Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 116: 620-627, 2019 02.
Article in English | MEDLINE | ID: mdl-30716988

ABSTRACT

Cassava sour starch is a gluten-free product obtained by natural fermentation and sun-drying that outstrips the native starch baking expansion properties. Although maize starch has been subjected to a similar process, this desirable feature could not be achieved. Ahipa, an unexploited tuberous root, renders starch with relatively low gelatinization temperature and amylose content, like that of cassava. The aim of this work was to study the characteristics and technological properties of ahipa starch subjected to different fermentation processes and drying methods (oven- or sun-drying) and compare the bakery quality of its derived products to those from fermented cassava starches. Ahipa starch followed similar fermentation paths to those followed by cassava's, and sun-drying significantly reduced the content of the resultant lactic and butyric acids. Rheological behavior of starch pastes as well as moisture content and hardness of the doughs obtained from fermented and sun-dried ahipa starches differed from those of cassava. Sun-light exposure resulted detrimental for the expansion properties of ahipa sour starches, while the native one showed baking expansion properties like those of fermented sun-dried cassava starch. Thus, ahipa starch represents an interesting ingredient for the elaboration of gluten-free baked products.


Subject(s)
Bread/analysis , Diet, Gluten-Free , Fermentation , Manihot/metabolism , Pachyrhizus/metabolism , Starch/metabolism , Sunlight , Bread/microbiology , Cooking , Desiccation , Food Microbiology , Hardness , Manihot/microbiology , Pachyrhizus/microbiology , Plant Roots/metabolism , Rheology , Viscosity , Water/analysis
2.
Syst Appl Microbiol ; 40(5): 254-265, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28647304

ABSTRACT

Bradyrhizobium comprises most tropical symbiotic nitrogen-fixing strains, but the correlation between symbiotic and core genes with host specificity is still unclear. In this study, the phylogenies of the nodY/K and nifH genes of 45 Bradyrhizobium strains isolated from legumes of economic and environmental importance in Brazil (Arachis hypogaea, Acacia auriculiformis, Glycine max, Lespedeza striata, Lupinus albus, Stylosanthes sp. and Vigna unguiculata) were compared to 16S rRNA gene phylogeny and genetic diversity by rep-PCR. In the 16S rRNA tree, strains were distributed into two superclades-B. japonicum and B. elkanii-with several strains being very similar within each clade. The rep-PCR analysis also revealed high intra-species diversity. Clustering of strains in the nodY/K and nifH trees was identical: 39 strains isolated from soybean grouped with Bradyrhizobium type species symbionts of soybean, whereas five others occupied isolated positions. Only one strain isolated from Stylosanthes sp. showed similar nodY/K and nifH sequences to soybean strains, and it also nodulated soybean. Twenty-one representative strains of the 16S rRNA phylogram were selected and taxonomically classified using a concatenated glnII-recA phylogeny; nodC sequences were also compared and revealed the same clusters as observed in the nodY/K and nifH phylograms. The analyses of symbiotic genes indicated that a large group of strains from the B. elkanii superclade comprised the novel symbiovar sojae, whereas for another group, including B. pachyrhizi, the symbiovar pachyrhizi could be proposed. Other potential new symbiovars were also detected. The co-evolution hypotheses is discussed and it is suggested that nodY/K analysis would be useful for investigating the symbiotic diversity of the genus Bradyrhizobium.


Subject(s)
Bradyrhizobium/classification , Bradyrhizobium/genetics , Glycine max/microbiology , Pachyrhizus/microbiology , Root Nodules, Plant/microbiology , Bacterial Typing Techniques , Bradyrhizobium/isolation & purification , Brazil , DNA Fingerprinting , DNA, Bacterial/genetics , Nitrogen Fixation , Oxidoreductases/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Rec A Recombinases/genetics , Sequence Analysis, DNA , Symbiosis/genetics
3.
Int J Syst Evol Microbiol ; 59(Pt 8): 1929-34, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19567584

