Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Microbiology (Reading) ; 167(11)2021 11.
Article in English | MEDLINE | ID: mdl-34846286

ABSTRACT

Bdellovibrio and like organisms (BALOs) are Gram-negative obligate predators of other bacteria in a range of environments. The recent discovery of BALOs in the circulatory system of cultured spiny lobster P. ornatus warrants more investigation. We used a combination of co-culture agar and broth assays and transmission electron microscopy to show a Halobacteriovorax sp. strain Hbv preyed upon the model prey bacterium Vibrio sp. strain Vib. The haemolymph microbiome of juvenile P. ornatus was characterised following injection of phosphate buffered saline (control) or prey and/or predator bacteria for 3 d. The predator Hbv had no effect on survival compared to the control after 3 d. However, when compared to the prey only treatment group, lobsters injected with both prey and predator showed significantly lower abundance of genus Vibrio in the haemolymph bacterial community composition. This study indicates that predatory bacteria are not pathogenic and may assist in controlling microbial population growth in the haemolymph of lobsters.


Subject(s)
Bdellovibrio , Microbiota , Palinuridae , Animals , Bacteria , Hemolymph , Palinuridae/microbiology
2.
J Invertebr Pathol ; 176: 107457, 2020 10.
Article in English | MEDLINE | ID: mdl-32882233

ABSTRACT

The spiny lobster Panulirus argus (Latreille, 1804) is currently affected by an unenveloped, icosahedral, DNA virus termed Panulirus argus virus 1 (PaV1), a virulent and pathogenic virus that produces a long-lasting infection that alters the physiology and behaviour of heavily infected lobsters. Gut-associated microbiota is crucial for lobster homeostasis and well-being, but pathogens could change microbiota composition affecting its function. In PaV1 infection, the changes of gut-associated microbiota are yet to be elucidated. In the present study, we used high-throughput 16S rRNA sequencing technology to compare the bacterial microbiota in intestines of healthy and heavily PaV1-infected male and female juveniles of spiny lobsters P. argus captured in Puerto Morelos Reef lagoon, Quintana Roo, Mexico. We found that basal gut-associated microbiota composition showed a sex-dependent bias, with females being enriched in amplicon sequence variants (ASVs) assigned to Sphingomonas, while males were enriched in the genus Candidatus Hepatoplasma and Aliiroseovarius genera. Moreover, the alpha diversity of microbiota decreased in PaV1-infected lobsters. A significant increase of the genus Candidatus Bacilloplasma was observed in infected lobsters, as well as a significant decrease in Nesterenkonia, Caldalkalibacillus, Pseudomonas, Cetobacterium and Phyllobacterium. We also observed an alteration in the abundances of Vibrio species. Results from this study suggest that PaV1 infection impacts intestinal microbiota composition in Panulirus argus in a sex-dependent manner.


Subject(s)
DNA Viruses/physiology , Gastrointestinal Microbiome , Palinuridae/microbiology , Animals , Bacteria/classification , Bacteria/isolation & purification , Female , Male , Palinuridae/virology , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , Sex Factors
3.
J Invertebr Pathol ; 176: 107472, 2020 10.
Article in English | MEDLINE | ID: mdl-32926898

ABSTRACT

Japanese spiny lobsters (Panulirus japonicus) exhibiting white opaque abdominal muscle were found in Mie and Wakayama prefectures, in mid-Western Japan. Microscopically, two types of microsporidian spores, ovoid and rod-shaped, were observed infecting the muscle. Histologically, both types of spore were detected inside myofibers of the abdomen, appendages, and cardiac muscles and were often both observed in a single myofiber simultaneously. Transmission electron microscopy revealed that ovoid spores have villous projections on the surface, and that ovoid and rod-shaped spores have a polar filament with 12 coils and 6 to 8 coils respectively. Merogonic and sporogonic stages were observed around ovoid spores, but rarely around rod-shaped spores. The small subunit ribosomal DNA sequences obtained from both spore types were identical to each other, indicating that this microsporidian exhibits a clear spore dimorphism. Phylogenetic analysis based on the rDNA sequences indicates that this microsporidian is part of a clade consisting of the genera Ameson and Nadelspora, with the most closely related species being A. herrnkindi found in the Caribbean spiny lobster P. argus. Based on ultrastructural features, molecular phylogenetic data, host type and geographical differences among known species in these genera, the species found in whitened abdominal muscles of the Japanese spiny lobster is described as Ameson iseebi sp. nov.


