies against dyslipidemia and obesity through the increase of the type 1 muscle fiber content to produce more ATP by oxidative phosphorylation in skeletal muscle tissues from ApoE KO mice.


Subject(s)
Mice, Knockout , Muscle Development , Muscle, Skeletal , PPAR delta , PPAR-beta , Plant Extracts , Quinic Acid , Animals , Mice , Quinic Acid/analogs & derivatives , Quinic Acid/pharmacology , Plant Extracts/pharmacology , PPAR-beta/metabolism , PPAR-beta/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle Development/drug effects , PPAR delta/metabolism , PPAR delta/genetics , Male , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Humans , MyoD Protein/metabolism , MyoD Protein/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mice, Inbred C57BL , AMP-Activated Protein Kinases/metabolism
3.
Phytomedicine ; 129: 155587, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38608598

ABSTRACT

BACKGROUND: Osteoporosis is a prevalent metabolic bone disease in older adults. Peroxisome proliferator-activated receptor ß (PPARß), the most abundant PPAR isotype expressed in bone tissues, plays a critical role in regulating the energy metabolism of osteoblasts. However, the botanical compounds targeting PPARß for the treatment of osteoporosis remain largely unexplored. PURPOSE: To discover a potent PPARß agonist from botanical compounds, as well as to investigate the anti-osteoporosis effects and to elucidate the underlying mechanisms of the newly identified PPARß agonist. METHODS: The PPARß agonist effects of botanical compounds were screened by an in vitro luciferase reporter gene assay. The PPARß agonist effects of pectolinarigenin (PEC) in bone marrow mesenchymal stromal cells (BMSCs) were validated by Western blotting. RNA-seq transcriptome analyses were conducted to reveal the underlying osteoporosis mechanisms of PEC in BMSCs. The PPARß antagonist (GSK0660) and Wnt signaling inhibitor (XAV969) were used to explore the role of the PPARß and Wnt signaling cascade in the anti-osteoporosis effects of PEC. PEC or the PEG-PLGA nanoparticles of PEC (PEC-NP) were intraperitoneally administrated in both wild-type mice and ovariectomy-induced osteoporosis mice to examine its anti-osteoporotic effects in vivo. RESULTS: PEC, a newly identified naturally occurring PPARß agonist, significantly promotes osteogenic differentiation and up-regulates the osteogenic differentiation-related genes (Runx2, Osterix, and Bmp2) in BMSCs. RNA sequencing and functional gene enrichment analysis suggested that PEC could activate osteogenic-related signaling pathways, including Wnt and PPAR signaling pathways. Further investigations suggested that PEC could enhance Wnt/ß-catenin signaling in a PPARß-dependent manner in BMSCs. Animal tests showed that PEC-NP promoted bone mass and density, increased the bone cell matrix protein, and accelerated bone formation in wild-type mice, while PEC-NP also played a preventive role in ovariectomy-induced osteoporosis mice via maintaining the expression level of bone cell matrix protein, balancing the rate of bone formation, and slowing down bone loss. Additionally, PEC-NP did not cause any organ injury and body weight loss after long-term use (11 weeks). CONCLUSION: PEC significantly promotes bone formation and reduces bone loss in both BMSCs and ovariectomy-induced osteoporosis mice via enhancing the Wnt signaling cascade in a PPARß-dependent manner, providing a new alternative therapy for preventing estrogen deficiency-induced osteoporotic diseases.


Subject(s)
Mesenchymal Stem Cells , Mice, Inbred C57BL , Osteoporosis , PPAR-beta , Wnt Signaling Pathway , Animals , Wnt Signaling Pathway/drug effects , Osteoporosis/drug therapy , PPAR-beta/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Female , Mice , Osteogenesis/drug effects , Ovariectomy , Saponins/pharmacology , Bone Morphogenetic Protein 2/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Chromones , Sulfones , Thiophenes
4.
Clin Res Hepatol Gastroenterol ; 48(6): 102343, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641250

ABSTRACT

Various liver diseases pose great threats to humans. Although the etiologies of these liver diseases are quite diverse, they share similar pathologic phenotypes and molecular mechanisms such as oxidative stress, lipid and glucose metabolism disturbance, hepatic Kupffer cell (KC) proinflammatory polarization and inflammation, insulin resistance, and hepatic stellate cell (HSC) activation and proliferation. Peroxisome proliferator-activated receptor ß/δ (PPARß/δ) is expressed in various types of liver cells with relatively higher expression in KCs and HSCs. Accumulating evidence has revealed the versatile functions of PPARß/δ such as controlling lipid homeostasis, inhibiting inflammation, regulating glucose metabolism, and restoring insulin sensitivity, suggesting that PPARß/δ may serve as a potential molecular drug target for various liver diseases. This article aims to provide a concise review of the structure, expression pattern and biological functions of PPARß/δ in the liver and its roles in various liver diseases, and to discuss potential future research perspectives.


