Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 728
Filter
1.
J Med Invest ; 71(1.2): 23-28, 2024.
Article in English | MEDLINE | ID: mdl-38735721

ABSTRACT

Pyrroloquinoline quinone disodium salt (PQQ) is a red trihydrate crystal that was approved as a new food ingredient by FDA in 2008. Now, it is approved as a food in Japan and the EU. PQQ has redox properties and exerts antioxidant, neuroprotective, and mitochondrial biogenesis effects. The baseline intake level of PQQ is considered to be 20 mg/day. PQQ ingestion lowers blood lipid peroxide levels in humans, suggesting antioxidant activity. In the field of cognitive function, double-blind, placebo-controlled trials have been conducted. Various improvements have been reported regarding general memory, verbal memory, working memory, and attention. Furthermore, a stratified analysis of a population with a wide range of ages revealed unique effects in young people (20-40 years old) that were not observed in older adults (41-65 years old). Specifically, cognitive flexibility and executive speed improved more rapidly in young people at 8 weeks. Co-administration of PQQ and coenzyme Q10 further enhanced these effects. In an open-label trial, PQQ was shown to improve sleep and mood. Additionally, PQQ was found to suppress skin moisture loss and increase PGC-1α expression. Overall, PQQ is a food with various functions, including brain health benefits. J. Med. Invest. 71 : 23-28, February, 2024.


Subject(s)
Brain , Cognition , PQQ Cofactor , Humans , PQQ Cofactor/pharmacology , PQQ Cofactor/administration & dosage , Cognition/drug effects , Brain/drug effects , Brain/metabolism , Antioxidants/pharmacology , Antioxidants/administration & dosage
2.
Biosci Rep ; 44(5)2024 May 29.
Article in English | MEDLINE | ID: mdl-38687614

ABSTRACT

The soluble glucose dehydrogenase (sGDH) from Acinetobacter calcoaceticus has been widely studied and is used, in biosensors, to detect the presence of glucose, taking advantage of its high turnover and insensitivity to molecular oxygen. This approach, however, presents two drawbacks: the enzyme has broad substrate specificity (leading to imprecise blood glucose measurements) and shows instability over time (inferior to other oxidizing glucose enzymes). We report the characterization of two sGDH mutants: the single mutant Y343F and the double mutant D143E/Y343F. The mutants present enzyme selectivity and specificity of 1.2 (Y343F) and 5.7 (D143E/Y343F) times higher for glucose compared with that of the wild-type. Crystallographic experiments, designed to characterize these mutants, surprisingly revealed that the prosthetic group PQQ (pyrroloquinoline quinone), essential for the enzymatic activity, is in a cleaved form for both wild-type and mutant structures. We provide evidence suggesting that the sGDH produces H2O2, the level of production depending on the mutation. In addition, spectroscopic experiments allowed us to follow the self-degradation of the prosthetic group and the disappearance of sGDH's glucose oxidation activity. These studies suggest that the enzyme is sensitive to its self-production of H2O2. We show that the premature aging of sGDH can be slowed down by adding catalase to consume the H2O2 produced, allowing the design of a more stable biosensor over time. Our research opens questions about the mechanism of H2O2 production and the physiological role of this activity by sGDH.


Subject(s)
Acinetobacter calcoaceticus , Glucose 1-Dehydrogenase , Hydrogen Peroxide , Acinetobacter calcoaceticus/enzymology , Acinetobacter calcoaceticus/genetics , Hydrogen Peroxide/metabolism , Glucose 1-Dehydrogenase/genetics , Glucose 1-Dehydrogenase/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutation , Glucose/metabolism , Substrate Specificity , PQQ Cofactor/metabolism , Crystallography, X-Ray
3.
Stem Cell Res Ther ; 15(1): 97, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38581065

