Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Chromatogr ; 32(11): e4348, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30047558

ABSTRACT

The antipsychotic paliperidone was investigated with a focus on stability, degradation impurities and kinetics reaction profile. Osmotic tablets 3 mg (OROS® ) were subjected to extraction in an ultrasonic bath and the resulting acidic solution was stressed by forced conditions. Degraded samples were monitored by HPLC-DAD in different storage times for acidic and alkaline hydrolysis, oxidation, heat and photolysis. Photolysis was shown to be a strong degradation factor, with a drug content of 24.64% remaining after 24 h. Oxidation (H2 O2 18%) caused a slow decomposition, with a drug content of 83.49% remaining after 72 h. Through kinetics graphics, first-order reactions were found for oxidation, heat and photolysis. By UPLC-MS analysis, the degraded matrix could be investigated for identification of impurities with m/z 445.3128, m/z 380.8906, m/z 364.9391, m/z 232.9832 and m/z 217.0076, allowing the identification of derivatives N-oxide and with modifications in the lactam, benzisoxazole and pyrimidine rings. Paliperidone in liquid state, like analytical solutions or formulation, must be carefully handled to avoid drug exposure, specially in storage conditions.


Subject(s)
Paliperidone Palmitate/analysis , Paliperidone Palmitate/chemistry , Chromatography, High Pressure Liquid/methods , Drug Stability , Kinetics , Mass Spectrometry , Oxidation-Reduction , Photolysis , Tablets
2.
Ann Pharm Fr ; 73(4): 289-96, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25980637

ABSTRACT

Forced degradation study of paliperidone under hydrolytic, oxidative, thermal and photolytic stress conditions was conducted using HPLC. The drug was found to be labile under hydrolytic, oxidative and photolytic stress conditions; whereas, it was stable under dry heat stress conditions. Effect of anionic, cationic and non-ionic surfactants applied to the concentration exceeding critical micellar concentration on the photostability of paliperidone was also studied by exposing the samples to sunlight for 72h. Major degradation of the drug was found in presence of cationic and non-ionic surfactants. Effect of titanium dioxide on the photo-degradation of paliperidone in solution state was also studied and it was found that 53% of the drug was degraded after 72h of exposure to sunlight. A common degradation peak was observed in oxidative and TiO2 photocatalysed samples. This peak may be due to the generation of N-oxide of paliperidone. The same degradation peak was also observed in all other photostability samples. Chromatographic separation of drug and its degradation products was achieved on an Alltima C8 (250mm×4.6mm, 5µm) analytical column, using a mobile phase consisting of acetonitrile-ammonium acetate buffer with 0.2% triethylamine (pH 3.5; 20mM) (60:40, v/v) at a flow rate of 1mL/min. Quantification was performed with UV detection at 280nm. The method was validated as per ICH guidelines.


Subject(s)
Paliperidone Palmitate/analysis , Surface-Active Agents/chemistry , Titanium/chemistry , Drug Stability , Excipients , Limit of Detection , Paliperidone Palmitate/radiation effects , Photochemical Processes , Reproducibility of Results , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...