Subject(s)
Liver Diseases , PPAR delta , PPAR-beta , Humans , PPAR-beta/physiology , PPAR-beta/metabolism , PPAR delta/physiology , PPAR delta/metabolism , Liver Diseases/metabolism , Liver Diseases/drug therapy , Molecular Targeted Therapy , Insulin Resistance
5.
In Vivo ; 38(2): 657-664, 2024.
Article in English | MEDLINE | ID: mdl-38418133

ABSTRACT

BACKGROUND/AIM: Myelodysplastic syndromes (MDS) are clinically heterogeneous hematological malignancies with an increased risk of transformation to acute myeloid leukemia, emphasizing the importance of identifying new diagnostic and prognostic markers. This study sought to investigate the predictive ability of all-trans retinoic acid (ATRA)-dependent nuclear transcription factors RARα and PPARß/δ gene expression in MDS patients. MATERIALS AND METHODS: Peripheral blood specimens were collected from 49 MDS patients and 15 healthy volunteers. The specimens were further separated in Ficoll density gradient to obtain the mononuclear cells fractions. Gene expression analysis was carried out using quantitative real-time polymerase chain reaction (qRT-PCR) technique. RESULTS: In the mononuclear cell fractions of MDS patients, RARα expression was increased (p<0.05) and PPARß/δ expression was decreased (p<0.01) compared to healthy volunteers. When RARα and PPARß/δ expression was compared in groups of MDS patients with different risks of disease progression, no statistically significant difference was found for RARα expression, while PPARß/δ expression was significantly lower in the high-risk group of patients compared to the low-risk group (p<0.05). The expression of RARα was significantly associated with overall survival (p<0.05). ROC analysis showed that the expression of PPARß/δ, rather than RARα expression, could have potential diagnostic value for MDS patients (AUC=0.75, p=0.003 and AUC=0.65, p=0.081, respectively). CONCLUSION: RARα and PPARß/δ genes are putative biomarkers that may be associated with the diagnosis and prognosis of MDS.


Subject(s)
Myelodysplastic Syndromes , PPAR delta , PPAR-beta , Humans , Clinical Relevance , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/genetics , PPAR delta/genetics , PPAR delta/metabolism , PPAR-beta/genetics , PPAR-beta/metabolism , Tretinoin
6.
Fish Physiol Biochem ; 50(1): 295-305, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38386263

ABSTRACT

Peroxisome proliferator-activated receptor ß (pparß) is a key gene-regulating lipid metabolism pathway, but its function in turbot remains unclear. In this study, the CDS of pparß was cloned from kidney for the first time. The CDS sequence length was 1533 bp encoding 510 amino acids. Structural analysis showed that the pparß protein contained a C4 zinc finger and HOLI domain, suggesting that the pparß gene of turbot has high homology with the PPAR gene of other species. The high expression patterns of pparß, acox, and cpt-1 at high temperatures, as shown through qPCR, indicated that high temperatures activated the transcriptional activity of pparß and increased the activity of the acox and cpt-1 genes. The expression of acox and cpt-1 was significantly inhibited when pparß was downregulated using RNAi technology and inhibitor treatments, suggesting that pparß positively regulated acox and cpt-1 expression at high temperatures and, thus, modulates lipid catabolism activity. These results demonstrate that pparß is involved in the regulation of lipid metabolism at high temperatures and expand a new perspective for studying the regulation of lipid metabolism in stress environments of teleost.