ABSTRACT

Several strains isolated from the legume Pachyrhizus erosus were characterized on the basis of diverse genetic, phenotypic and symbiotic approaches. These novel strains formed two groups closely related to Bradyrhizobium elkanii according to their 16S rRNA gene sequences. Strains PAC48T and PAC68T, designated as the type strains of these two groups, presented 99.8 and 99.1% similarity, respectively, in their 16S rRNA gene sequences with respect to B. elkanii USDA 76T. In spite of these high similarity values, the analysis of additional phylogenetic markers such as atpD and glnII genes and the 16S-23S intergenic spacer (ITS) showed that strains PAC48T and PAC68T represented two separate novel species of the genus Bradyrhizobium with B. elkanii as their closest relative. Phenotypic differences among the novel strains isolated from Pachyrhizus and B. elkanii were found regarding the assimilation of carbon sources and antibiotic resistance. All these differences were congruent with DNA-DNA hybridization analysis which revealed 21% genetic relatedness between strains PAC48T and PAC68T and 46% and 25%, respectively, between these strains and B. elkanii LMG 6134T. The nodD and nifH genes of strains PAC48T and PAC68T were phylogenetically divergent from those of bradyrhizobia species that nodulate soybean. Soybean was not nodulated by the novel Pachyrhizus isolates. Based on the genotypic and phenotypic data obtained in this study, the new strains represent two novel species for which the names Bradyrhizobium pachyrhizi sp. nov. (type strain PAC48T=LMG 24246T=CECT 7396T) and Bradyrhizobium jicamae sp. nov. (type strain PAC68T=LMG 24556T=CECT 7395T) are proposed.


Subject(s)
Bradyrhizobium/classification , Bradyrhizobium/isolation & purification , Pachyrhizus/microbiology , Plant Roots/microbiology , Bacterial Proteins/genetics , Bacterial Typing Techniques , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Molecular Sequence Data , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
4.
J Bacteriol ; 191(3): 735-46, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19060155

ABSTRACT

Type 3 (T3) effector proteins, secreted by nitrogen-fixing rhizobia with a bacterial T3 secretion system, affect the nodulation of certain host legumes. The open reading frame y4lO of Rhizobium sp. strain NGR234 encodes a protein with sequence similarities to T3 effectors from pathogenic bacteria (the YopJ effector family). Transcription studies showed that the promoter activity of y4lO depended on the transcriptional activator TtsI. Recombinant Y4lO protein expressed in Escherichia coli did not acetylate two representative mitogen-activated protein kinase kinases (human MKK6 and MKK1 from Medicago truncatula), indicating that YopJ-like proteins differ with respect to their substrate specificities. The y4lO gene was mutated in NGR234 (strain NGROmegay4lO) and in NGR Omega nopL, a mutant that does not produce the T3 effector NopL (strain NGR Omega nopLOmegay4lO). When used as inoculants, the symbiotic properties of the mutants differed. Tephrosia vogelii, Phaseolus vulgaris cv. Yudou No. 1, and Vigna unguiculata cv. Sui Qing Dou Jiao formed pink effective nodules with NGR234 and NGR Omega nopL Omega y4lO. Nodules induced by NGR Omega y4lO were first pink but rapidly turned greenish (ineffective nodules), indicating premature senescence. An ultrastructural analysis of the nodules induced by NGR Omega y4lO revealed abnormal formation of enlarged infection droplets in ineffective nodules, whereas symbiosomes harboring a single bacteroid were frequently observed in effective nodules induced by NGR234 or NGR Omega nopL Omega y4lO. It is concluded that Y4lO is a symbiotic determinant involved in the differentiation of symbiosomes. Y4lO mitigated senescence-inducing effects caused by the T3 effector NopL, suggesting synergistic effects for Y4lO and NopL in nitrogen-fixing nodules.


