Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.508
Filter
1.
Sci Rep ; 14(1): 11332, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38783020

ABSTRACT

The Proteus effect, which occurs when using an avatar in virtual reality, influences user behavior, changes attitudes, and improves physical performance. Here, we show that human pain perception can be alleviated by the Proteus effect. To investigate the pain alleviation effect of using an avatar in a virtual environment, we conducted two experiments using a head-mounted display and a thermal pain stimulator to induce acute pain. The first experiment involved 20 adult participants, while the second experiment involved 44 adult participants. Experimental results show that participants reported significantly lower pain scores (15.982% reduction), as measured by the Pain Assessment Scale (PAS), when using a muscular avatar than when using a normal avatar. The experiments also revealed several significant gender factors. For example, participants reported significantly lower pain scores when using a gender-congruent avatar. In addition, the use of a muscular avatar was particularly effective for male participants. In contrast, female participants consistently reported lower pain scores when using the avatar regardless of its body type (muscular/normal). To further our understanding, we also measured participants' gender-related pain stereotypes using the Gender Role Expectations of Pain (GREP) questionnaire, as well as participants' sense of embodiment. The results of these questionnaires are consistent with the results of the PAS, suggesting possible relationships between stereotypes and the Proteus effect on pain perception, and between the degree of immersion in an avatar and the user's perception of pain.


Subject(s)
Pain Perception , Virtual Reality , Humans , Female , Male , Pain Perception/physiology , Adult , Sex Factors , Young Adult , Pain Measurement , Surveys and Questionnaires , Pain/psychology , User-Computer Interface , Avatar
2.
Behav Brain Res ; 468: 115039, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38718877

ABSTRACT

Chronic unpredictable mild stress (CUMS) method has been introduced as a rodent model of depression. On the other hand, olanzapine, as an antipsychotic, can induce antidepressant and antipsychotic effects. Also, olanzapine may improve cognitive functions. Both CUMS and olanzapine can also affect the expression level of brain-derived neurotrophic factor (BDNF) and synaptophysin, the molecular factors involved in synaptic function, and learning and memory. In this study, we investigated the effect of olanzapine on locomotor activity (using open field test), pain threshold (using hot plate), depressive-like behavior (using forced swim test), spatial learning and memory (using Morris water maze), and BDNF and synaptophysin hippocampal expression (using real-time PCR) in both male and female CUMS rats. CUMS was performed for three consecutive weeks. Olanzapine was also injected intraperitoneally at the dose of 5 mg/kg. Our data showed that olanzapine can reverse the effects of CUMS on behavioral functions and BDNF and synaptophysin expression levels in the hippocampus of both males and females. It was also shown that olanzapine effects on spatial memory, pain perception, and BDNF and synaptophysin level were stronger in females than males. In conclusion, we suggested that the therapeutic effects of olanzapine in CUMS rats may be closely related to the function of BDNF and synaptophysin. Also, the therapeutic effects of olanzapine may be stronger in females. Therefore, and for the first time, we showed that there may be a sex difference in the effects of olanzapine on behavioral and molecular changes following CUMS.


Subject(s)
Brain-Derived Neurotrophic Factor , Depression , Disease Models, Animal , Hippocampus , Olanzapine , Pain Perception , Spatial Memory , Stress, Psychological , Synaptophysin , Animals , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/drug effects , Male , Synaptophysin/metabolism , Female , Olanzapine/pharmacology , Stress, Psychological/metabolism , Stress, Psychological/drug therapy , Rats , Depression/drug therapy , Depression/metabolism , Spatial Memory/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Pain Perception/drug effects , Pain Perception/physiology , Behavior, Animal/drug effects , Memory Disorders/drug therapy , Memory Disorders/metabolism , Antipsychotic Agents/pharmacology , Rats, Sprague-Dawley
3.
J Sports Sci ; 42(7): 574-588, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38726662

ABSTRACT

Exercise-Induced Hypoalgesia (EIH) refers to an acute reduced pain perception after exercise. This systematic review and meta-analysis investigated the effect of a single aerobic exercise session on local and remote EIH in healthy individuals, examining the role of exercise duration, intensity, and modality. Pressure pain thresholds (PPT) are used as the main measure, applying the Cochrane risk of bias tool and GRADE approach for certainty of evidence assessment. Mean differences (MD; Newton/cm²) for EIH effects were analysed. Thirteen studies with 23 exercises and 14 control interventions are included (498 participants). Most studies used bicycling, with only two including running/walking and one including rowing. EIH occurred both locally (MD = 3.1) and remotely (MD = 1.8), with high-intensity exercise having the largest effect (local: MD = 7.5; remote: MD = 3.0) followed by moderate intensity (local: MD = 3.1; remote: MD = 3.0). Low-intensity exercise had minimal impact. Neither long nor short exercise duration induced EIH. Bicycling was found to be effective in eliciting EIH, in contrast to the limited research observed in other modalities. The overall evidence quality was moderate with many studies showing unclear risk biases.