ABSTRACT

BACKGROUND: DNA damage and oxidative stress induced by chemotherapy are important factors in the onset of premature ovarian insufficiency (POI). Studies have shown that mitochondria derived from mesenchymal stem cells (MSC-Mito) are beneficial for age-related diseases, but their efficacy alone is limited. Pyrroloquinoline quinone (PQQ) is a potent antioxidant with significant antiaging and fertility enhancement effects. This study aimed to investigate the therapeutic effect of MSC-Mito in combination with PQQ on POI and the underlying mechanisms involved. METHODS: A POI animal model was established in C57BL/6J mice by cyclophosphamide and busulfan. The effects of MSC-Mito and PQQ administration on the estrous cycle, ovarian pathological damage, sex hormone secretion, and oxidative stress in mice were evaluated using methods such as vaginal smears and ELISAs. Western blotting and immunohistochemistry were used to assess the expression of SIRT1, PGC-1α, and ATM/p53 pathway proteins in ovarian tissues. A cell model was constructed using KGN cells treated with phosphoramide mustard to investigate DNA damage and apoptosis through comet assays and flow cytometry. SIRT1 siRNA was transfected into KGN cells to further explore the role of the SIRT1/ATM/p53 pathway in combination therapy with MSC-Mito and PQQ for POI. RESULTS: The combined treatment of MSC-Mito and PQQ significantly restored ovarian function and antioxidant capacity in mice with POI. This treatment also reduced the loss of follicles at various stages, improving the disrupted estrous cycle. In vitro experiments demonstrated that PQQ facilitated the proliferation of MitoTracker-labelled MSC-Mito, synergistically restoring mitochondrial function and inhibiting oxidative stress in combination with MSC-Mito. Both in vivo and in vitro, the combination of MSC-Mito and PQQ increased mitochondrial biogenesis mediated by SIRT1 and PGC-1α while inhibiting the activation of ATM and p53, consequently reducing DNA damage-mediated cell apoptosis. Furthermore, pretreatment of KGN cells with SIRT1 siRNA reversed nearly all the aforementioned changes induced by the combined treatment. CONCLUSIONS: Our research findings indicate that PQQ facilitates MSC-Mito proliferation and, in combination with MSC-Mito, ameliorates chemotherapy-induced POI through the SIRT1/ATM/p53 signaling pathway.


Subject(s)
Mesenchymal Stem Cells , Primary Ovarian Insufficiency , Animals , Female , Humans , Mice , Antioxidants/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , PQQ Cofactor/pharmacology , Primary Ovarian Insufficiency/pathology , RNA, Small Interfering/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
4.
J Cell Mol Med ; 28(8): e18299, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38613355

ABSTRACT

Pulmonary fibrosis is a lung disorder affecting the lungs that involves the overexpressed extracellular matrix, scarring and stiffening of tissue. The repair of lung tissue after injury relies heavily on Type II alveolar epithelial cells (AEII), and repeated damage to these cells is a crucial factor in the development of pulmonary fibrosis. Studies have demonstrated that chronic exposure to PM2.5, a form of air pollution, leads to an increase in the incidence and severity of pulmonary fibrosis by stimulation of epithelial-mesenchymal transition (EMT) in lung epithelial cells. Pyrroloquinoline quinone (PQQ) is a bioactive compound found naturally that exhibits potent anti-inflammatory and anti-oxidative properties. The mechanism by which PQQ prevents pulmonary fibrosis caused by exposure to PM2.5 through EMT has not been thoroughly discussed until now. In the current study, we discovered that PQQ successfully prevented PM2.5-induced pulmonary fibrosis by targeting EMT. The results indicated that PQQ was able to inhibit the expression of type I collagen, a well-known fibrosis marker, in AEII cells subjected to long-term PM2.5 exposure. We also found the alterations of cellular structure and EMT marker expression in AEII cells with PM2.5 incubation, which were reduced by PQQ treatment. Furthermore, prolonged exposure to PM2.5 considerably reduced cell migratory ability, but PQQ treatment helped in reducing it. In vivo animal experiments indicated that PQQ could reduce EMT markers and enhance pulmonary function. Overall, these results imply that PQQ might be useful in clinical settings to prevent pulmonary fibrosis.