Subject(s)
Flatfishes , PPAR-beta , Animals , PPAR-beta/genetics , Flatfishes/genetics , Lipid Metabolism/genetics , Lipids , Heat-Shock Response
7.
Exp Neurol ; 372: 114615, 2024 02.
Article in English | MEDLINE | ID: mdl-37995951

ABSTRACT

BACKGROUND: Activation of mast cells plays an important role in brain inflammation. CD300a, an inhibitory receptor located on mast cell surfaces, has been reported to reduce the production of pro-inflammatory cytokines and exert protective effects in inflammation-related diseases. Peroxisome proliferator-activated receptor ß/δ (PPARß/δ), a ligand-activated nuclear receptor, activation upregulates the transcription of CD300a. In this study, we aim to investigate the role of PPARß/δ in the attenuation of germinal matrix hemorrhage (GMH)-induced mast cell activation via CD300a/SHP1 pathway. METHODS: GMH model was induced by intraparenchymal injection of bacterial collagenase into the right hemispheric ganglionic eminence in P7 Sprague Dawley rats. GW0742, a PPARß/δ agonist, was administered intranasally at 1 h post-ictus. CD300a small interfering RNA (siRNA) and PPARß/δ siRNA were injected intracerebroventricularly 5 days and 2 days before GMH induction. Behavioral tests, Western blot, immunofluorescence, Toluidine Blue staining, and Nissl staining were applied to assess post-GMH evaluation. RESULTS: Results demonstrated that endogenous protein levels of PPARß/δ and CD300a were decreased, whereas chymase, tryptase, IL-17A and transforming growth factor ß1 (TGF-ß1) were elevated after GMH. GMH induced significant short- and long-term neurobehavioral deficits in rat pups. GW0742 decreased mast cell degranulation, improved neurological outcomes, and attenuated ventriculomegaly after GMH. Additionally, GW0742 increased expression of PPARß/δ, CD300a and phosphorylation of SHP1, decreased phosphorylation of Syk, chymase, tryptase, IL-17A and TGF-ß1 levels. PPARß/δ siRNA and CD300a siRNA abolished the beneficial effects of GW0742. CONCLUSIONS: GW0742 inhibited mast cell-induced inflammation and improved neurobehavior after GMH, which is mediated by PPARß/δ/CD300a/SHP1 pathway. GW0742 may serve as a potential treatment to reduce brain injury for GMH patients.


Subject(s)
PPAR delta , PPAR-beta , Humans , Rats , Animals , PPAR delta/genetics , PPAR delta/metabolism , PPAR-beta/genetics , PPAR-beta/metabolism , Animals, Newborn , Mast Cells/metabolism , Chymases , Interleukin-17 , Rats, Sprague-Dawley , Transforming Growth Factor beta1 , Tryptases , Cerebral Hemorrhage , Thiazoles/pharmacology , Inflammation , RNA, Small Interfering
8.
Trends Pharmacol Sci ; 45(1): 9-23, 2024 01.
Article in English | MEDLINE | ID: mdl-38065777

ABSTRACT

Peroxisome proliferator-activated receptors [PPARs; PPARα, PPARß/δ (also known as PPARδ), and PPARγ] widely recognized for their important role in glucose/lipid homeostasis, have recently received significant attention due to their additional anti-inflammatory and neuroprotective effects. Several newly developed PPAR agonists have shown high selectivity for specific PPAR isoforms in vitro and in vivo, offering the potential to achieve desired therapeutic outcomes while reducing the risk of adverse effects. In this review, we discuss the latest preclinical and clinical studies of the activation of PPARs by synthetic, natural, and isoform-specific (full, partial, and dual) agonists for the treatment of neuroinflammatory diseases, including HIV-associated neurocognitive disorders (HAND), Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and cerebral ischemia.


Subject(s)
PPAR delta , PPAR-beta , Humans , Peroxisome Proliferator-Activated Receptors/agonists , Peroxisome Proliferator-Activated Receptors/physiology , Neuroinflammatory Diseases , PPAR delta/agonists , PPAR delta/physiology , PPAR-beta/physiology , PPAR alpha/agonists , PPAR alpha/physiology , PPAR gamma/agonists , PPAR gamma/physiology , Hypoglycemic Agents
9.
Sci Total Environ ; 912: 168949, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38042186