Subject(s)
Rhizobium/growth & development , Symbiosis/physiology , Blotting, Western , Crotalaria/microbiology , Crotalaria/ultrastructure , Escherichia coli/genetics , Escherichia coli/metabolism , Microscopy, Electron, Transmission , Models, Genetic , Pachyrhizus/microbiology , Phaseolus/microbiology , Phaseolus/ultrastructure , Rhizobium/genetics , Rhizobium/metabolism , Root Nodules, Plant/microbiology , Root Nodules, Plant/ultrastructure , Symbiosis/genetics , Tephrosia/microbiology , Tephrosia/ultrastructure
5.
Syst Appl Microbiol ; 27(6): 737-45, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15612632

ABSTRACT

Legumes from the genus Pachyrhizus, commonly known as yam bean, are cultivated in several countries from the American continent and constitute an alternative source for sustainable starch, oil and protein production. The endosymbionts of these legumes have been poorly studied although it is known that this legume is nodulated by fast and slow growing rhizobia. In this study we have analyzed a collection of strains isolated in several countries using different phenotypic and molecular methods. The results obtained by SDS-PAGE analysis, LPS profiling and TP-RAPD fingerprinting showed the high diversity of the strains analyzed, although all of them presented slow growth in yeast mannitol agar (YMA) medium. These results were confirmed using 16S-23S internal transcribed spacer (ITS) region and complete sequencing of the 16S rRNA gene, showing that most strains analyzed belong to different species of genus Bradyrhizobium. Three strains were closely related to B. elkanii and the rest of the strains were related to the phylogenetic group constituted by B. japonicum, B. liaoningense, B. yuanmingense and B. betae. These results support that the study of rhizobia nodulating unexplored legumes in different geographical locations will allow the discovery of new species able to establish legume symbioses.


Subject(s)
Bradyrhizobium/classification , Bradyrhizobium/isolation & purification , Pachyrhizus/microbiology , Bacterial Proteins/analysis , Bacterial Proteins/isolation & purification , Bradyrhizobium/chemistry , Bradyrhizobium/genetics , DNA Fingerprinting , DNA, Bacterial/analysis , DNA, Bacterial/chemistry , DNA, Bacterial/isolation & purification , DNA, Ribosomal/chemistry , DNA, Ribosomal/isolation & purification , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/isolation & purification , Electrophoresis, Polyacrylamide Gel , Genes, rRNA , Lipopolysaccharides/analysis , Lipopolysaccharides/isolation & purification , Molecular Sequence Data , Phylogeny , Proteome/analysis , Proteome/isolation & purification , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Random Amplified Polymorphic DNA Technique , Sequence Analysis, DNA
6.
J Gen Appl Microbiol ; 48(4): 181-91, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12469317

ABSTRACT

A total of 25 isolates from root nodules of yam bean (Pachyrhizus erosus L. Urban), a tuber-producing leguminous plant, were characterized. All isolates formed effective nodules mainly on lateral roots while edible tubers were developed on the taproot. The root nodules formed were identified as the typical determinate type. By an analysis of the partial sequences of the 16S rRNA gene (approximately 300 bp) of 10 strains which were selected randomly, the isolated root nodule bacteria of yam bean were classified into two different genera, Rhizobium and Bradyrhizobium. Two strains, YB2 (Bradyrhizobium group) and YB4 (Rhizobium group) were selected and used for further analyses. The generation time of each strain was shown to be 22.5 h for strain YB2 and 0.8 h for strain YB4, respectively. Differences between strains YB2 and YB4 were also reflected in the bacteroid state in the symbiosome. Symbiosome in nodule cells for the strain YB4 contained one bacteroid cell in a peribacteroid membrane, whereas a symbiosome for strain YB2 contained several bacteroid cells.


Subject(s)
Bradyrhizobium/genetics , Pachyrhizus/microbiology , Plant Roots/microbiology , Rhizobium/genetics , Symbiosis , Bradyrhizobium/classification , Bradyrhizobium/isolation & purification , Genetic Variation , Phylogeny , Rhizobium/classification , Rhizobium/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...