Subject(s)
Exercise , Pain Perception , Pain Threshold , Humans , Exercise/physiology , Pain Threshold/physiology , Pain Perception/physiology , Bicycling/physiology , Running/physiology , Time Factors
4.
PeerJ ; 12: e17204, 2024.
Article in English | MEDLINE | ID: mdl-38584938

ABSTRACT

Background: Because pain can have profound ramifications for quality of life and daily functioning, understanding nuances in the interplay of psychosocial experiences with pain perception is vital for effective pain management. In separate lines of research, pain resilience and mortality salience have emerged as potentially important psychological correlates of reduced pain severity and increased tolerance of pain. However, to date, there has been a paucity of research examining potentially interactive effects of these factors on pain perception. To address this gap, the present experiment investigated mortality salience as a causal influence on tolerance of laboratory pain and a moderator of associations between pain resilience and pain tolerance within a Chinese sample. Methods: Participants were healthy young Chinese adults (86 women, 84 men) who first completed a brief initial cold pressor test (CPT) followed by measures of demographics and pain resilience. Subsequently, participants randomly assigned to a mortality salience (MS) condition completed two open-ended essay questions in which they wrote about their death as well as a death anxiety scale while those randomly assigned to a control condition completed analogous tasks about watching television. Finally, all participants engaged in a delay task and a second CPT designed to measure post-manipulation pain tolerance and subjective pain intensity levels. Results: MS condition cohorts showed greater pain tolerance than controls on the post-manipulation CPT, though pain intensity levels did not differ between groups. Moderator analyses indicated that the relationship between the behavior perseverance facet of pain resilience and pain tolerance was significantly stronger among MS condition participants than controls. Conclusions: This experiment is the first to document potential causal effects of MS on pain tolerance and Ms as a moderator of the association between self-reported behavior perseverance and behavioral pain tolerance. Findings provide foundations for extensions within clinical pain samples.


Subject(s)
Pain , Quality of Life , Adult , Female , Humans , Male , Pain/psychology , Pain Measurement/psychology , Pain Perception/physiology , Pain Threshold/psychology
5.
PLoS One ; 19(4): e0299481, 2024.
Article in English | MEDLINE | ID: mdl-38625975

ABSTRACT

INTRODUCTION: Exercise produces an immediate lessening of pain sensitivity (Exercise-Induced Hypoalgesia (EIH)) in healthy individuals at local and distant sites, possibly through a shared mechanism with conditioned pain modulation (CPM). Dynamic resistance exercise is a recommended type of exercise to reduce pain, yet limited research has examined the effects of intensity on EIH during this type of exercise. Therefore, the primary purpose of this study is to compare changes in PPT at a local and distant site during a leg extension exercise at a high intensity, a low intensity, or a quiet rest condition. A secondary purpose is to examine if CPM changes after each intervention. The final purpose is to examine if baseline pain sensitivity measures are correlated with response to each intervention. METHODS: In a randomized controlled trial of 60 healthy participants, participants completed baseline pain sensitivity testing (heat pain threshold, temporal summation, a cold pressor test as measure of CPM) and were randomly assigned to complete a knee extension exercise at: 1) high intensity (75% of a 1 Repetition Maximum (RM), 2) low intensity (30% 1RM), or 3) Quiet Rest. PPT was measured between each set at a local (quadriceps) and distant (trapezius) site during the intervention. CPM was then repeated after the intervention. To test the first purpose of the study, a three-way ANOVA examined for time x site x intervention interaction effects. To examine for changes in CPM by group, a mixed-model ANOVA was performed. Finally, a Pearson Correlation examined the association between baseline pain sensitivity and response to each intervention. RESULTS: Time x site x intervention interaction effects were not significant (F(5.3, 150.97) = 0.87, p = 0.51, partial eta2 = 0.03). CPM did not significantly change after the interventions (time x intervention F(1,38) = 0.81, p = 0.37, partial eta2 = 0.02. EIH effects at the quadriceps displayed a significant, positive moderate association with baseline HPT applied over the trapezius (r = 0.61, p<0.01) and TS (r = 0.46, p = 0.04). DISCUSSION: In healthy participants, PPT and CPM did not significantly differ after a leg extension exercise performed at a high intensity, low intensity, or quiet rest condition. It is possible pre-intervention CPM testing with a noxious stimuli may have impaired inhibitory effects frequently observed during exercise but future research would need to examine this hypothesis.