ABSTRACT

Di-2-ethylhexyl phthalic acid (DEHP) is one of the most widely used plasticizers in the industry, which can improve the flexibility and durability of plastics. It is prone to migrate from various daily plastic products through wear and leaching into the surrounding environment and decompose into the more toxic metabolite mono-2-ethylhexyl phthalic acid (MEHP) after entering the human body. However, the impacts and mechanisms of MEHP on neuroblastoma are unclear. We exposed MYCN-amplified neuroblastoma SK-N-BE(2)C cells to an environmentally related concentration of MEHP and found that MEHP increased the proliferation and migration ability of tumor cells. The peroxisome proliferator-activated receptor (PPAR) ß/δ pathway was identified as a pivotal signaling pathway in neuroblastoma, mediating the effects of MEHP through transcriptional sequencing analysis. Because MEHP can bind to the PPARß/δ protein and initiate the expression of the downstream gene angiopoietin-like 4 (ANGPTL4), the PPARß/δ-specific agonist GW501516 and antagonist GSK3787, the recombinant human ANGPTL4 protein, and the knockdown of gene expression confirmed the regulation of the PPARß/δ-ANGPTL4 axis on the malignant phenotype of neuroblastoma. Based on the critical role of PPARß/δ and ANGPTL4 in the metabolic process, a non-targeted metabolomics analysis revealed that MEHP altered multiple metabolic pathways, particularly lipid metabolites involving fatty acyls, glycerophospholipids, and sterol lipids, which may also be potential factors promoting tumor progression. We have demonstrated for the first time that MEHP can target binding to PPARß/δ and affect the progression of neuroblastoma by activating the PPARß/δ-ANGPTL4 axis. This mechanism confirms the health risks of plasticizers as tumor promoters and provides new data support for targeted prevention and treatment of neuroblastoma.


Subject(s)
Diethylhexyl Phthalate/analogs & derivatives , Neuroblastoma , PPAR delta , PPAR-beta , Phthalic Acids , Humans , PPAR-beta/agonists , PPAR-beta/genetics , PPAR-beta/metabolism , N-Myc Proto-Oncogene Protein , Plasticizers/toxicity , Angiopoietins/genetics , Angiopoietins/metabolism , Phthalic Acids/toxicity , Phthalic Acids/metabolism , PPAR delta/agonists , PPAR delta/genetics , PPAR delta/metabolism , Angiopoietin-Like Protein 4
10.
Environ Pollut ; 342: 123030, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38030110

ABSTRACT

Previous epidemiological and animal studies have showed the lipid metabolic disruption of antimicrobial triclocarban (TCC) and triclosan (TCS). However, the present in vivo researches were mainly devoted to the hepatic lipid metabolism, while the evidence about the impacts of TCC/TCS on the adipose tissue is very limited and the potential mechanism is unclear, especially the molecular initiation events. Moreover, little is known about the toxic difference between TCC and TCS. This study aimed to demonstrate the differential adipogenic activity of TCC/TCS as well as the potential molecular mechanism via peroxisome proliferator-activated receptors (PPARα/ß/γ). The in vitro experiment based on 3T3-L1 cells showed that TCC/TCS promoted the differentiation of preadipocytes into mature adipocytes at nanomolar to micromolar concentrations, which was approach to their human exposure levels. We revealed for the first time by reporter gene assay that TCC could activate three PPARs signaling pathways in a concentration-dependent manner, while TCS only activate PPARß. The molecular docking strategy was applied to simulate the interactions of TCC/TCS with PPARs, which explained well the different PPARs activities between TCC and TCS. TCC up-regulated the mRNA expression of three PPARs, but TCS only up-regulated PPARß and PPARγ significantly. Meanwhile, TCC/TCS also promoted the expression of adipogenic genes targeted by PPARs to different extent. The cellular and simulating studies demonstrated that TCC exerted higher adipogenic effects and PPARs activities than TCS. Our mice in vivo experiment showed that TCC could lead to adipocyte size increase, adipocyte lipid accumulation growing, fat weight and body weight gain at human-related exposure levels, and high fat diet exacerbated these effects. Moreover, male mice tended to be more susceptible to TCC induced obesogenic effect than female mice. This work highlights the potential obesogenic risks of TCC/TCS via PPARs signaling pathways, and TCC deserves more concerns for its higher activity.


Subject(s)
Carbanilides , PPAR-beta , Triclosan , Male , Female , Humans , Animals , Mice , Triclosan/toxicity , Molecular Docking Simulation , Carbanilides/toxicity , Lipids
11.
Biomolecules ; 13(12)2023 12 14.
Article in English | MEDLINE | ID: mdl-38136661