Subject(s)
Microsporidia/classification , Palinuridae/microbiology , Animals , Female , Male , Microscopy , Microscopy, Electron, Transmission , Microsporidia/cytology , Microsporidia/genetics , Microsporidia/ultrastructure , Muscles/microbiology , Muscles/pathology , RNA, Fungal/analysis , RNA, Ribosomal/analysis
4.
J Invertebr Pathol ; 175: 107453, 2020 09.
Article in English | MEDLINE | ID: mdl-32798534

ABSTRACT

The Caribbean spiny lobster, Panulirus argus (Latreille, 1804) is a highly commercial species and comprises the largest spiny lobster fishery in the world. Although populations have declined throughout its range, there is little known regarding its diseases and pathogens. The objectives of this study were to provide illustrated and standardized methods for postmortem examination, and to describe baseline gross and microscopic pathology for P. argus. From July 2017-March 2019, a postmortem examination including comprehensive histological assessment was performed on 313 fishery-caught lobsters. Epibionts and lesions observed include branchial cirriped infestation (69%), branchial encysted nemertean worm larvae (23%), tail fan necrosis (11%), skeletal muscle necrosis (7%), antennal gland calculi (6%), branchial infarction (2%), and microsporidiosis (0.6%). This report confirms the rare prevalence of microsporidiosis in P. argus and describes nemertean worm larvae in the gill. This study also reports a condition resembling excretory calcinosis in spiny lobster. The methods and data produced by this study facilitate disease diagnosis and sustainable stock management of P. argus.


Subject(s)
Fisheries , Palinuridae/microbiology , Palinuridae/parasitology , Animals , Female , Male , Saint Kitts and Nevis
5.
FEMS Microbiol Ecol ; 95(6)2019 06 01.
Article in English | MEDLINE | ID: mdl-31107952

ABSTRACT

Spiny lobsters are among the most valuable seafood products, but their commercial value is greatly diminished by tail fan necrosis (TFN), an unsightly blackening and erosion of the posterior margins on the abdomen. The condition results from bacterial incursion following physical damage to the cuticle. In this current study, the bacterial communities on the cuticle of tail fans of wild spiny lobsters with and without TFN were examined using 16S rDNA Illumina sequencing to identify whether there is a group of bacteria associated with TFN. The bacterial communities in the affected cuticle had significantly less richness, diversity and evenness, but greater variability between samples than those in unaffected cuticle. There were 21 phylotypes closely associated with TFN, of which, those belonging to Aquimarina, Flavobacterium, Neptunomonas, Streptomyces, Flavobacteriaceae and Thiohalorhabdales were most important. The affected cuticle samples were clustered into two microbial colonization states, each characterized by distinct phylotypes that are closely associated with TFN, suggesting different phylotypes were associated with different microbial colonization states of TFN. These bacteria appear to develop their association through opportunistic pathways created by the provision of changes in the bacterial habitat associated with injury to the cuticle or compromised immunity subsequent to the injury.


Subject(s)
Bacteria/isolation & purification , Palinuridae/microbiology , Animals , Bacteria/classification , DNA, Bacterial , DNA, Ribosomal , Microbiota , Molecular Typing
6.
Sci Rep ; 9(1): 1677, 2019 02 08.
Article in English | MEDLINE | ID: mdl-30737466

ABSTRACT

Lobsters have an open circulatory system with haemolymph that contains microorganisms even in the healthy individuals. Understanding the role of these microorganisms becomes increasingly important particularly for the diagnosis of disease as the closed life-cycle aquaculture of the spiny lobster Panulirus ornatus nears commercial reality. This study aimed to characterise haemolymph responses of healthy cultured P. ornatus juveniles at control (28 °C) and elevated (34 °C) temperatures. This was assessed by measuring immune parameters (total granulocyte counts, total haemocyte counts, clotting times), and culture-independent (pyrosequencing of haemolymph DNA) and culture-dependent (isolation using nonselective growth medium) techniques to analyse bacterial communities from lobster haemolymph sampled on days 0, 4 and 6 post-exposure to the temperature regimes. Elevated temperature (34 °C) affected lobster survival, total granulocyte counts, and diversity, load and functional potential of the haemolymph bacterial community. Pyrosequencing analyses showed that the core haemolymph microbiome consisted of phyla Proteobacteria and Bacteriodetes. Overall, culture-independent methods captured a higher bacterial diversity and load when compared to culture-dependent methods, however members of the Rhodobacteraceae were strongly represented in both analyses. This is the first comprehensive study providing comparisons of haemolymph bacterial communities from healthy and thermally stressed cultured juvenile P. ornatus and has the potential to be used in health monitoring programs.