Subject(s)
Pulmonary Fibrosis , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , PQQ Cofactor/pharmacology , Epithelial-Mesenchymal Transition , Alveolar Epithelial Cells , Particulate Matter/toxicity
5.
Adv Sci (Weinh) ; 11(18): e2308970, 2024 May.
Article in English | MEDLINE | ID: mdl-38454653

ABSTRACT

Alzheimer's disease (AD) is a pressing concern in neurodegenerative research. To address the challenges in AD drug development, especially those targeting Aß, this study uses deep learning and a pharmacological approach to elucidate the potential of pyrroloquinoline quinone (PQQ) as a neuroprotective agent for AD. Using deep learning for a comprehensive molecular dataset, blood-brain barrier (BBB) permeability is predicted and the anti-inflammatory and antioxidative properties of compounds are evaluated. PQQ, identified in the Mediterranean-DASH intervention for a diet that delays neurodegeneration, shows notable BBB permeability and low toxicity. In vivo tests conducted on an Aß1₋42-induced AD mouse model verify the effectiveness of PQQ in reducing cognitive deficits. PQQ modulates genes vital for synapse and anti-neuronal death, reduces reactive oxygen species production, and influences the SIRT1 and CREB pathways, suggesting key molecular mechanisms underlying its neuroprotective effects. This study can serve as a basis for future studies on integrating deep learning with pharmacological research and drug discovery.


Subject(s)
Alzheimer Disease , Deep Learning , Disease Models, Animal , Neuroprotective Agents , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Neuroprotective Agents/pharmacology , Mice , PQQ Cofactor/pharmacology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Male
7.
Appl Microbiol Biotechnol ; 108(1): 204, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349428

ABSTRACT

Pyrroloquinoline quinone (PQQ) is a natural antioxidant with diverse applications in food and pharmaceutical industries. A lot of effort has been devoted toward the discovery of PQQ high-producing microbial species and characterization of biosynthesis, but it is still challenging to achieve a high PQQ yield. In this study, a combined strategy of random mutagenesis and adaptive laboratory evolution (ALE) with fermentation optimization was applied to improve PQQ production in Hyphomicrobium denitrificans H4-45. A mutant strain AE-9 was obtained after nearly 400 generations of UV-LiCl mutagenesis, followed by an ALE process, which was conducted with a consecutive increase of oxidative stress generated by kanamycin, sodium sulfide, and potassium tellurite. In the flask culture condition, the PQQ production in mutant strain AE-9 had an 80.4% increase, and the cell density increased by 14.9% when compared with that of the initial strain H4-45. Moreover, batch and fed-batch fermentation processes were optimized to further improve PQQ production by pH control strategy, methanol and H2O2 feed flow, and segmented fermentation process. Finally, the highest PQQ production and productivity of the mutant strain AE-9 reached 307 mg/L and 4.26 mg/L/h in a 3.7-L bioreactor, respectively. Whole genome sequencing analysis showed that genetic mutations in the ftfL gene and thiC gene might contribute to improving PQQ production by enhancing methanol consumption and cell growth in the AE-9 strain. Our study provided a systematic strategy to obtain a PQQ high-producing mutant strain and achieve high production of PQQ in fermentation. These practical methods could be applicable to improve the production of other antioxidant compounds with uncleared regulation mechanisms. KEY POINTS: • Improvement of PQQ production by UV-LiCl mutagenesis combined with adaptive laboratory evolution (ALE) and fermentation optimization. • A consecutive increase of oxidative stress could be used as the antagonistic factor for ALE to enhance PQQ production. • Mutations in the ftfL gene and thiC gene indicated that PQQ production might be increased by enhancing methanol consumption and cell growth.