ABSTRACT

Glucose and lipid metabolism regulation by the peroxisome proliferator-activated receptors (PPARs) has been extensively reported. However, the role of their polymorphisms remains unclear. OBJECTIVE: To determine the relation between PPAR-γ2 rs1801282 (Pro12Ala) and PPAR-ß/δ rs2016520 (+294T/C) polymorphisms and metabolic biomarkers in adults with type 2 diabetes (T2D). MATERIALS AND METHODS: We included 314 patients with T2D. Information on anthropometric, fasting plasma glucose (FPG), HbA1c and lipid profile measurements was taken from clinical records. Genomic DNA was obtained from peripheral blood. End-point PCR was used for PPAR-γ2 rs1801282, while for PPAR-ß/δ rs2016520 the PCR product was digested with Bsl-I enzyme. Data were compared with parametric or non-parametric tests. Multivariate models were used to adjust for covariates and interaction effects. RESULTS: minor allele frequency was 12.42% for PPAR-γ2 rs1801282-G and 13.85% for PPAR-ß/δ rs2016520-C. Both polymorphisms were related to waist circumference; they showed independent effects on HbA1c, while they interacted for FPG; carriers of both PPAR minor alleles had the highest values. Interactions between FPG and polymorphisms were identified in their relation to triglyceride level. CONCLUSIONS: PPAR-γ2 rs1801282 and PPAR-ß/δ rs2016520 polymorphisms are associated with anthropometric, glucose, and lipid metabolism biomarkers in T2D patients. Further research is required on the molecular mechanisms involved.


Subject(s)
Diabetes Mellitus, Type 2 , PPAR delta , PPAR-beta , Adult , Humans , PPAR gamma/genetics , PPAR delta/genetics , Diabetes Mellitus, Type 2/genetics , PPAR-beta/genetics , Glycated Hemoglobin/genetics , Polymorphism, Single Nucleotide , Biomarkers , Glucose
12.
Biomed Pharmacother ; 167: 115623, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37783154

ABSTRACT

Elafibranor is a dual peroxisome proliferator-activated receptor (PPAR)α and ß/δ agonist that has reached a phase III clinical trial for the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we examined the effects of elafibranor in mice fed a choline-deficient high-fat diet (CD-HFD), a model of metabolic dysfunction-associated steatohepatitis (MASH) that presents obesity and insulin resistance. Our findings revealed that elafibranor treatment ameliorated steatosis, inflammation, and fibrogenesis in the livers of CD-HFD-fed mice. Unexpectedly, elafibranor also increased the levels of the epithelial-mesenchymal transition (EMT)-promoting protein S100A4 via PPARß/δ activation. The increase in S100A4 protein levels caused by elafibranor was accompanied by changes in the levels of markers associated with the EMT program. The S100A4 induction caused by elafibranor was confirmed in the BRL-3A rat liver cells and a mouse primary hepatocyte culture. Furthermore, elafibranor reduced the levels of ASB2, a protein that promotes S100A4 degradation, while ASB2 overexpression prevented the stimulating effect of elafibranor on S100A4. Collectively, these findings reveal an unexpected hepatic effect of elafibranor on increasing S100A4 and promoting the EMT program.


Subject(s)
Non-alcoholic Fatty Liver Disease , PPAR delta , PPAR-beta , Animals , Mice , Rats , Diet, High-Fat , Epithelial-Mesenchymal Transition , Liver , Non-alcoholic Fatty Liver Disease/metabolism , PPAR delta/metabolism , PPAR-beta/agonists , PPAR-beta/metabolism , PPAR-beta/therapeutic use
13.
Liver Int ; 43(12): 2808-2823, 2023 12.
Article in English | MEDLINE | ID: mdl-37833850

ABSTRACT

BACKGROUND AND AIMS: Hepatic ischaemia/reperfusion injury (HIRI) is a pathophysiological process that occurs during the liver resection and transplantation. Reportedly, peroxisome proliferator-activated receptor ß/δ (PPARß/δ) can ameliorate kidney and myocardial ischaemia/reperfusion injury. However, the effect of PPARß/δ in HIRI remains unclear. METHODS: Mouse hepatic ischaemia/reperfusion (I/R) models were constructed for in vivo study. Primary hepatocytes and Kupffer cells (KCs) isolated from mice and cell anoxia/reoxygenation (A/R) injury model were constructed for in vitro study. Liver injury and inflammation were investigated. Small molecular compounds (GW0742 and GSK0660) and adenoviruses were used to interfere with PPARß/δ. RESULTS: We found that PPARß/δ expression was increased in the I/R and A/R models. Overexpression of PPARß/δ in hepatocytes alleviated A/R-induced cell apoptosis, while knockdown of PPARß/δ in hepatocytes aggravated A/R injury. Activation of PPARß/δ by GW0742 protected against I/R-induced liver damage, inflammation and cell death, whereas inhibition of PPARß/δ by GSK0660 had the opposite effects. Consistent results were obtained in mouse I/R models through the tail vein injection of adenovirus-mediated PPARß/δ overexpression or knockdown vectors. Furthermore, knockdown and overexpression of PPARß/δ in KCs aggravated and ameliorated A/R-induced hepatocyte injury, respectively. Gene ontology and gene set enrichment analysis showed that PPARß/δ deletion was significantly enriched in the NF-κB pathway. PPARß/δ inhibited the expression of p-IKBα and p-P65 and decreased NF-κB activity. CONCLUSIONS: PPARß/δ exerts anti-inflammatory and anti-apoptotic effects on HIRI by inhibiting the NF-κB pathway, and hepatocytes and KCs may play a synergistic role in this phenomenon. Thus, PPARß/δ is a potential therapeutic target for HIRI.