Subject(s)
Aquaculture/methods , Bacteria/classification , Palinuridae/growth & development , Animals , Bacteria/genetics , Bacteria/isolation & purification , DNA, Bacterial/genetics , Hemolymph/microbiology , High-Throughput Nucleotide Sequencing , Microbiota , Palinuridae/microbiology , Rhodobacteraceae/classification , Rhodobacteraceae/genetics , Rhodobacteraceae/isolation & purification , Sequence Analysis, DNA , Temperature
7.
J Invertebr Pathol ; 154: 5-11, 2018 05.
Article in English | MEDLINE | ID: mdl-29573993

ABSTRACT

Tail fan necrosis (TFN) is the bacterial infection of the tail fan of spiny lobsters which leads to melanosis and erosion of the tail fan tissues. The condition is commonly found among spiny lobsters in aquaculture and commercial fisheries, and greatly reduces their commercial value. This study describes the pathology of TFN by examining the tail fans (telson, uropods) and internal organs (mid-gut, hepatopancreas, heart and gill) of 29 affected wild spiny lobsters (Jasus edwardsii) and 14 unaffected in New Zealand. Initial signs of TFN were observed around the margins of lacerations to the tail fan, with more extensive signs extending from these presumptive sites of initiation. The establishment of the condition at points of injury is consistent with the penetration of TFN through the cuticle and tissue layers of the affected tail fans, which is rarely seen in other forms of shell disease. Entry into these tissues was characterised initially by caseous necrosis and haemocyte accumulation, followed by the spread of these responses together with melanisation. Additional pathological changes to the tail fans included pseudomembrane formation, detachment of epidermis or cuticle, clotted haemolymph and fibrosis. Among internal organs, pathological changes were found in a total of two mid-gut, four heart and two gill samples from eight lobsters with TFN, while no suspected changes were found in the organs of lobsters without TFN. The causes of internal organ pathology associated with TFN in spiny lobsters warrants more detailed research.


Subject(s)
Palinuridae/microbiology , Tail/pathology , Animals , Gills/microbiology , Gills/pathology , Heart/microbiology , Hemolymph/microbiology , Hepatopancreas/microbiology , Hepatopancreas/pathology , Myocardium/pathology , Necrosis/microbiology
8.
J Fish Dis ; 41(5): 817-828, 2018 May.
Article in English | MEDLINE | ID: mdl-29473647

ABSTRACT

Tail fan necrosis (TFN) is a common condition found in commercially exploited spiny lobsters that greatly diminishes their commercial value. Bacteria possessing proteolytic, chitinolytic and lipolytic capabilities were associated with TFN in spiny lobsters, Jasus edwardsii. In this study, 69 bacterial isolates exhibiting all the three enzymatic capabilities from the haemolymph and tail fans of J. edwardsii with and without TFN were further characterized and compared, including morphology, biofilm formation, antimicrobial activity, antimicrobial resistance, and production of siderophores, melanin and ammonia. The genomic patterns of the most common Vibrio crassostreae isolates were also compared between TFN-affected and unaffected lobsters. Biofilm formation was stronger in bacterial isolates from both haemolymph and tail fans of TFN-affected lobsters compared to those from the unaffected lobsters, while melanin production and siderophore production were stronger in the isolates from tail fans of lobsters with TFN. By contrast, the other characteristics of isolates were similar in lobsters with and without TFN. The Vib. crassostreae isolates from the affected lobsters had similar genomic patterns. Overall, the results indicate that in addition to proteolytic, chitinolytic and lipolytic activities, the bacteria associated with TFN commonly have enhanced activity of important virulence factors, including biofilm formation, melanin production and siderophore production.


