Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69.597
Filter
1.
Mol Biol Rep ; 51(1): 711, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824245

ABSTRACT

BACKGROUND: Diabetes is a chronic metabolic disease that affects many parts of the body. Considering diabetes as a beta cells' defect and loss, the focus is on finding mechanisms and compounds involved in stimulating the function and regeneration of pancreatic ß-cells. DNA methylation as an epigenetic mechanism plays a pivotal role in the ß-cells' function and development. Considering the regenerative and anti-diabetic effects of Rosa canina extract, this study aimed to assess the methylation levels of Pdx-1, Pax-4, and Ins-1 genes in diabetic rats treated with Rosa Canina extract. METHODS AND RESULTS: Streptozotocin-induced diabetic rats were used to evaluate the frequency of Pdx-1, Pax-4, and Ins-1 gene methylation. Treatment groups were exposed to Rosa canina as spray-dried and decoction extracts. Following blood glucose measurement, pancreatic DNA was extracted and bisulfited. Genes' methylation was measured using MSP-PCR and qRT-PCR techniques. Oral administration of Rosa canina extracts significantly reduced blood sugar levels in diabetic rats compared to the control group. The methylation levels of the Pdx-1, Pax-4, and Ins-1 genes promoter in streptozotocin-induced diabetic rats increased compared to the control rats while, the treatment of diabetic rats with Rosa canina extracts, spray-dried samples especially, led to a decreased methylation in these genes. CONCLUSION: The results of this study showed that Rosa canina extract as a spray-dried sample could be effective in treating diabetes by regulating the methylation of genes including Pdx-1, Pax-4, and Ins-1 involved in the activity and regeneration of pancreatic islet cells.


Subject(s)
Blood Glucose , DNA Methylation , Diabetes Mellitus, Experimental , Plant Extracts , Rosa , Trans-Activators , Animals , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/drug therapy , Rosa/chemistry , DNA Methylation/drug effects , DNA Methylation/genetics , Rats , Plant Extracts/pharmacology , Male , Trans-Activators/genetics , Trans-Activators/metabolism , Blood Glucose/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Pancreas/drug effects , Pancreas/metabolism , Pancreas/pathology , Streptozocin , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Promoter Regions, Genetic/drug effects , Promoter Regions, Genetic/genetics , Paired Box Transcription Factors/genetics , Paired Box Transcription Factors/metabolism , Insulin/metabolism
2.
BMC Genomics ; 25(1): 553, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831310

ABSTRACT

Development of the human pancreas requires the precise temporal control of gene expression via epigenetic mechanisms and the binding of key transcription factors. We quantified genome-wide patterns of DNA methylation in human fetal pancreatic samples from donors aged 6 to 21 post-conception weeks. We found dramatic changes in DNA methylation across pancreas development, with > 21% of sites characterized as developmental differentially methylated positions (dDMPs) including many annotated to genes associated with monogenic diabetes. An analysis of DNA methylation in postnatal pancreas tissue showed that the dramatic temporal changes in DNA methylation occurring in the developing pancreas are largely limited to the prenatal period. Significant differences in DNA methylation were observed between males and females at a number of autosomal sites, with a small proportion of sites showing sex-specific DNA methylation trajectories across pancreas development. Pancreas dDMPs were not distributed equally across the genome and were depleted in regulatory domains characterized by open chromatin and the binding of known pancreatic development transcription factors. Finally, we compared our pancreas dDMPs to previous findings from the human brain, identifying evidence for tissue-specific developmental changes in DNA methylation. This study represents the first systematic exploration of DNA methylation patterns during human fetal pancreas development and confirms the prenatal period as a time of major epigenomic plasticity.