Subject(s)
Antioxidants , Hyphomicrobium , PQQ Cofactor , Hydrogen Peroxide , Methanol , Oxidative Stress
9.
Anal Methods ; 16(6): 830-836, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38230660

ABSTRACT

Pyrroloquinoline quinone (PQQ) is a bioactive compound that has attracted significant attention due to its potential health benefits. In this study, we developed a new magnetic molecularly imprinted nanoparticle (MMIN) for the selective extraction and determination of PQQ from food samples. The MMIN was synthesized using a surface molecular imprinting technique with PQQ as the template molecule, Fe3O4 nanoparticles as the magnetic core, and methacrylic acid as the functional monomer. The MMIN exhibited high selectivity and affinity towards PQQ, allowing for efficient extraction and preconcentration of PQQ from complex food matrices. The extracted PQQ was then quantified using HPLC-DAD. The developed method showed good linearity (R2 = 0.9985) and low limits of detection (0.03 µg L-1). The accuracy and precision of the method were evaluated by analyzing spiked food samples, with average recoveries close to 89.8%. The MMIN also demonstrated good reusability, with negligible decrease in extraction efficiency after five cycles of use. Overall, the developed MMIN-based method provides a reliable and efficient approach for the analysis of PQQ in food samples.


Subject(s)
Molecular Imprinting , PQQ Cofactor , Molecular Imprinting/methods , Food , Chromatography, High Pressure Liquid/methods , Magnetics
10.
Biosens Bioelectron ; 250: 116049, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38290381

ABSTRACT

Contemporary electrochemical impedance spectroscopy (EIS)-based biosensors face limitations in their applicability for in vivo measurements, primarily due to the necessity of using a redox probe capable of undergoing oxidation and reduction reactions in solution. Although previous investigations have demonstrated the effectiveness of EIS-based biosensors in detecting various target analytes using potassium ferricyanide as a redox probe, its unsuitability for blood or serum measurements, attributed to its inherent toxicity, poses a significant challenge. In response to this challenge, our study adopted a unique approach, focusing on the use of ingestible materials, by exploring naturally occurring substances within the body, with a specific emphasis on pyrroloquinoline quinone (PQQ). Following an assessment of PQQ's electrochemical attributes, we conducted a comprehensive series of EIS measurements. This involved the thorough characterization of the sensor's evolution, starting from the bare electrode and progressing to the immobilization of antibodies. The sensor's performance was then evaluated through the quantification of insulin concentrations ranging from 1 pM to 100 nM. A single frequency was identified for insulin measurements, offering a pathway for potential in vivo applications by combining PQQ as a redox probe with EIS measurements. This innovative approach holds promise for advancing the field of in vivo biosensing based on the EIS method.


Subject(s)
Biosensing Techniques , PQQ Cofactor , Biosensing Techniques/methods , Insulin , Dielectric Spectroscopy , Immunoassay , Oxidation-Reduction , Electrodes
11.
J Appl Toxicol ; 44(2): 235-244, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37650462

ABSTRACT

Gentamicin (GM) is one of the commonly used antibiotics in the aminoglycoside class but is ototoxic, which constantly impacts the quality of human life. Pyrroloquinoline quinone (PQQ) as a redox cofactor produced by bacteria was found in soil and foods that exert an antioxidant and redox modulator. It is well documented that the PQQ can alleviate inflammatory responses and cytotoxicity. However, our understanding of PQQ in ototoxicity remains unclear. We reported that PQQ could protect against GM-induced ototoxicity in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells in vitro. To evaluate reactive oxygen species (ROS) production and mitochondrial function, ROS and JC-1 staining, oxygen consumption rate (OCR), and extracellular acidification rate (ECAR) measurements in living cells, mitochondrial dynamics analysis was performed. GM-mediated damage was performed by reducing the production of ROS and inhibiting mitochondria biogenesis and dynamics. PQQ ameliorated the cellular oxidative stress and recovered mitochondrial membrane potential, facilitating the recovery of mitochondrial biogenesis and dynamics. Our in vitro findings improve our understanding of the GM-induced ototoxicity with therapeutic implications for PQQ.