Subject(s)
Bacteria/pathogenicity , Palinuridae/microbiology , Virulence Factors/physiology , Animals , Necrosis/microbiology , Tail/pathology
9.
FEMS Microbiol Ecol ; 93(12)2017 12 01.
Article in English | MEDLINE | ID: mdl-29145612

ABSTRACT

With recent technologies making it possible for commercial scale closed life-cycle aquaculture production of spiny lobster (Panulirus ornatus) comes a strong impetus to further understand aspects of lobster health. The gut microbiome plays a crucial role in host health, affecting growth, digestion, immune responses and pathogen resistance. Herein we characterise and compare gut microbiomes across different developmental stages (6-7 days post-emergence [dpe], 52 dpe and 13 months post-emergence [mpe]) and gut regions (foregut, midgut and hindgut) of cultured P. ornatus juveniles. Gut samples were analysed using 16S rRNA next-generation sequencing. Core gut microbiomes of P. ornatus comprised the phyla Tenericutes and Proteobacteria. Within class Gammaproteobacteria, families Pseudoalteromonadaceae and Vibrionaceae were dominant members across the majority of the gut microbiomes. Characterisation of bacterial communities from 13 mpe lobsters indicated that the hindgut microbiome was more diverse and compositionally dissimilar to the foregut and midgut. The bacterial composition of the hindgut was more similar among younger juveniles (6-7 dpe and 52 dpe) compared to 13 mpe lobsters. This is the first study to explore gut microbiomes of spiny lobster juveniles. We demonstrate that the composition of the gut microbiome was shaped by gut region, whereas the structure of the hindgut microbiome was influenced by developmental stage.


Subject(s)
Bacteria/isolation & purification , Gastrointestinal Microbiome , Palinuridae/growth & development , Palinuridae/microbiology , Adolescent , Animals , Aquaculture , Bacteria/classification , Bacteria/genetics , Digestion , Gastrointestinal Tract/microbiology , Humans , RNA, Ribosomal, 16S/genetics
10.
Curr Biol ; 26(24): 3393-3398, 2016 12 19.
Article in English | MEDLINE | ID: mdl-27939312

ABSTRACT

The Caribbean spiny lobster, Panulirus argus, is one of the most valuable fisheries commodities in the Central American region, directly employing 50,000 people and generating >US$450 million per year [1]. This industry is particularly important to small island states such as The Bahamas, which exports more lobster than any other country in the region [1]. Several factors contribute to this disproportionally high productivity, principally the extensive shallow-water banks covered in seagrass meadows [2], where fishermen deploy artificial shelters for the lobsters to supplement scarce reef habitat [3]. The surrounding seabed communities are dominated by lucinid bivalve mollusks that live among the seagrass root system [4, 5]. These clams host chemoautotrophic bacterial symbionts in their gills that synthesize organic matter using reduced sulfur compounds, providing nutrition to their hosts [6]. Recent studies have highlighted the important role of the lucinid clam symbiosis in maintaining the health and productivity of seagrass ecosystems [7, 8], but their biomass also represents a potentially abundant, but as yet unquantified, food source to benthic predators [9]. Here we undertake the first analysis of Caribbean spiny lobster diet using a stable isotope approach (carbon, nitrogen, and sulfur) and show that a significant portion of their food (∼20% on average) is obtained from chemosynthetic primary production in the form of lucinid clams. This nutritional pathway was previously unrecognized in the spiny lobster's diet, and these results are the first empirical evidence that chemosynthetic primary production contributes to the productivity of commercial fisheries stocks.


Subject(s)
Bacteria , Fisheries , Food Chain , Palinuridae/microbiology , Animal Feed , Animals , Bacteria/classification , Bacteria/metabolism , Caribbean Region , Palinuridae/physiology , Symbiosis
11.
Res Microbiol ; 165(10): 826-35, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25445014