Subject(s)
Resistance Training , Humans , Pain Measurement , Pain Perception/physiology , Pain , Pain Threshold/physiology
6.
J Indian Prosthodont Soc ; 24(2): 136-143, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38650338

ABSTRACT

AIM: To evaluate and compare the effect of impregnated retraction cord vs Laser on gingival attachment level and pain perception following retraction for subgingival margins. SETTINGS AND DESIGN: Many methods for achieving and measuring the amount of gingival retraction in fixed prosthodontic work have been advocated. Though the gingival attachment level is crucial in Periodontology, the literature available regarding the effect of these retraction methods on the same is scarce. Hence, this clinical study was designed to compare the pain perception and amount of gingival recession when impregnated cord and laser were used for retraction. MATERIALS AND METHODS: In 40 subjects (age range of 20 to 40 years) with single missing maxillary incisor, the abutments were prepared with subgingival margins, to receive a full coverage metal-ceramic fixed dental prosthesis. The gingiva was retracted on one of the abutments with impregnated retraction cord and on the other with diode laser. Gingival attachment levels were compared at six sites per abutment using superimposition of digital scans, preoperative and four weeks after cementation of final prosthesis. STATISTICAL ANALYSIS USED: Statistical analysis of the data for gingival recession was done using t-test. Pain perception was analysed with Chi-square test. Pain perception by patients following retraction was compared with VAS scale. RESULTS: The average values of gingival recession on buccal side were 0.61 mm and 0.38 mm and on the palatal side were 0.58 mm and 0.35 mm for impregnated retraction cord and laser respectively. The P values of <0.01 indicated a highly significant difference between the two groups. Intragroup comparison did not show significant differences between various sites. Pain and discomfort produced by cord method was moderate in comparison with mild/no pain with diode laser and the difference was highly significant.Conclusion: Retraction cord produced more gingival recession than the diode laser, which was statistically highly significant on both buccal and palatal aspects of the teeth. Patients experience with diode laser technique was less painful in comparison with retraction cord method.


Subject(s)
Gingival Recession , Pain Perception , Humans , Adult , Prospective Studies , Female , Male , Pain Perception/physiology , Young Adult , Gingival Retraction Techniques/instrumentation , Gingiva , Lasers, Semiconductor/therapeutic use , Pain Measurement/methods
7.
Haemophilia ; 30(3): 827-835, 2024 May.
Article in English | MEDLINE | ID: mdl-38600680

ABSTRACT

BACKGROUND: Patients with haemophilia (PwH) suffer from chronic pain due to joint alterations induced by recurring haemorrhage. OBJECTIVES: This study aimed to investigate the relationship between structural alterations and pain perception at the ankle joint in PwH. PATIENTS/METHODS: Ankle joints of 79 PwH and 57 healthy controls (Con) underwent ultrasound examination (US) and assessment of pain sensitivity via pressure pain thresholds (PPT). US discriminated between joint activity (synovitis) and joint damage (cartilage and/or bone degeneration) applying the HEAD-US protocol. Based on US-findings, five subgroups were built: PwH with activity/damage, PwH with activity/no damage, PwH with no activity/no damage, controls with activity/no damage and controls with no activity/no damage. RESULTS: Joint activity and joint damage were significantly increased in ankles of PwH compared to Con (p ≤.001). Subgroup analysis revealed that structural alterations negatively impact pain perception. This is particularly evident when comparing PwH with both activity/damage to PwH with no activity/no damage at the tibiotalar joint (p = .001). At the fibulotalar joint, no significant differences were observed between PwH subgroups. Further analysis showed that both joint activity and joint damage result in an increase in pain sensitivity (p ≤.001). CONCLUSION: The data suggest a relation between joint activity, joint damage and pain perception in PwH. Even minor changes due to synovitis appear to affect pain perception, with the effect not intensifying at higher levels of inflammation. In terms of joint damage, severe degeneration leads to a sensitised pain state most robustly, whereas initial changes do not seem to significantly affect pain perception.