Subject(s)
Gentamicins , Ototoxicity , Humans , Gentamicins/metabolism , Reactive Oxygen Species/metabolism , PQQ Cofactor/pharmacology , PQQ Cofactor/therapeutic use , PQQ Cofactor/metabolism , Ototoxicity/etiology , Ototoxicity/prevention & control , Ototoxicity/metabolism , Hair Cells, Auditory/metabolism , Anti-Bacterial Agents/metabolism , Apoptosis
12.
Br J Nutr ; 131(8): 1352-1361, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38155410

ABSTRACT

This study is aimed to evaluate the effect and underling mechanism of dietary supplementation with pyrroloquinoline quinone (PQQ) disodium on improving inflammatory liver injury in piglets challenged with lipopolysaccharide (LPS). A total of seventy-two crossbred barrows were allotted into four groups as follows: the CTRL group (basal diet + saline injection); the PQQ group (3 mg/kg PQQ diet + saline injection); the CTRL + LPS group (basal diet + LPS injection) and the PQQ + LPS group (3 mg/kg PQQ diet + LPS injection). On days 7, 11 and 14, piglets were challenged with LPS or saline. Blood was sampled at 4 h after the last LPS injection (day 14), and then the piglets were slaughtered and liver tissue was harvested. The results showed that the hepatic morphology was improved in the PQQ + LPS group compared with the CTRL + LPS group. PQQ supplementation decreased the level of serum inflammatory factors, aspartate aminotransferase and alanine transaminase, and increased the HDL-cholesterol concentration in piglets challenged with LPS; piglets in the PQQ + LPS group had lower liver mRNA level of inflammatory factors and protein level of α-smooth muscle actin than in the CTRL + LPS group. Besides, mRNA expression of STAT3/TGF-ß1 pathway and protein level of p-STAT3(Tyr 705) were decreased, and mRNA level of PPARα and protein expression of p-AMPK in liver were increased in the PQQ + LPS group compared with the CTRL + LPS group (P < 0·05). In conclusion, dietary supplementation with PQQ alleviated inflammatory liver injury might partly via inhibition of the STAT3/TGF-ß1 pathway in piglets challenged with LPS.


Subject(s)
Dietary Supplements , Lipopolysaccharides , Animals , Swine , PQQ Cofactor/pharmacology , PQQ Cofactor/therapeutic use , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Liver/metabolism , RNA, Messenger/metabolism
13.
Pol J Microbiol ; 72(4): 443-460, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38095308

ABSTRACT

Graves' disease (GD) is an autoimmune disorder disease, and its prevalence continues to increase worldwide. Pyrroloquinoline quinone (PQQ) is a naturally antioxidant compound in milk, vegetables, and meat. We aim to identify the treatment efficacy of PQQ on GD and its regulatory effect on intestinal microbiota. The GD mice model was built by an adenovirus expressing autoantigen thyroid-stimulating hormone receptor (Ad-TSHR289). Fecal samples were collected for 16S rDNA sequencing after PQQ pretreatments (20, 40, or 60 mg/kg BW/day) for 4 weeks. Thyroid and intestine functions were measured. The levels of serum TSHR and T4 were significantly raised, and the thyroid gland size was typically enlarged in the GD group than in controls, reversed by PQQ therapy. After PQQ replenishment, IL6 and TNFα levels in small intestine tissues were lower than those in the GD group, with Nrf2 and HO1 levels improved. Also, the PQQ supplement could maintain the mucosal epithelial barrier impaired by GD. In microbial analyses, PQQ treatment could prompt the diversity recovery of gut microbiota and reconstruct the microbiota composition injured by GD. Lactobacillus served as the most abundant genus in all groups, and the abundance of Lactobacillus was increased in the GD group than in control and PQQ groups. Besides, Lactobacillus was highly correlative with all samples and the top 50 genera. PQQ supplementation regulates thyroid function and relieves intestine injury. PQQ changes the primary composition and abundance of GD's intestine microbiota by moderating Lactobacillus, which may exert in the pathogenesis and progression of GD.