ABSTRACT

A novel marine bacterium, strain LBS2(T) was isolated from eggs carried on pleopods of the spiny lobster collected from Andaman Sea. Heterotrophic growth occurred at 1-7% NaCl. 16S rRNA gene sequence similarity revealed the strain LBS2(T) belonged to the genus Vibrio and showed above 97% similarity with eight type strains of the genus Vibrio. Multilocus analysis based on ftsZ, gapA, gyrB, mreB, pyrH recA, rpoA, and topA revealed LBS2(T) formed a separate cluster with Vibrio ponticus DSM 16217(T) with 89.8% multilocus gene sequence similarity. However, strain LBS2(T) is distantly related with other members of the Scophthalmi clade in terms of 16S rRNA signatures, phenotypic variations and multilocus gene sequence similarity, for which we propose LBS2(T) belongs to a new clade i.e. Ponticus clade with V. ponticus DSM 16217(T) as the representative type strain of the clade. DNA-DNA homologies between strain LBS2(T) and closely related strains were well below 70%. DNA G + C content was 45.3 mol%. On the basis of our polyphasic study, strain LBS2(T) represents a novel species of the genus Vibrio, for which the name Vibrio panuliri sp. nov. is proposed. The type strain is LBS2(T) (= JCM 19500(T) = DSM 27724(T) = LMG 27902(T)).


Subject(s)
Palinuridae/microbiology , Vibrio/classification , Vibrio/isolation & purification , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/metabolism , Molecular Sequence Data , Phylogeny , Vibrio/genetics , Vibrio/metabolism
12.
Fish Shellfish Immunol ; 40(1): 49-60, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24969424

ABSTRACT

Bacteriocins are ribosomally synthesized antimicrobial peptides, which have been found in diverse bacterial species of terrestrial origins and some from the sea. New bacteriocins with new characteristics, new origins and new applications are likely still awaiting discovery. The present study screened bacteria isolated from marine animals of interest to the aquaculture industry for antimicrobial and bacteriocin-like activities in order to uncover biodiversity of bacteriocin producers, and explore the potential application in aquaculture. In total, 24 of 100 screened isolates showed antimicrobial activities and 7 of these exerted bacteriocin-like activities. Sequencing of 16S rRNA genes identified the isolates as members of the six genera Proteus, Providencia, Klebsiella, Alcaligenes, Bacillus and Enterococcus. In some cases, further analysis of housekeeping genes, rpoB for Proteus and recA for Klebsiella, as well as biochemical tests was necessary for identification to species level, and some of the Proteus isolates may represent novel species. The seven bacteriocinogenic isolates showed a wide antimicrobial spectrum against foodborne and animal pathogens, which opens the way to their potential use as marine drugs and probiotics in food, aquaculture, livestock and clinical settings. As a case study, the protective effect of shortlisted bacteriocinogenic isolates were tested in aquaculture-raised spiny lobster (Panulirus ornatus) juveniles. A single-strain (Bacillus pumilus B3.10.2B) and a three-strain (B. pumilus B3.10.2B, Bacillus cereus D9, Lactobacillus plantarum T13) probiotic preparation were added to the feed of Panulirus ornatus juveniles, which were subsequently challenged with the pathogen Vibrio owensii DY05. Juveniles in the probiotic treatments displayed increased growth and reduced feed conversion rates after 60 days, and increased survival rate after pathogen challenge relative to the control. This study represents the first evidence of bacteriocin production by bacteria associated with lobster, tiger shrimp, snubnose pompano and cobia and the first description of V. owensii as a pathogen in P. ornatus juveniles.


Subject(s)
Bacteria/chemistry , Bacteriocins/genetics , Palinuridae/microbiology , Probiotics/pharmacology , Vibrio/drug effects , Animals , Aquaculture , Bacteriocins/metabolism , Molecular Sequence Data , Penaeidae/microbiology , Perciformes/microbiology , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Sequence Analysis, DNA
13.
Curr Microbiol ; 69(5): 660-8, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24962598

