Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Res ; 90(2): 335-340, 2021 08.
Article in English | MEDLINE | ID: mdl-33214672

ABSTRACT

BACKGROUND: Potentially, orally administered antibodies specific to enteric pathogens could be administered to infants to prevent diarrheal infections, particularly in developing countries where diarrhea is a major problem. However, to prevent infection, such antibodies would need to resist degradation within the gastrointestinal tract. METHODS: Palivizumab, a recombinant antibody specific to respiratory syncytial virus (RSV), was used in this study as a model for examining the digestion of neutralizing antibodies to enteric pathogens in infants. The survival of this recombinant IgG1 across digestion in 11 infants was assayed via an anti-idiotype ELISA and RSV F protein-specific ELISA. Concentrations were controlled for any dilution or concentration that occurred in the digestive system using mass spectrometry-based quantification of co-administered, orally supplemented, indigestible polyethylene glycol (PEG-28). RESULTS: Binding activity of Palivizumab IgG1 decreased (26-99%) across each phase of in vivo digestion as measured by both anti-idiotype and RSV F protein-specific ELISAs. CONCLUSION: Antibodies generated for passive protection of the infant gastrointestinal tract from pathogens will need to be more resistant to digestion than the model antibody fed to infants in this study, or provided in higher doses to be most effective. IMPACT: Binding activity of palivizumab IgG1 decreased (26-99%) across each phase of in vivo infant digestion as measured by both anti-idiotype and RSV F protein-specific ELISAs. Palivizumab was likely degraded by proteases and changes in pH introduced in the gut. Antibodies generated for passive protection of the infant gastrointestinal tract from pathogens will need to be more resistant to digestion than the model antibody fed to infants in this study, or provided in higher doses to be most effective. The monoclonal antibody IgG1 tested was not stable across the infant gastrointestinal tract. The observation of palivizumab reduction was unlikely due to dilution in the gastrointestinal tract. The results of this work hint that provision of antibody could be effective in preventing enteric pathogen infection in infants. Orally delivered recombinant antibodies will need to either be dosed at high levels to compensate for digestive losses or be engineered to better resist digestion. Provision of enteric pathogen-specific recombinant antibodies to at-risk infants could provide a new and previously unexplored pathway to reducing the infection in infants. The strategy of enteric recombinant antibodies deserves more investigation throughout medicine as a novel means for treatment of enteric disease targets.


Subject(s)
Antiviral Agents/metabolism , Digestion , Gastrointestinal Tract/metabolism , Palivizumab/metabolism , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Viruses/immunology , Administration, Oral , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Antiviral Agents/administration & dosage , Drug Stability , Enzyme-Linked Immunosorbent Assay , Female , Host-Pathogen Interactions , Humans , Infant, Newborn , Male , Palivizumab/administration & dosage , Protein Stability , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/pathogenicity
2.
Nutrients ; 12(7)2020 Jun 27.
Article in English | MEDLINE | ID: mdl-32605037

ABSTRACT

Oral administration of pathogen-specific recombinant antibodies may help to prevent infant gastrointestinal (GI) pathogen infection; however, to neutralize an infectious agent, these antibodies must resist degradation in the GI tract. Palivizumab, a recombinant antibody specific for the respiratory syncytial virus (RSV), was used as a model for pathogen-specific IgG in human milk. The aim was to compare the remaining binding capacity of palivizumab in milk between three mothers after exposure to an in vitro model of infant gastrointestinal digestion (gastric and duodenal fluids) using ELISA. The neutralizing capacity of palivizumab in pooled human milk, gastric contents, and stools from preterm infants was also evaluated for blocking RSV with green fluorescent protein (RSV-GFP) infection in Hep-2 cells using confocal and inverted microscopy and flow cytometry. The reduction of palivizumab binding capacity in human milk and digested samples was slightly different between mothers. Overall, palivizumab decreased 50% after simulated gastric digestion with pepsin and 62% after simulated intestinal digestion with pancreatin. Palivizumab (2-8 µg/mL) in human milk or stool samples blocked RSV (3.4 × 104 FFU/mL) infection (no syncytia formation on Hep-2 cells) by microscopy. Syncytia formation was detected on Hep-2 cells when RSV was incubated in gastric contents or virus medium with 2-4 µg/mL of palivizumab, but no infection was observed at 8 µg/mL. No fluorescence (absence of infected cells) was detected when palivizumab (100 µg/mL) was incubated in human milk or medium with RSV-GFP (1.1 × 105 FFU/mL), whereas fluorescence increased with the reduced concentration of palivizumab using flow cytometry. These results suggest that undigested and digested matrices could change the binding and neutralizing capacity of viral pathogen-specific antibodies.