Subject(s)
Gastrointestinal Microbiome , Graves Disease , Mice , Animals , Gastrointestinal Microbiome/physiology , PQQ Cofactor , Graves Disease/drug therapy , Graves Disease/genetics , Receptors, Thyrotropin/genetics
14.
World J Microbiol Biotechnol ; 40(1): 31, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38057682

ABSTRACT

Pyrroloquinoline quinone (PQQ) is a peptide-modified natural product. PQQ has important physiological functions such as anti-oxidation, anti-aging, and immunity enhancement. However, due to the lack of in-depth understanding of PQQ biosynthesis and regulation, inefficient PQQ production level limits its wide application. Accordingly, there is still an urgent need to develop high-yielding strains for synthesis of PQQ. This paper reviewed the research and development trends on the PQQ biosynthetic pathways, catalytic reaction mechanism of key enzymes, and the selection of high-yielding strains, which also prospects for the future construction of PQQ biosynthetic microbial cell factories.


Subject(s)
PQQ Cofactor , Oxidation-Reduction
15.
Fluids Barriers CNS ; 20(1): 84, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37981683

ABSTRACT

BACKGROUND: Folates (Vitamin B9) are critical for normal neurodevelopment and function, with transport mediated by three major pathways: folate receptor alpha (FRα), proton-coupled folate transporter (PCFT), and reduced folate carrier (RFC). Cerebral folate uptake primarily occurs at the blood-cerebrospinal fluid barrier (BCSFB) through concerted actions of FRα and PCFT, with impaired folate transport resulting in the neurological disorder cerebral folate deficiency (CFD). Increasing evidence suggests that disorders associated with CFD also present with neuroinflammation, oxidative stress, and mitochondrial dysfunction, however the role of brain folate deficiency in inducing these abnormalities is not well-understood. Our laboratory has identified the upregulation of RFC by nuclear respiratory factor 1 (NRF-1) at the blood-brain barrier (BBB) once indirectly activated by the natural compound pyrroloquinoline quinone (PQQ). PQQ is also of interest due to its anti-inflammatory, antioxidant, and mitochondrial biogenesis effects. In this study, we examined the effects of folate deficiency and PQQ treatment on inflammatory and oxidative stress responses, and changes in mitochondrial function. METHODS: Primary cultures of mouse mixed glial cells exposed to folate-deficient (FD) conditions and treated with PQQ were analyzed for changes in gene expression of the folate transporters, inflammatory markers, oxidative stress markers, and mitochondrial DNA (mtDNA) content through qPCR analysis. Changes in cellular reactive oxygen species (ROS) levels were analyzed in vitro through a DCFDA assay. Wildtype (C57BL6/N) mice exposed to FD (0 mg/kg folate), or control (2 mg/kg folate) diets underwent a 10-day (20 mg/kg/day) PQQ treatment regimen and brain tissues were collected and analyzed. RESULTS: Folate deficiency resulted in increased expression of inflammatory and oxidative stress markers in vitro and in vivo, with increased cellular ROS levels observed in mixed glial cells as well as a reduction of mitochondrial DNA (mtDNA) content observed in FD mixed glial cells. PQQ treatment was able to reverse these changes, while increasing RFC expression through activation of the PGC-1α/NRF-1 signaling pathway. CONCLUSION: These results demonstrate the effects of brain folate deficiency, which may contribute to the neurological deficits commonly seen in disorders of CFD. PQQ may represent a novel treatment strategy for disorders associated with CFD, as it can increase folate uptake, while in parallel reversing many abnormalities that arise with brain folate deficiency.