Subject(s)
Ankle Joint , Hemophilia A , Pain Perception , Humans , Hemophilia A/complications , Hemophilia A/physiopathology , Ankle Joint/physiopathology , Ankle Joint/pathology , Male , Adult , Pain Perception/physiology , Female , Middle Aged , Young Adult , Ultrasonography , Pain Threshold
8.
J Neurosci ; 44(17)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38453467

ABSTRACT

Pain perception arises from the integration of prior expectations with sensory information. Although recent work has demonstrated that treatment expectancy effects (e.g., placebo hypoalgesia) can be explained by a Bayesian integration framework incorporating the precision level of expectations and sensory inputs, the key factor modulating this integration in stimulus expectancy-induced pain modulation remains unclear. In a stimulus expectancy paradigm combining emotion regulation in healthy male and female adults, we found that participants' voluntary reduction in anticipatory anxiety and pleasantness monotonically reduced the magnitude of pain modulation by negative and positive expectations, respectively, indicating a role of emotion. For both types of expectations, Bayesian model comparisons confirmed that an integration model using the respective emotion of expectations and sensory inputs explained stimulus expectancy effects on pain better than using their respective precision. For negative expectations, the role of anxiety is further supported by our fMRI findings that (1) functional coupling within anxiety-processing brain regions (amygdala and anterior cingulate) reflected the integration of expectations with sensory inputs and (2) anxiety appeared to impair the updating of expectations via suppressed prediction error signals in the anterior cingulate, thus perpetuating negative expectancy effects. Regarding positive expectations, their integration with sensory inputs relied on the functional coupling within brain structures processing positive emotion and inhibiting threat responding (medial orbitofrontal cortex and hippocampus). In summary, different from treatment expectancy, pain modulation by stimulus expectancy emanates from emotion-modulated integration of beliefs with sensory evidence and inadequate belief updating.


Subject(s)
Anticipation, Psychological , Anxiety , Magnetic Resonance Imaging , Humans , Male , Female , Anxiety/psychology , Anxiety/physiopathology , Adult , Anticipation, Psychological/physiology , Young Adult , Pain Perception/physiology , Pain/psychology , Pain/physiopathology , Bayes Theorem , Emotions/physiology , Brain/diagnostic imaging , Brain/physiopathology , Brain/physiology , Pleasure/physiology , Brain Mapping
9.
Psychophysiology ; 61(6): e14542, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38462579

ABSTRACT

Video gaming, including violent video gaming, has become very common and lockdown measures of the COVID-19 pandemic even increased the prevalence rates. In this study, we examined if violent video gaming is associated with more adverse childhood experiences (ACE) and if it impairs pain processing and fear conditioning. We tested three groups of participants (violent video gamers, nonviolent video gamers, and non-gamers) and examined fear conditioning as well as pain perception during functional magnetic resonance imaging (fMRI). Violent video gamers displayed significantly higher pain thresholds as well as pain tolerance for electric stimulation, pressure pain stimulation, and cold pressor pain measurements than nonviolent video gamers and non-gamers. This relationship was moderated by adverse childhood experiences, especially physical neglect. Brain images acquired during the fear conditioning fMRI task showed that violent video gamers display significantly less differential brain activation to stimuli signaling pain versus no pain in the anterior cingulate cortex, the juxtapositional lobule cortex, and the paracingulate gyrus compared to non-gamers. There was also a significant negative correlation between adverse childhood experiences and activation in the precuneus and the intracalcarine cortex for signals of pain versus safety. The results of this study imply that violent video gaming is related to reduced processing of pain and signals of pain in a fear learning task, dependent of adverse childhood experiences. These mechanisms need to be examined in more detail and these data could be helpful in preventing the onset and adverse consequences of violent video gaming.


Subject(s)
Adverse Childhood Experiences , Fear , Magnetic Resonance Imaging , Video Games , Humans , Male , Fear/physiology , Adult , Young Adult , Female , Pain Perception/physiology , Pain Threshold/physiology , Violence , Pain Measurement , Conditioning, Classical/physiology , Adolescent , COVID-19
10.
Neurogastroenterol Motil ; 36(6): e14787, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38523349

ABSTRACT

BACKGROUND: Experimental research evaluating differences between the visceral and somatic stimulation is limited to pain and typically uses different induction methods for visceral and somatic stimulation (e.g., rectal balloon distention vs. tactile hand stimulation). Our study aimed to compare differences in response time, intensity, unpleasantness, and threat between identical electrical visceral and somatic stimulations at both painful and non-painful perceptual thresholds. METHODS: Electrical stimulation was applied to the wrist and distal esophagus in 20 healthy participants. A double pseudorandom staircase determined perceptual thresholds of Sensation, Discomfort, and Pain for the somatic and visceral stimulations, separately. Stimulus reaction time (ms, via button press), and intensity, unpleasantness, and threat ratings were recorded after each stimulus. General linear mixed models compared differences in the four outcomes by stimulation type, threshold, and the stimulation type-by-threshold interaction. Sigmoidal maximum effect models evaluated differences in outcomes across all delivered stimulation intensities. KEY RESULTS: Overall, visceral stimulations were perceived as more intense, threatening, and unpleasant compared to somatic stimulations, but participants responded faster to somatic stimulations. There was no significant interaction effect, but planned contrasts demonstrated differences at individual thresholds. Across all delivered intensities, higher intensity stimulations were needed to reach the half-maximum effect of self-reported intensity, unpleasantness, and threat ratings in the visceral domain. CONCLUSIONS AND INFERENCES: Differences exist between modalities for both non-painful and painful sensations. These findings may have implications for translating paradigms and behavioral treatments from the somatic domain to the visceral domain, though future research in larger clinical samples is needed.