Subject(s)
Antibodies, Viral , Antiviral Agents , Bodily Secretions , Palivizumab , Respiratory Syncytial Virus, Human , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Antiviral Agents/immunology , Antiviral Agents/metabolism , Bodily Secretions/immunology , Bodily Secretions/virology , Cell Line , Humans , Immunization, Passive , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Infant, Newborn , Palivizumab/immunology , Palivizumab/metabolism , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/immunology , Respiratory Syncytial Virus, Human/metabolism
3.
Nat Commun ; 9(1): 3999, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30275522

ABSTRACT

The lung is a critical prophylaxis target for clinically important infectious agents, including human respiratory syncytial virus (RSV) and influenza. Here, we develop a modular, synthetic mRNA-based approach to express neutralizing antibodies directly in the lung via aerosol, to prevent RSV infections. First, we express palivizumab, which reduces RSV F copies by 90.8%. Second, we express engineered, membrane-anchored palivizumab, which prevents detectable infection in transfected cells, reducing in vitro titer and in vivo RSV F copies by 99.7% and 89.6%, respectively. Finally, we express an anchored or secreted high-affinity, anti-RSV F, camelid antibody (RSV aVHH and sVHH). We demonstrate that RSV aVHH, but not RSV sVHH, significantly inhibits RSV 7 days post transfection, and we show that RSV aVHH is present in the lung for at least 28 days. Overall, our data suggests that expressing membrane-anchored broadly neutralizing antibodies in the lungs could potentially be a promising pulmonary prophylaxis approach.


Subject(s)
Antibodies, Neutralizing/immunology , Antiviral Agents/administration & dosage , Palivizumab/immunology , RNA, Messenger/administration & dosage , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus, Human/immunology , Animals , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/metabolism , Antiviral Agents/immunology , Cell Line , Cell Membrane/metabolism , Female , Humans , Lung/metabolism , Mice , Mice, Inbred BALB C , Palivizumab/genetics , Palivizumab/metabolism , Pre-Exposure Prophylaxis , RNA, Messenger/genetics , RNA, Messenger/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Viral Fusion Proteins/immunology
4.
Antiviral Res ; 132: 1-5, 2016 08.
Article in English | MEDLINE | ID: mdl-27185625

ABSTRACT

Palivizumab efficiently blocks respiratory syncytial virus (RSV) infection in vitro. However, virus neutralization assays generally omit Fc region-mediated effects. We investigated the neutralization activity of RSV-specific monoclonal antibodies on cells with Fc receptors. Subneutralizing concentrations of antibodies resulted in antibody-dependent enhancement of RSV infection in monocytic cells. Contrary to antibodies targeting other epitopes, the neutralization by palivizumab was augmented in cells with Fc receptors. This unrecognized characteristic of palivizumab may be relevant for its performance in vivo.


Subject(s)
Antibodies, Monoclonal/immunology , Epitopes/immunology , Palivizumab/immunology , Receptors, IgG/metabolism , Respiratory Syncytial Viruses/immunology , Animals , Antibodies, Monoclonal/metabolism , Cell Line , Cells, Cultured , Chlorocebus aethiops , Humans , Mice , Neutralization Tests , Palivizumab/metabolism , Protein Binding , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Viruses/physiology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...