Subject(s)
Brain , PQQ Cofactor , Animals , Mice , PQQ Cofactor/pharmacology , PQQ Cofactor/therapeutic use , Reactive Oxygen Species , Folic Acid/pharmacology , DNA, Mitochondrial
16.
Cell Death Dis ; 14(11): 723, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935689

ABSTRACT

Abnormal lipid metabolism and chronic low-grade inflammation are the main traits of obesity. Especially, the molecular mechanism of concomitant deficiency in steroidogenesis-associated enzymes related to testosterone (T) synthesis of obesity dominated a decline in male fertility is still poorly understood. Here, we found that in vivo, supplementation of pyrroloquinoline quinone (PQQ) efficaciously ameliorated the abnormal lipid metabolism and testicular spermatogenic function from high-fat-diet (HFD)-induced obese mice. Moreover, the transcriptome analysis of the liver and testicular showed that PQQ supplementation not only inhibited the high expression of proprotein convertase subtilisin/Kexin type 9 (PCSK9) but also weakened the NOD-like receptor family pyrin domain containing 3 (NLRP3)-mediated pyroptosis, which both played a negative role in T synthesis of Leydig Cells (LCs). Eventually, the function and the pyroptosis of LCs cultured with palmitic acid in vitro were simultaneously benefited by suppressing the expression of NLRP3 or PCSK9 respectively, as well the parallel effects of PQQ were affirmed. Collectively, our data revealed that PQQ supplementation is a feasible approach to protect T synthesis from PCSK9-NLRP3 crosstalk-induced LCs' pyroptosis in obese men.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein , Proprotein Convertase 9 , Humans , Mice , Animals , Male , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , PQQ Cofactor/pharmacology , Mice, Obese , Leydig Cells/metabolism , Pyroptosis , Obesity/metabolism , Inflammation
17.
Int J Mol Sci ; 24(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37762380

ABSTRACT

Rhodopseudomonas palustris is a purple non-sulfide bacterium (PNSB), and some strains have been proven to promote plant growth. However, the mechanism underlying the effect of these PNSBs remains limited. Based on genetic information, R. palustris possesses the ability to produce pyrroloquinoline quinone (PQQ). PQQ is known to play a crucial role in stimulating plant growth, facilitating phosphorous solubilization, and acting as a reactive oxygen species scavenger. However, it is still uncertain whether growth conditions influence R. palustris's production of PQQ and other characteristics. In the present study, it was found that R. palustris exhibited a higher expression of genes related to PQQ synthesis under autotrophic culture conditions as compared to acetate culture conditions. Moreover, similar patterns were observed for phosphorous solubilization and siderophore activity, both of which are recognized to contribute to plant-growth benefits. However, these PNSB culture conditions did not show differences in Arabidopsis growth experiments, indicating that there may be other factors influencing plant growth in addition to PQQ content. Furthermore, the endophytic bacterial strains isolated from Arabidopsis exhibited differences according to the PNSB culture conditions. These findings imply that, depending on the PNSB's growing conditions, it may interact with various soil bacteria and facilitate their infiltration into plants.


Subject(s)
Arabidopsis , Rhodopseudomonas , Humans , PQQ Cofactor , Growth Disorders , Phosphorus
18.
Acta Neuropathol Commun ; 11(1): 146, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37684640

ABSTRACT

Retinal ganglion cells are highly metabolically active requiring strictly regulated metabolism and functional mitochondria to keep ATP levels in physiological range. Imbalances in metabolism and mitochondrial mechanisms can be sufficient to induce a depletion of ATP, thus altering retinal ganglion cell viability and increasing cell susceptibility to death under stress. Altered metabolism and mitochondrial abnormalities have been demonstrated early in many optic neuropathies, including glaucoma, autosomal dominant optic atrophy, and Leber hereditary optic neuropathy. Pyrroloquinoline quinone (PQQ) is a quinone cofactor and is reported to have numerous effects on cellular and mitochondrial metabolism. However, the reported effects are highly context-dependent, indicating the need to study the mechanism of PQQ in specific systems. We investigated whether PQQ had a neuroprotective effect under different retinal ganglion cell stresses and assessed the effect of PQQ on metabolic and mitochondrial processes in cortical neuron and retinal ganglion cell specific contexts. We demonstrated that PQQ is neuroprotective in two models of retinal ganglion cell degeneration. We identified an increased ATP content in healthy retinal ganglion cell-related contexts both in in vitro and in vivo models. Although PQQ administration resulted in a moderate effect on mitochondrial biogenesis and content, a metabolic variation in non-diseased retinal ganglion cell-related tissues was identified after PQQ treatment. These results suggest the potential of PQQ as a novel neuroprotectant against retinal ganglion cell death.