Subject(s)
PPAR delta , PPAR-beta , Reperfusion Injury , Mice , Animals , PPAR-beta/genetics , PPAR-beta/metabolism , NF-kappa B/metabolism , PPAR delta/genetics , PPAR delta/metabolism , Liver/metabolism , Thiazoles/pharmacology , Inflammation , Disease Models, Animal , Reperfusion Injury/prevention & control , Ischemia
14.
Int J Nanomedicine ; 18: 5095-5117, 2023.
Article in English | MEDLINE | ID: mdl-37705868

ABSTRACT

Purpose: Puerarin is the main isoflavone extracted from Radix Puerariae lobata (Willd.) and exerts a strong protective effect on endothelial cells. This isoflavone also exerts proven angiogenic effects; however, the potential underlying mechanism has not been fully explored. Here in this work, we aimed to determine the proangiogenesis effect of a puerarin-attached lignin nanoparticle-incorporated hydrogel and explore the underlying mechanism. Materials and Methods: Puerarin-attached lignin nanoparticles were fabricated and mixed with the GelMA hydrogel. After the hydrogel was characterized, the angiogenic effect was evaluated in a mouse hind-limb ischemia model. To further explore the mechanism of angiogenesis, human endothelial cell line EA.hy926 was exposure to different concentrations of puerarin. Wound healing assays and tube formation assays were used to investigate the effects of puerarin on cell migration and angiogenesis. qPCR and Western blotting were performed to determine the changes in the levels of angiogenesis indicators, autophagy indicators and PPARß/δ. 3-MA was used to assess the role of autophagy in the puerarin-mediated angiogenesis effect in vivo and in vitro. Results: The hydrogel significantly improved blood flow restoration in mice with hind-limb ischemia. This effect was mainly due to puerarin-mediated increases in the angiogenic capacity of endothelial cells and the promotion of autophagy activation. A potential underlying mechanism might be that puerarin-mediated activation of autophagy could induce an increase in PPARß/δ expression. Conclusion: The puerarin-attached lignin nanoparticle-incorporated hydrogel effectively alleviated blood perfusion in mice with hind-limb ischemia. Puerarin has a prominent proangiogenic effect. The potential mechanisms might be that puerarin-mediated autophagy activation and increase in PPARß/δ.


Subject(s)
Isoflavones , Nanoparticles , PPAR-beta , Humans , Animals , Mice , Hydrogels , Lignin , Endothelial Cells , Isoflavones/pharmacology , Autophagy , Disease Models, Animal , Ischemia/drug therapy
15.
Int J Mol Sci ; 24(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37685944

ABSTRACT

Osteoarthritis (OA) represents the foremost degenerative joint disease observed in a clinical context. The escalating issue of population aging significantly exacerbates the prevalence of OA, thereby imposing an immense annual economic burden on societies worldwide. The current therapeutic landscape falls short in offering reliable pharmaceutical interventions and efficient treatment methodologies to tackle this growing problem. However, the scientific community continues to dedicate significant efforts towards advancing OA treatment research. Contemporary studies have discovered that the progression of OA may be slowed through the strategic influence on peroxisome proliferator-activated receptors (PPARs). PPARs are ligand-activated receptors within the nuclear hormone receptor family. The three distinctive subtypes-PPARα, PPARß/δ, and PPARγ-find expression across a broad range of cellular terminals, thus managing a multitude of intracellular metabolic operations. The activation of PPARγ and PPARα has been shown to efficaciously modulate the NF-κB signaling pathway, AP-1, and other oxidative stress-responsive signaling conduits, leading to the inhibition of inflammatory responses. Furthermore, the activation of PPARγ and PPARα may confer protection to chondrocytes by exerting control over its autophagic behavior. In summation, both PPARγ and PPARα have emerged as promising potential targets for the development of effective OA treatments.