Subject(s)
DNA Methylation , Pancreas , Humans , Pancreas/metabolism , Pancreas/embryology , Female , Male , Gene Expression Regulation, Developmental , CpG Islands , Epigenesis, Genetic , Genome, Human , Fetus/metabolism
3.
J Vet Sci ; 25(3): e24, 2024 May.
Article in English | MEDLINE | ID: mdl-38834504

ABSTRACT

IMPORTANCE: In veterinary forensic science, accurately determining the postmortem interval (PMI) is crucial for identifying the causes of animal deaths. Autolysis, a significant postmortem process, influences PMI estimation, but its relationship with humidity is not well understood. OBJECTIVE: This study aimed to improve the accuracy of PMI estimates in veterinary forensic cases by looking into how different humidity levels affect autolysis in different organs of rats. METHODS: The study involved 38 male rats, examining histopathological changes in their heart, liver, and pancreas. These organs were subjected to controlled humidity levels (20%, 55%, and 80%) at a constant 22°C. Tissue samples were collected at several intervals (0 h, 12 h, 24 h, 3 days, and 8 days) for comprehensive analysis. RESULTS: Distinct autolytic characteristics in animal organs emerged under varying humidity conditions. The low-humidity environment rapidly activated autolysis more than the high-humidity environment. In addition, it was found that lower humidity caused nuclear pyknosis, cytoplasmic disintegration, and myofiber interruption. The liver, in particular, showed portal triad aggregation and hepatocyte individuation. The pancreas experienced cell fragmentation and an enlarged intracellular space. High humidity also caused the loss of striations in cardiac tissues, and the liver showed vacuolation. Under these conditions, the pancreas changed eosinophilic secretory granules. CONCLUSIONS AND RELEVANCE: The study successfully established a clear connection between the autolytic process in PMIs and relative humidity. These findings are significant for developing a more accurate and predictable method for PMI estimation in the field of veterinary forensic science.


Subject(s)
Humidity , Liver , Pancreas , Postmortem Changes , Animals , Male , Rats , Liver/pathology , Pancreas/pathology , Myocardium/pathology , Rats, Sprague-Dawley , Autolysis
4.
J Vet Sci ; 25(3): e48, 2024 May.
Article in English | MEDLINE | ID: mdl-38834516

ABSTRACT

IMPORTANCE: Early diagnosis of canine pancreatitis is challenging due to non-specific clinical signs. Currently, abdominal ultrasonography and measurement of canine pancreatic lipase (cPL) have been employed for the diagnosis of pancreatitis. OBJECTIVE: Many qualitative and quantitative commercial cPL tests have been developed and used in veterinary clinics. This study aimed to compare three different methodologies SNAP cPL, Spec cPL, and Vcheck cPL tests to assess the concordance of these assays. METHODS: Fifty serum samples were collected from 36 dogs with or without pancreatitis and subjected to SNAP cPL, Spec cPL, and Vcheck cPL tests. Agreement and correlation coefficients were calculated between the test results, and correlations were determined during the management of the patients. RESULTS: The results of the three cPL assays were strongly correlated in 47/50 serum samples (94%). Cohen's kappa analysis between the Spec cPL and Vcheck cPL showed near perfect agreement (κ = 0.960, p < 0.001), SNAP cPL and Vcheck cPL (κ = 0.920, p < 0.001), and Spec cPL and SNAP cPL (κ = 0.880, p < 0.001). The correlation coefficients (r) between data from Spec cPL and Vcheck cPL tests was calculated by Spearman's correlation test (r = 0.958, p < 0.001). Furthermore, the patterns of change in serum cPL concentrations determined using Spec cPL and Vcheck cPL were significantly consistent during the monitoring period in 11 patients. CONCLUSIONS AND RELEVANCE: Our data illustrated that Spec cPL and Vcheck cPL tests are compatible for clinical use in the diagnosis and monitoring of canine pancreatitis.