ABSTRACT

A facultative anaerobe, alkalitolerant, gram-negative marine bacterium strain LBS5(T), was isolated from eggs carried on the pleopods of female spiny lobster (Panulirus penicillatus) in Andaman Sea from a depth of 3.5 m. Heterotrophic growth was observed at 15-38 °C and pH 5.5-11. Optimum growth occurred at 28 °C and pH 7.5. It can grow in the presence of 0.5-7 % NaCl (w/v), and the optimal NaCl required for growth was 2-4 %. 16S rRNA gene sequence analysis revealed the strain LBS5(T) belongs to the genus Photobacterium and showed 99.6 % similarity with P. aquae AE6(T), 98.2 % with P. aphoticum M46(T), 97 % with P. rosenbergii CC1(T), 96.9 % with P. lutimaris DF-42(T), and 96.6 % with P. halotolerans MACL01(T). The DNA-DNA similarities between strains LBS5(T) with other closely related strains were well below 70 %. The DNA G + C content was 50.52 (±0.9) mol%. The major fatty acids were C16:1w7c/w6c, C18:1w6c/w7c, C16:0, C15:0 iso, C16:0 10-methyl/17:1 iso w9c, C17:0 iso. Polar lipids included a phosphatidylglycerol, a diphosphatidylglycerol, a phosphatidylethanolamine, and one unidentified lipid. Based on the polyphasic evidences, strain LBS5(T) represents a novel species of the genus Photobacterium for which Photobacterium panuliri sp. nov. is proposed. The type strain is LBS5(T) (=DSM 27646(T) = LMG 27617(T) = JCM 19199(T)).


Subject(s)
Palinuridae/microbiology , Photobacterium/classification , Photobacterium/isolation & purification , Animals , Bacterial Typing Techniques , Base Composition , Cluster Analysis , Cytosol/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Fatty Acids/analysis , Hydrogen-Ion Concentration , Molecular Sequence Data , Nucleic Acid Hybridization , Phospholipids/analysis , Photobacterium/genetics , Photobacterium/physiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sodium Chloride/metabolism , Temperature , Zygote/microbiology
14.
Environ Microbiol Rep ; 5(1): 39-48, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23757129

ABSTRACT

The development of efficient probiotic application protocols for use in marine larviculture relies on comprehensive understanding of pathogen-probiont-host interactions. The probiont combination of Pseudoalteromonas sp. PP107 and Vibrio sp. PP05 provides additive protection against vectored Vibrio owensii DY05 infection in larvae (phyllosomas) of ornate spiny lobster, Panulirus ornatus. Here, fluorescently tagged strains were used to demonstrate niche specialization of these probionts in both the live feed vector organism Artemia and in phyllosomas. The pathogen was vulnerable to direct interaction with PP05 in the bacterioplankton as well as in the Artemia gut and the phyllosoma foregut and midgut gland. In contrast, PP107 was localized on external surfaces of Artemia and phyllosomas, and direct interaction with the pathogen was limited to the bacterioplankton. While PP107 was the overall dominant ectobiont on the phyllosoma cephalothorax and inner leg segments, PP05 was the primary colonizer of outer leg segments, nutrient-rich locales that may promote ingestion during feeding. This study shows that niche specialization can contribute to the additive probiotic effect of a probiotic mixture and highlights that probiotic enrichment of Artemia cultures can intercept the infection cycle of V. owensii DY05 in early-stage P. ornatus phyllosomas.


Subject(s)
Palinuridae/microbiology , Probiotics/administration & dosage , Vibrio/isolation & purification , Vibrio/pathogenicity , Animals , Antibiosis , Artemia , Bacterial Load , Gastrointestinal Tract , Larva/microbiology , Pseudoalteromonas/growth & development , Pseudoalteromonas/isolation & purification , Vibrio/growth & development , Virulence
15.
Dis Aquat Organ ; 100(2): 89-93, 2012 Aug 27.
Article in English | MEDLINE | ID: mdl-23186696

ABSTRACT

Lobsters are prized by commercial and recreational fishermen worldwide, and their populations are therefore buffeted by fishery practices. But lobsters also remain integral members of their benthic communities where predator-prey relationships, competitive interactions, and host-pathogen dynamics push and pull at their population dynamics. Although lobsters have few reported pathogens and parasites relative to other decapod crustaceans, the rise of diseases with consequences for lobster fisheries and aquaculture has spotlighted the importance of disease for lobster biology, population dynamics and ecology. Researchers, managers, and fishers thus increasingly recognize the need to understand lobster pathogens and parasites so they can be managed proactively and their impacts minimized where possible. At the 2011 International Conference and Workshop on Lobster Biology and Management a special session on lobster diseases was convened and this special issue of Diseases of Aquatic Organisms highlights those proceedings with a suite of articles focused on diseases discussed during that session.