Subject(s)
Osteoarthritis , PPAR delta , PPAR-beta , Humans , PPAR gamma/genetics , PPAR alpha , Osteoarthritis/drug therapy
16.
Eur J Pharmacol ; 958: 175934, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37562666

ABSTRACT

BACKGROUND: Diabetes ulcer is one of the leading causes of disability and death in diabetics. Y8 [(2-(2-fluoro-4-((4-methyl-2-(4-(trifluoromethyl)phenyl)thiazol-5-yl)methoxy) phenoxy)acetic acid)], a dual agonist of peroxisome proliferation activated receptorß (PPARß) and free fatty acid receptor 1 (FFA1/FFAR1/GPR40), a new compound molecule with the potential for diabetes ulcer treatment. OBJECTIVE: To research the effect of the dual target agonist Y8 and its mechanism of action in the treatment of diabetic ulcers. METHODS: We have established a wound model in diabetic mice. After treatment with Y8, wound healing was evaluated by tissue pathology, reactive oxygen species (ROS) levels, and gene expression testing. Under high sugar conditions, the mechanism of Y8 affecting fibroblasts' proliferation and keratinocytes' migration is further studied. RESULTS: We found that Y8 accelerated wound healing and shortened healing time in diabetic mice. Granulation tissue generation and extracellular matrix (ECM) deposition were significantly increased in Y8-treated mice. Mechanistically, Y8 promotes keratinocyte proliferation by activating PPARß and migration of keratinocytes by triggering FFA1 in vitro. In addition, Y8 also decreased ROS levels in fibroblasts in vitro and in vivo by activating PPARß, reducing their release of superoxide anions. CONCLUSION: Our results suggest that PPARß/FFA1 dual agonist Y8 has the effect of promoting the healing of diabetic ulcer wounds in vivo and in vitro, and its therapeutic effect is better than that of single-target agonists.


Subject(s)
Diabetes Complications , Diabetes Mellitus, Experimental , PPAR-beta , Animals , Mice , Diabetes Complications/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Keratinocytes , PPAR-beta/agonists , Reactive Oxygen Species/metabolism , Ulcer/metabolism , Ulcer/pathology , Wound Healing
17.
Sci Rep ; 13(1): 11573, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37463952

ABSTRACT

There is great interest on medium chain fatty acids (MCFA) for cardiovascular health. We explored the effects of MCFA on the expression of lipid metabolism and inflammatory genes in macrophages, and the extent to which they were mediated by the nuclear receptor peroxisome proliferator-activated receptor beta/delta (PPAR ß/δ). J774A.1 murine macrophages were exposed to octanoate or decanoate as MCFA, a long-chain fatty acid control (palmitate), or the PPAR ß/δ agonist GW501516, with or without lipopolysaccharide (LPS) stimulation, and with or without an siRNA-induced knockdown of PPAR ß/δ. MCFA increased the expression of Plin2, encoding a lipid-droplet associated protein with anti-inflammatory effects in macrophages, in a partially PPAR ß/δ-dependent manner. Both MCFA stimulated expression of the cholesterol efflux pump ABCA1, more pronouncedly under LPS stimulation and in the absence of PPAR ß/δ. Octanoate stimulated the expression of Pltp, encoding a phospholipid transfer protein that aids ABCA1 in cellular lipid efflux. Only palmitate increased expression of the proinflammatory genes Il6, Tnf, Nos2 and Mmp9. Non-stimulated macrophages exposed to MCFA showed less internalization of fluorescently labeled lipoproteins. MCFA influenced the transcriptional responses of macrophages favoring cholesterol efflux and a less inflammatory response compared to palmitate. These effects were partially mediated by PPAR ß/δ.