Subject(s)
Dog Diseases , Lipase , Pancreatitis , Animals , Dogs , Lipase/blood , Pancreatitis/veterinary , Pancreatitis/diagnosis , Pancreatitis/blood , Dog Diseases/diagnosis , Dog Diseases/blood , Male , Female , Pancreas/enzymology
5.
Drug Des Devel Ther ; 18: 1785-1797, 2024.
Article in English | MEDLINE | ID: mdl-38828020

ABSTRACT

Objective: Pancreatic surgeries inherently cause ischemia-reperfusion (IR) injury, affecting not only the pancreas but also distant organs. This study was conducted to explore the potential use of dexmedetomidine, a sedative with antiapoptotic, anti-inflammatory, and antioxidant properties, in mitigating the impacts of pancreatic IR on kidney and liver tissues. Methods: A total of 24 rats were randomly divided into four groups: control (C), dexmedetomidine (D), ischemia reperfusion (IR), and dexmedetomidine ischemia reperfusion (D-IR). Pancreatic ischemia was induced in the IR and D-IR groups. Dexmedetomidine was administered intraperitoneally to the D and D-IR groups. Liver and kidney tissue samples were subjected to microscopic examinations after hematoxylin and eosin staining. The levels of thiobarbituric acid reactive substances (TBARS), aryllesterase (AES), catalase (CAT), and glutathione S-transferase (GST) enzyme activity were assessed in liver and kidney tissues. The serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), and creatinine were measured. Results: A comparison of the groups revealed that the IR group exhibited significantly elevated TBARS (p < 0.0001), AES (p = 0.004), and CAT enzyme activity (p < 0.0001) levels in the liver and kidney compared to groups C and D. Group D-IR demonstrated notably reduced histopathological damage (p < 0.05) and low TBARS (p < 0.0001), AES (p = 0.004), and CAT enzyme activity (p < 0.0001) in the liver and kidney as well as low AST and ALT activity levels (p < 0.0001) in the serum compared to the IR group. Conclusion: The preemptive administration of dexmedetomidine before pancreatic IR provides significant protection to kidney and liver tissues, as evidenced by the histopathological and biochemical parameters in this study. The findings underscored the potential therapeutic role of dexmedetomidine in mitigating the multiorgan damage associated with pancreatic surgeries.


Subject(s)
Dexmedetomidine , Kidney , Liver , Pancreas , Reperfusion Injury , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Reperfusion Injury/metabolism , Dexmedetomidine/pharmacology , Dexmedetomidine/administration & dosage , Rats , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Liver/drug effects , Liver/pathology , Liver/metabolism , Male , Pancreas/drug effects , Pancreas/pathology , Pancreas/metabolism , Rats, Sprague-Dawley
6.
Hum Vaccin Immunother ; 20(1): 2358575, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38836382

ABSTRACT

To investigate immune checkpoint inhibitors (ICIs) induced pancreatic injury (ICIPI), the prognostic effect of COVID-19 vaccine on cancer patients, and whether COVID-19 vaccine increases the incidence of ICIPI. We conducted a retrospective study of 256 stage IV cancer patients treated with ICIs at The First Affiliated Hospital of Anhui Medical University from January 2020 to November 2022. Data collected included pancreatic enzyme levels, treatment outcomes, and vaccination status. Statistical significance was determined using the χ2 test and Kaplan-Meier method (p < .05). Compared to the control group, the vaccinated group (p < .0001) and the group with elevated pancreatic enzyme levels (p = .044) demonstrated higher disease control rates, indicating a direct benefit of vaccination and enzyme monitoring on treatment outcomes. Additionally, vaccinated patients demonstrated longer overall survival versus unvaccinated patients (23.9 months [95% CI, 22.3-25.5] vs 23.6 months [95% CI, 21.1-26.2], HR = 0.45 [95% CI, 0.24-0.86], p = .015) and progression-free survival (17.2 months [95% CI, 14.3-20.1] vs 13.7 months [95% CI, 11.3-16.1], HR = 0.54 [95% CI, 0.36-0.82], p = .004). Importantly, the analysis revealed no significant association between vaccination and pancreatic injury (p = .46). Monitoring pancreatic enzymes can effectively evaluate the therapeutic impact in patients using ICIs. Patients vaccinated against COVID-19 experience better immunotherapy outcomes without an increased risk of ICIPI.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immune Checkpoint Inhibitors , Neoplasms , Humans , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Male , Female , Retrospective Studies , Middle Aged , Aged , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , COVID-19/mortality , Prognosis , Neoplasms/drug therapy , Adult , Treatment Outcome , SARS-CoV-2/immunology , Pancreas/pathology , Aged, 80 and over
7.
Sci Rep ; 14(1): 12619, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38824173