Subject(s)
Emotions , Humans , Male , Female , Adult , Emotions/physiology , Young Adult , Electric Stimulation/methods , Pain Threshold/physiology , Pain Perception/physiology , Sensation/physiology , Visceral Pain/physiopathology , Visceral Pain/psychology , Esophagus/physiology , Pain/psychology , Pain/physiopathology , Reaction Time/physiology
11.
Soc Cogn Affect Neurosci ; 19(1)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38481007

ABSTRACT

The question of whether physical pain and vicarious pain have some shared neural substrates is unresolved. Recent research has argued that physical and vicarious pain are represented by dissociable multivariate brain patterns by creating biomarkers for physical pain (Neurologic Pain Signature, NPS) and vicarious pain (Vicarious Pain Signature, VPS), respectively. In the current research, the NPS and two versions of the VPS were applied to three fMRI datasets (one new, two published) relating to vicarious pain which focused on between-subject differences in vicarious pain (Datasets 1 and 3) and within-subject manipulations of perspective taking (Dataset 2). Results show that (i) NPS can distinguish brain responses to images of pain vs no-pain and to a greater extent in vicarious pain responders who report experiencing pain when observing pain and (ii) neither version of the VPS mapped on to individual differences in vicarious pain and the two versions differed in their success in predicting vicarious pain overall. This study suggests that the NPS (created to detect physical pain) is, under some circumstances, sensitive to vicarious pain and there is significant variability in VPS measures (created to detect vicarious pain) to act as generalizable biomarkers of vicarious pain.


Subject(s)
Empathy , Pain Perception , Humans , Pain Perception/physiology , Pain , Brain/diagnostic imaging , Brain/physiology , Biomarkers
12.
Sci Rep ; 14(1): 3383, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38337009

ABSTRACT

Anticipation of pain engenders anxiety and fear, potentially shaping pain perception and governing bodily responses such as peripheral vasomotion through the sympathetic nervous system (SNS). Sympathetic innervation of vascular tone during pain perception has been quantified using a peripheral arterial stiffness index; however, its innervation role during pain anticipation remains unclear. This paper reports on a neuroimaging-based study designed to investigate the responsivity and attribution of the index at different levels of anticipatory anxiety and pain perception. The index was measured in a functional magnetic resonance imaging experiment that randomly combined three visual anticipation cues and painful stimuli of two intensities. The peripheral and cerebral responses to pain anticipation and perception were quantified to corroborate bodily responsivity, and their temporal correlation was also assessed to identify the response attribution of the index. Contrasting with the high responsivity across levels of pain sensation, a low responsivity of the index across levels of anticipatory anxiety revealed its specificity across pain experiences. Discrepancies between the effects of perception and anticipation were validated across regions and levels of brain activity, providing a brain basis for peripheral response specificity. The index was also characterized by a 1-s lag in both anticipation and perception of pain, implying top-down innervation of the periphery. Our findings suggest that the SNS responds to pain in an emotion-specific and sensation-unbiased manner, thus enabling an early assessment of individual pain perception using this index. This study integrates peripheral and cerebral hemodynamic responses toward a comprehensive understanding of bodily responses to pain.


Subject(s)
Brain , Pain , Humans , Brain/diagnostic imaging , Pain Perception/physiology , Fear/physiology , Neuroimaging , Magnetic Resonance Imaging , Anticipation, Psychological/physiology
13.
Psychiatry Clin Neurosci ; 78(5): 300-308, 2024 May.
Article in English | MEDLINE | ID: mdl-38403942