Subject(s)
Aquaculture , Ecosystem , Fisheries/economics , Nephropidae/microbiology , Palinuridae/microbiology , Animals , Environmental Monitoring , Nephropidae/drug effects , Palinuridae/drug effects , Water Pollutants/toxicity
16.
Dis Aquat Organ ; 100(2): 135-48, 2012 Aug 27.
Article in English | MEDLINE | ID: mdl-23186701

ABSTRACT

In Bahía de la Ascensión, Mexico, 'casitas' (large artificial shelters) are extensively used to harvest Caribbean spiny lobsters Panulirus argus. After the discovery of a pathogenic virus, Panulirus argus virus 1 (PaV1), in these lobsters, laboratory experiments revealed that PaV1 could be transmitted by contact and through water, and that lobsters avoided shelters harboring diseased conspecifics. To examine these issues in the context of casitas, which typically harbor multiple lobsters of all sizes, we examined the distribution and aggregation patterns of lobsters in the absence/presence of diseased conspecifics (i.e. visibly infected with PaV1) in 531 casitas distributed over 3 bay zones, 1 poorly vegetated ('Vigía Chico', average depth: 1.5 m) and 2 more extensively vegetated ('Punta Allen': 2.5 m; 'Los Cayos': 2.4 m). All zones had relatively high indices of predation risk. Using several statistical approaches, we found that distribution parameters of lobsters were generally not affected by the presence of diseased conspecifics in casitas. Interestingly, however, in the shallower and less vegetated zone (Vigía Chico), individual casitas harbored more lobsters and lobsters were actually more crowded in casitas containing diseased conspecifics, yet disease prevalence was the lowest in lobsters of all sizes. These results suggest that (1) investment in disease avoidance by lobsters is partially modulated by local habitat features, (2) contact transmission rates of PaV1 may be lower in nature than in the laboratory, and (3) water-borne transmission rates may be lower in shallow, poorly vegetated habitats more exposed to solar ultraviolet radiation, which can damage viral particles.


Subject(s)
Ecosystem , Fisheries , Palinuridae/microbiology , Animals , Brachyura , Caribbean Region , Demography , Fishes , Mexico , Plants , Predatory Behavior
17.
PLoS One ; 7(7): e39667, 2012.
Article in English | MEDLINE | ID: mdl-22792184

ABSTRACT

Vibrio owensii DY05 is a serious pathogen causing epizootics in the larviculture of ornate spiny lobster Panulirus ornatus. In the present study a multi-tiered probiotic screening strategy was used to identify a probiotic combination capable of protecting P. ornatus larvae (phyllosomas) from experimental V. owensii DY05 infection. From a pool of more than 500 marine bacterial isolates, 91 showed definitive in vitro antagonistic activity towards the pathogen. Antagonistic candidates were shortlisted based on phylogeny, strength of antagonistic activity, and isolate origin. Miniaturized assays used a green fluorescent protein labelled transconjugant of V. owensii DY05 to assess pathogen growth and biofilm formation in the presence of shortlisted candidates. This approach enabled rapid processing and selection of candidates to be tested in a phyllosoma infection model. When used in combination, strains Vibrio sp. PP05 and Pseudoalteromonas sp. PP107 significantly and reproducibly protected P. ornatus phyllosomas during vectored challenge with V. owensii DY05, with survival not differing significantly from unchallenged controls. The present study has shown the value of multispecies probiotic treatment and demonstrated that natural microbial communities associated with wild phyllosomas and zooplankton prey support antagonistic bacteria capable of in vivo suppression of a pathogen causing epizootics in phyllosoma culture systems.


Subject(s)
Palinuridae/microbiology , Probiotics , Vibrio/physiology , Animals , Biofilms , Larva/immunology , Larva/microbiology , Palinuridae/immunology , Phylogeny , Vibrio/genetics , Vibrio/isolation & purification
18.
Appl Environ Microbiol ; 78(8): 2841-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22307306