Subject(s)
PPAR delta , PPAR-beta , Mice , Animals , PPAR delta/metabolism , PPAR-beta/genetics , PPAR-beta/metabolism , Caprylates/pharmacology , Cell Line , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Fatty Acids/pharmacology , Cholesterol/metabolism , Palmitates/pharmacology
18.
Int J Mol Sci ; 24(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37298140

ABSTRACT

Endometrial carcinoma is the most common malignant tumor of the female genital tract in the United States. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptor proteins which regulate gene expression. In order to investigate the role of PPARs in endometrial cancer, we conducted a literature review using the MEDLINE and LIVIVO databases and were able to identify 27 relevant studies published between 2000 and 2023. The PPARα and PPARß/δ isoforms seemed to be upregulated, whereas PPARγ levels were reported to be significantly lower in endometrial cancer cells. Interestingly, PPAR agonists were found to represent potent anti-cancer therapeutic alternatives. In conclusion, PPARs seem to play a significant role in endometrial cancer.


Subject(s)
Endometrial Neoplasms , PPAR delta , PPAR-beta , Female , Humans , Peroxisome Proliferator-Activated Receptors/metabolism , PPAR gamma , PPAR alpha , Endometrial Neoplasms/genetics
19.
J Immunol ; 211(2): 187-198, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37314416

ABSTRACT

Although several immunomodulatory drugs are available for multiple sclerosis (MS), most present significant side effects with long-term use. Therefore, delineation of nontoxic drugs for MS is an important area of research. ß-Hydroxy ß-methylbutyrate (HMB) is accessible in local GNC stores as a muscle-building supplement in humans. This study underlines the importance of HMB in suppressing clinical symptoms of experimental autoimmune encephalomyelitis (EAE) in mice, an animal model of MS. Dose-dependent study shows that oral HMB at a dose of 1 mg/kg body weight/d or higher significantly suppresses clinical symptoms of EAE in mice. Accordingly, orally administered HMB attenuated perivascular cuffing, preserved the integrity of the blood-brain barrier and blood-spinal cord barrier, inhibited inflammation, maintained the expression of myelin genes, and blocked demyelination in the spinal cord of EAE mice. From the immunomodulatory side, HMB protected regulatory T cells and suppressed Th1 and Th17 biasness. Using peroxisome proliferator-activated receptor (PPAR)α-/- and PPARß-/- mice, we observed that HMB required PPARß, but not PPARα, to exhibit immunomodulation and suppress EAE. Interestingly, HMB reduced the production of NO via PPARß to protect regulatory T cells. These results describe a novel anti-autoimmune property of HMB that may be beneficial in the treatment of MS and other autoimmune disorders.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , PPAR-beta , Humans , Mice , Animals , PPAR-beta/therapeutic use , Multiple Sclerosis/drug therapy , Valerates/therapeutic use , Mice, Inbred C57BL
20.
Eur J Pharmacol ; 953: 175838, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37307937

ABSTRACT

Evidence is mounting that sinomenine and peroxisome proliferator-activated receptor ß/δ (PPARß/δ) are effective against lipopolysaccharide (LPS)-induced acute lung injury (ALI) via anti-inflammatory properties. However, it is unknown whether PPARß/δ plays a role in the protective effect of sinomenine on ALI. Here, we initially observed that preemptive administration of sinomenine markedly alleviated lung pathological changes, pulmonary edema and neutrophil infiltration, accompanied by inhibition of the expression of the pro-inflammatory cytokines Tumor necrosis factor-α (TNF-α) and Interleukin-6 (IL-6), which were largely reversed following the addition of a PPARß/δ antagonist. Subsequently, we also noticed that sinomenine upregulated adenosine A2A receptor expression in a PPARß/δ-dependent manner in LPS-stimulated bone marrow-derived macrophages (BMDMs). Further investigation indicated that PPARß/δ directly bound to the functional peroxisome proliferator responsive element (PPRE) in the adenosine A2A receptor gene promoter region to enhance the expression of the adenosine A2A receptor. Sinomenine was identified as a PPARß/δ agonist. It could bind with PPARß/δ, and promote the nuclear translocation and transcriptional activity of PPARß/δ. In addition, combined treatment with sinomenine and an adenosine A2A receptor agonist exhibited synergistic effects and better protective roles than their single use against ALI. Taken together, our results reveal that sinomenine exerts advantageous effects on ALI by activating of PPARß/δ, with the subsequent upregulation of adenosine A2A receptor expression, and provide a novel and potential therapeutic application for ALI.


Subject(s)
Acute Lung Injury , PPAR delta , PPAR-beta , Humans , PPAR-beta/metabolism , Lipopolysaccharides/pharmacology , Receptor, Adenosine A2A , PPAR delta/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...