ABSTRACT

AIM: Pain is reconstructed by brain activities and its subjectivity comes from an interplay of multiple factors. The current study aims to understand the contribution of genetic factors to the neural processing of pain. Focusing on the single-nucleotide polymorphism (SNP) of opioid receptor mu 1 (OPRM1) A118G (rs1799971) and catechol-O-methyltransferase (COMT) val158met (rs4680), we investigated how the two pain genes affect pain processing. METHOD: We integrated a genetic approach with functional neuroimaging. We extracted genomic DNA information from saliva samples to genotype the SNP of OPRM1 and COMT. We used a percept-related model, in which two different levels of perceived pain intensities ("low pain: mildly painful" vs "high pain: severely painful") were employed as experimental stimuli. RESULTS: Low pain involves a broader network relative to high pain. The distinct effects of pain genes were observed depending on the perceived pain intensity. The effects of low pain were found in supramarginal gyrus, angular gyrus, and anterior cingulate cortex (ACC) for OPRM1 and in middle temporal gyrus for COMT. For high pain, OPRM1 affected the insula and cerebellum, while COMT affected the middle occipital gyrus and ACC. CONCLUSION: OPRM1 primarily affects sensory and cognitive components of pain processing, while COMT mainly influences emotional aspects of pain processing. The interaction of the two pain genes was associated with neural patterns coding for high pain and neural activation in the ACC in response to pain. The proteins encoded by the OPRM1 and COMT may contribute to the firing of pain-related neurons in the human ACC, a critical center for subjective pain experience.


Subject(s)
Catechol O-Methyltransferase , Pain , Polymorphism, Single Nucleotide , Receptors, Opioid, mu , Humans , Catechol O-Methyltransferase/genetics , Receptors, Opioid, mu/genetics , Male , Adult , Female , Young Adult , Pain/genetics , Pain/physiopathology , Magnetic Resonance Imaging , Pain Perception/physiology , Brain/physiopathology , Functional Neuroimaging
14.
Int Dent J ; 74(3): 631-637, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38216389

ABSTRACT

BACKGROUND: This study evaluated the pain and discomfort associated with 3 diagnostic techniques for proximal carious lesions in children aged 5 to 8 years: bitewing (BW) radiographs, DIAGNOcam, and temporary teeth separation. METHODS: The study included 60 healthy children between the ages of 5 and 8 years who had no prior history of dry mouth or mouth breathing, were definitely positive or positive based on Frankl Behavioral Rating Scale, had at least one pair of matched bilateral primary molars and/or permanent first molars in close contact with the adjacent tooth, and were free of restorations and frank cavitation. Each patient evaluated all 3 techniques. The pain and discomfort ratings were obtained by the Wong-Baker FACES Pain Rating Scale immediately after taking 2 standardised BW radiographs or undergoing use of DIAGNOcam and 2 days after temporary teeth separation with elastic separators by a single trained and experienced paediatric dentist. RESULTS: The DIAGNOcam procedure resulted in much higher pain and discomfort (3.69 ± 3.10) than the other 2 diagnostic techniques. Within-participant pain and discomfort scored significantly higher with DIAGNOcam compared to BW radiographs (P < .001) and temporary teeth separation (P = .002). CONCLUSIONS: The DIAGNOcam diagnostic technique caused much more pain and discomfort than BW radiographs and temporary teeth separation using orthodontic elastic separators. The report is part of a randomised clinical trial that was registered at www. CLINICALTRIALS: gov under the identifier NCT03685058.


Subject(s)
Pain Measurement , Humans , Child , Child, Preschool , Female , Male , Dental Caries , Pain Perception/physiology , Tooth, Deciduous , Molar
15.
Appl Physiol Nutr Metab ; 49(5): 626-634, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38181400

ABSTRACT

Physical activity acutely alters pain processing known as exercise-induced hypoalgesia (EIH). This randomized controlled crossover study investigated the effects of two different rowing exercises on EIH and to explore whether possible EIH effects are related to individual rowing specific performance. Fifty male experienced rowers conducted two rowing sessions (submaximal: 30 min of moderate rowing (70% of maximum heart rate); maximal: 350 m in an all-out fashion) and a control session. Pre and post exercise pain sensitivity was measured bilaterally using pressure pain thresholds (PPT; Newton (N)) at the elbow, knee, ankle, sternum, and forehead. Individual performance was determined as maximum watt/kg and was tested for correlations with changes in PPT. Higher PPT values were observed after maximal exercise at all landmarks with a mean change ranging from 2.5 ± 7.8 N (right elbow; p = 0.027; dz = 0.323) to 10.0 ± 12.2 N (left knee; p ≤ 0.001; dz = 0.818). The submaximal (range from -1.6 ± 8.8 N (Sternum; p = 0.205; dz = 0.182) to 2.0 ± 10.3 N (right ankle; p = 0.176; dz = 0.194)) and control session (range from -0.5 ± 7.6 N (left elbow; p = 0.627; dz = 0.069) to 2.6 ± 9.1 N (right ankle; p = 0.054; dz = 0.279)) did not induce changes. Relative performance levels were not correlated to EIH (range from: r = -0.129 (p = 0.373) at sternum to r = 0.176 (p = 0.221) at left knee). EIH occurred globally after a short maximal rowing exercise while no effects occurred after rowing for 30 min at submaximal intensity. EIH cannot be explained by rowing specific performance levels in experienced rowers. However, the sample may lack sufficient heterogeneity in performance levels to draw final conclusions.