ABSTRACT

The type strain of Vibrio owensii (DY05) was isolated during an epizootic of aquaculture-reared larvae (phyllosomas) of the ornate spiny lobster (Panulirus ornatus). V. owensii DY05 was formally demonstrated to be the etiological agent of a disease causing rapid and reproducible larval mortality with pathologies similar to those seen during disease epizootics. Vectored challenge via the aquaculture live feed organism Artemia (brine shrimp) caused consistent cumulative mortality rates of 84 to 89% after 72 h, in contrast to variable mortality rates seen after immersion challenge. Histopathological examination of vector-challenged phyllosomas revealed bacterial proliferation in the midgut gland (hepatopancreas) concomitant with epithelial cell necrosis. A fluorescent-protein-labeled V. owensii DY05 transconjugant showed dispersal of single cells in the foregut and hepatopancreas 6 h postexposure, leading to colonization of the entire hepatopancreas within 18 h and eventually systemic infection. V. owensii DY05 is a marine enteropathogen highly virulent to P. ornatus phyllosoma that uses vector-mediated transmission and release from host association to a planktonic existence to perpetuate transfer. This understanding of the infection process will improve targeted biocontrol strategies and enhance the prospects of commercially viable larviculture for this valuable spiny lobster species.


Subject(s)
Palinuridae/microbiology , Vibrio/pathogenicity , Animals , Aquaculture , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/pathology , Histocytochemistry , Microscopy , Models, Biological , Survival Analysis
19.
Int J Syst Evol Microbiol ; 62(Pt 8): 1864-1870, 2012 Aug.
Article in English | MEDLINE | ID: mdl-21984666

ABSTRACT

Six isolates of a facultatively anaerobic bacterium were recovered in culture from marine invertebrates and vertebrates, including packhorse lobster (Jasus verreauxi), abalone (Haliotis sp.) and Atlantic salmon (Salmo salar), between 1994 and 2002. The bacteria were Gram-negative, rod-shaped and motile by means of more than one polar flagellum, oxidase-positive, catalase-positive and able to grow in the presence of 0.5-8.0% NaCl (optimum 3.0-6.0%) and at 10-37 °C (optimum 25-30 °C). On the basis of 16S rRNA gene sequence analysis and multilocus sequence analysis (MLSA) using five loci (2443 bp; gyrB, pyrH, ftsZ, mreB and gapA), the closest phylogenetic neighbours of strain TCFB 0772(T) were the type strains of Vibrio communis (99.8 and 94.6 % similarity, respectively), Vibrio owensii (99.8 and 94.1%), Vibrio natriegens (99.4 and 88.8%), Vibrio parahaemolyticus (99.4 and 90.3%), Vibrio rotiferianus (99.2 and 94.4%), Vibrio alginolyticus (99.1 and 89.3%) and Vibrio campbellii (99.1 and 92.3%). DNA-DNA hybridization confirmed that the six isolates constitute a unique taxon that is distinct from other known species of Vibrio. In addition, this taxon can be readily differentiated phenotypically from other Vibrio species. The six isolates therefore represent a novel species, for which the name Vibrio jasicida sp. nov. is proposed; the novel species is represented by the type strain TCFB 0772(T) ( = JCM 16453(T)  = LMG 25398(T)) (DNA G+C content 45.9 mol%) and reference strains TCFB 1977 ( = JCM 16454) and TCFB 1000 ( = JCM 16455).


Subject(s)
Gastropoda/microbiology , Palinuridae/microbiology , Phylogeny , Salmo salar/microbiology , Vibrio/classification , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/analysis , Molecular Sequence Data , Multilocus Sequence Typing , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vibrio/genetics , Vibrio/isolation & purification
20.
J Invertebr Pathol ; 106(1): 79-91, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21215357

ABSTRACT

Spiny lobsters have few reported pathogens, parasites and symbionts. However, they do have a diverse fauna comprised of a pathogenic virus, several bacteria, protozoans, helminths and even symbiotic crustaceans. A few idiopathic syndromes have also been reported, but these appear correlated with lobsters held in poor conditions. Fungal and bacterial pathogens present significant threats for rearing spiny lobsters in aquaculture settings, but only one pathogen, Panulirus argus virus 1, is thought to have damaged a fishery for a spiny lobster. No doubt others will emerge as lobsters are brought into aquaculture setting and as fishing pressure intensifies with stocks become more susceptible to anthropogenic stressors.


Subject(s)
Palinuridae/microbiology , Amphipoda/pathogenicity , Animals , Aquaculture , Copepoda/pathogenicity , Fungi/isolation & purification , Fungi/pathogenicity , Fungi/physiology , Helminths/isolation & purification , Helminths/pathogenicity , Helminths/physiology , Palinuridae/parasitology , Palinuridae/virology , Population Dynamics , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...