Subject(s)
Neuroprotection , Neuroprotective Agents , Retinal Ganglion Cells , PQQ Cofactor/pharmacology , Neuroprotective Agents/pharmacology , Adenosine Triphosphate
19.
ISME J ; 17(11): 2103-2111, 2023 11.
Article in English | MEDLINE | ID: mdl-37737251

ABSTRACT

Although microbial humus respiration plays a critical role in organic matter decomposition and biogeochemical cycling of elements in diverse anoxic environments, the role of methane-producing species (methanogens) is not well defined. Here we report that a major fraction of humus, humic acid reduction enhanced the growth of Methanosarcina acetivorans above that attributed to methanogenesis when utilizing the energy sources methanol or acetate, results which showed both respiratory and fermentative modes of energy conservation. Growth characteristics with methanol were the same for an identically cultured mutant deleted for the gene encoding a multi-heme cytochrome c (MmcA), results indicating MmcA is not essential for respiratory electron transport to humic acid. Transcriptomic analyses revealed that growth with humic acid promoted the upregulation of genes annotated as cell surface pyrroloquinoline quinone (PQQ)-binding proteins. Furthermore, PQQ isolated from the membrane fraction was more abundant in humic acid-respiring cells, and the addition of PQQ improved efficiency of the extracellular electron transport. Given that the PQQ-binding proteins are widely distributed in methanogens, the findings extend current understanding of microbial humus respiration in the context of global methane dynamics.


Subject(s)
Humic Substances , Methanol , Methanol/metabolism , PQQ Cofactor/metabolism , Methanosarcina/metabolism , Methane/metabolism
20.
Toxins (Basel) ; 15(8)2023 08 04.
Article in English | MEDLINE | ID: mdl-37624249

ABSTRACT

In this study, a dual-member bacterial consortium with the ability to oxidize deoxynivalenol (DON) to 3-keto-DON, designated SD, was first screened from the feces of Tenebrio molitor larvae. This consortium consisted of Pseudomonas sp. SD17-1 and Devosia sp. SD17-2, as determined by 16S rRNA-based phylogenetic analysis. A temperature of 30 °C, a pH of 8.0-9.0, and an initial inoculum concentration ratio of Devosia to Pseudomonas of 0.1 were optimal single-factor parameters for the DON oxidation activity of the bacterial consortium SD. Genome-based bioinformatics analysis revealed the presence of an intact PQQ biosynthesis operon (pqqFABCDEG) and four putative pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenase (ADH) genes in the genomes of Pseudomonas strain SD17-1 and Devosia strain SD17-2, respectively. Biochemical analyses further confirmed the PQQ-producing phenotype of Pseudomonas and the DON-oxidizing enzymatic activities of two of four PQQ-dependent ADHs in Devosia. The addition of PQQ-containing a cell-free fermentation supernatant from Pseudomonas activated DON-oxidizing activity of Devosia. In summary, as members of the bacterial consortium SD, Pseudomonas and Devosia play indispensable and complementary roles in SD's oxidation of DON. Specifically, Pseudomonas is responsible for producing the necessary PQQ cofactor, whereas Devosia expresses the PQQ-dependent DON dehydrogenase, together facilitating the oxidation of DON.


Subject(s)
Tenebrio , Animals , Phylogeny , RNA, Ribosomal, 16S , Biotransformation , Feces , Larva , PQQ Cofactor , Pseudomonas/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...