Subject(s)
Cross-Over Studies , Pain Threshold , Water Sports , Humans , Male , Water Sports/physiology , Young Adult , Adult , Exercise/physiology , Pain/physiopathology , Pain/etiology , Pain Perception/physiology , Heart Rate/physiology
16.
Med Sci Sports Exerc ; 56(6): 1046-1055, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38227482

ABSTRACT

INTRODUCTION: For the downstream nociceptive processing of elite athletes, recent studies indicate that athletes probably tolerate more pain as compared with a normally active population. Phenotyping the nociceptive processing of athletes in different types of endurance sports can provide insight into training-specific effects, which may help in understanding the long-term effects of specific exercise. METHODS: Twenty-six elite endurance athletes from the disciplines of rowing, triathlon, and running and 26 age- and sex-matched, recreationally active control subjects who participated in the subjective pain perception and processing of standardized noxious stimuli were investigated by EEG. This included standardized heat pain thresholds (HPT) and contact heat-evoked potentials from heat stimulation, measured with EEG as well as pinprick-evoked potentials from mechanical stimulation. RESULTS: After noxious stimulation, athletes showed a higher activation of the event-related spectral perturbation (ERSP) patterns in the N2P2 EEG response at the Cz Electrode compared with the controls. After noxious contact heat stimulation, triathletes had a higher ERSP activation compared with the controls, whereas the rowers had a higher ERSP activation after noxious mechanical stimulation. Also, HPT in triathletes were increased despite their increased central activation after thermal stimulation. We found a correlation between increased HPT and training hours and years, although athletes did not differ within these variables. CONCLUSIONS: Although we were able to identify differences between athletes of different endurance sports, the reasons and implications of these differences remain unclear. The study of sport-specific somatosensory profiles may help to understand the mechanisms of exercise-related long-term effects on pain processing and perception. Furthermore, sport-specific somatosensory effects may support the personalization of exercise interventions and identify risk factors for chronic pain in elite athletes.


Subject(s)
Electroencephalography , Pain Perception , Pain Threshold , Humans , Male , Adult , Pain Threshold/physiology , Female , Pain Perception/physiology , Young Adult , Hot Temperature , Athletes , Nociception/physiology , Running/physiology , Water Sports/physiology , Physical Endurance/physiology , Evoked Potentials/physiology
17.
Article in English | MEDLINE | ID: mdl-37678710

ABSTRACT

Placebo interventions generate mismatches between expected pain and sensory signals from which pain states are inferred. Because we lack direct access to bodily states, we can only infer whether nociceptive activity indicates tissue damage or results from noise in sensory channels. Predictive processing models propose to make optimal inferences using prior knowledge given noisy sensory data. However, these models do not provide a satisfactory explanation of how pain relief expectations are translated into physiological manifestations of placebo responses. Furthermore, they do not account for individual differences in the ability to endogenously regulate nociceptive activity in predicting placebo analgesia. The brain not only passively integrates prior pain expectations with nociceptive activity to infer pain states (perceptual inference) but also initiates various types of actions to ensure that sensory data are consistent with prior pain expectations (active inference). We argue that depending on whether the brain interprets conflicting sensory data (prediction errors) as a signal to learn from or noise to be attenuated, the brain initiates opposing types of action to facilitate learning from sensory data or, conversely, to enhance the biasing influence of prior pain expectations on pain perception. Furthermore, we discuss the role of stress, anxiety, and unpredictability of pain in influencing the weighting of prior pain expectations and sensory data and how they relate to the individual ability to regulate nociceptive activity (endogenous pain modulation). Finally, we provide suggestions for future studies to test the implications of the active inference model of placebo analgesia.


Subject(s)
Analgesia , Pain , Humans , Pain/drug therapy , Analgesia/methods , Pain Perception/physiology , Brain , Anxiety
18.
Pain ; 165(3): 596-607, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37703404

ABSTRACT

ABSTRACT: Previous studies on the potential effects of unpredictability on pain perception and its neural correlates yielded divergent results. This study examined whether this may be explained by differences in acquired expectations. We presented 41 healthy volunteers with laser heat stimuli of different intensities. The stimuli were preceded either by predictable low, medium, or high cues or by unpredictable low-medium, medium-high, or low-high cues. We recorded self-reports of pain intensity and unpleasantness and laser-evoked potentials (LEPs). Furthermore, we investigated whether dynamic expectations that evolved throughout the experiment based on past trials were better predictors of pain ratings than fixed (nonevolving) expectations. Our results replicate previous findings that unpredictable pain is higher than predictable pain for low-intensity stimuli but lower for high-intensity stimuli. Moreover, we observed higher ratings for the medium-high unpredictable condition than the medium-low unpredictable condition, in line with an effect of expectation. We found significant interactions (N1, N2) for the LEP components between intensity and unpredictability. However, the few significant differences in LEP peak amplitudes between cue conditions did not survive correction for multiple testing. In line with predictive coding perspectives, pain ratings were best predicted by dynamic expectations. Surprisingly, expectations of reduced precision (increased variance) were associated with lower pain ratings. Our findings provide strong evidence that (dynamic) expectations contribute to the opposing effects of unpredictability on pain perception; therefore, we highlight the importance of controlling for them in pain unpredictability manipulations. We also suggest to conceptualize pain expectations more often as dynamic constructs incorporating previous experiences.


Subject(s)
Motivation , Pain , Humans , Electroencephalography/methods , Pain Perception/physiology , Pain Measurement/methods
19.
Pain ; 165(3): 565-572, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37862047

ABSTRACT

ABSTRACT: This study aimed to characterize the sensory responses observed when electrically stimulating the white matter surrounding the posterior insula and medial operculum (PIMO). We reviewed patients operated on under awake conditions for a glioma located in the temporoparietal junction. Patients' perceptions were retrieved from operative reports. Stimulation points were registered in the Montreal Neurological Institute template. A total of 12 stimulation points in 8 patients were analyzed. Painful sensations in the contralateral leg were reported (5 sites in 5 patients) when stimulating the white matter close to the parcel OP2/3 of the Glasser atlas. Pain had diverse qualities: burning, tingling, crushing, or electric shock. More laterally, in the white matter of OP1, pain and heat sensations in the upper part of the body were described (5 sites in 2 patients). Intermingled with these sites, vibration sensations were also reported (3 sites in 2 patients). Based on the tractograms of 44 subjects from the Human Connectome Project data set, we built a template of the pathways linking the thalamus to OP2/3 and OP1. Pain sites were located in the thalamo-OP2/3 and thalamo-OP1 tracts. Heat sites were located in the thalamo-OP1 tract. In the 227 awake surgeries performed for a tumor located outside of the PIMO region, no patients ever reported pain or heat sensations when stimulating the white matter. Thus, we propose that the thalamo-PIMO connections constitute the main cortical inputs for nociception and thermoception and emphasize that preserving these fibers is of utmost importance to prevent the postoperative onset of a debilitating insulo-opercular pain syndrome.


Subject(s)
Electric Stimulation Therapy , White Matter , Humans , White Matter/diagnostic imaging , Hot Temperature , Vibration , Pain/etiology , Pain Perception/physiology , Thermosensing , Brain Mapping
20.
Eur J Pain ; 28(3): 434-453, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37947114

ABSTRACT

BACKGROUND: There is inter-individual variability in the influence of different components (e.g. nociception and expectations) on pain perception. Identifying the individual effect of these components could serve for patient stratification, but only if these influences are stable in time. METHODS: In this study, 30 healthy participants underwent a cognitive pain paradigm in which they rated pain after viewing a probabilistic cue informing of forthcoming pain intensity and then receiving electrical stimulation. The trial information was then used in a Bayesian probability model to compute the relative weight each participant put on stimulation, cue, cue uncertainty and trait-like bias. The same procedure was repeated 2 weeks later. Relative and absolute test-retest reliability of all measures was assessed. RESULTS: Intraclass correlation results showed good reliability for the effect of the stimulation (0.83), the effect of the cue (0.75) and the trait-like bias (0.75 and 0.75), and a moderate reliability for the effect of the cue uncertainty (0.55). Absolute reliability measures also supported the temporal stability of the results and indicated that a change in parameters corresponding to a difference in pain ratings ranging between 0.47 and 1.45 (depending on the parameters) would be needed to consider differences in outcomes significant. The comparison of these measures with the closest clinical data we possess supports the reliability of our results. CONCLUSIONS: These findings support the hypothesis that inter-individual differences in the weight placed on different pain factors are stable in time and could therefore be a possible target for patient stratification. SIGNIFICANCE: Our results demonstrate the temporal stability of the weight healthy individuals place on the different factors leading to the pain response. These findings give validity to the idea of using Bayesian estimations of the influence of different factors on pain as a way to stratify patients for treatment personalization.


Subject(s)
Pain Perception , Pain , Humans , Bayes Theorem , Reproducibility of Results , Pain Perception/physiology , Pain/diagnosis , Pain Measurement/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...