ABSTRACT

Subgroup analysis aims to identify subgroups (usually defined by baseline/demographic characteristics), who would (or not) benefit from an intervention under specific conditions. Often performed post hoc (not pre-specified in the protocol), subgroup analyses are prone to elevated type I error due to multiple testing, inadequate power, and inappropriate statistical interpretation. Aside from the well-known Bonferroni correction, subgroup treatment interaction tests can provide useful information to support the hypothesis. Using data from a previously published randomized trial where a p value of 0.015 was found for the comparison between standard and Hemopatch® groups in (the subgroup of) 135 patients who had hand-sewn pancreatic stump closure we first sought to determine whether there was interaction between the number and proportion of the dependent event of interest (POPF) among the subgroup population (patients with hand-sewn stump closure and use of Hemopatch®), Next, we calculated the relative excess risk due to interaction (RERI) and the "attributable proportion" (AP). The p value of the interaction was p = 0.034, the RERI was - 0.77 (p = 0.0204) (the probability of POPF was 0.77 because of the interaction), the RERI was 13% (patients are 13% less likely to sustain POPF because of the interaction), and the AP was - 0.616 (61.6% of patients who did not develop POPF did so because of the interaction). Although no causality can be implied, Hemopatch® may potentially decrease the POPF after distal pancreatectomy when the stump is closed hand-sewn. The hypothesis generated by our subgroup analysis requires confirmation by a specific, randomized trial, including only patients undergoing hand-sewn closure of the pancreatic stump after distal pancreatectomy.Trial registration: INS-621000-0760.


Subject(s)
Randomized Controlled Trials as Topic , Humans , Pancreatectomy , Female , Male , Pancreas/surgery
8.
Cell Transplant ; 33: 9636897241248942, 2024.
Article in English | MEDLINE | ID: mdl-38712762

ABSTRACT

Recently, we and others generated induced tissue-specific stem/progenitor (iTS/iTP) cells. The advantages of iTS/iTP cells compared with induced pluripotent stem (iPS) cells are (1) easier generation, (2) efficient differentiation, and (3) no teratomas formation. In this study, we generated mouse induced pancreatic stem cells (iTS-P cells) by the plasmid vector expressing Yes-associated protein 1 (YAP). The iTS-P YAP9 cells expressed Foxa2 (endoderm marker) and Pdx1 (pancreatic marker) while the expressions of Oct3/4 and Nanog (marker of embryonic stem [ES] cells) in iTS-P YAP9 cells was significantly lower compared with those in ES cells. The iTS-P YAP9 cells efficiently differentiated into insulin-expressing cells compared with ES cells. The ability to generate autologous iTS cells may be applied to diverse applications of regenerative medicine.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , YAP-Signaling Proteins , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Hepatocyte Nuclear Factor 3-beta/metabolism , Hepatocyte Nuclear Factor 3-beta/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Pancreas/cytology , Pancreas/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics , Trans-Activators/metabolism , Trans-Activators/genetics
9.
Comput Biol Med ; 176: 108609, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772056

ABSTRACT

Semi-supervised medical image segmentation presents a compelling approach to streamline large-scale image analysis, alleviating annotation burdens while maintaining comparable performance. Despite recent strides in cross-supervised training paradigms, challenges persist in addressing sub-network disagreement and training efficiency and reliability. In response, our paper introduces a novel cross-supervised learning framework, Quality-driven Deep Cross-supervised Learning Network (QDC-Net). QDC-Net incorporates both an evidential sub-network and an vanilla sub-network, leveraging their complementary strengths to effectively handle disagreement. To enable the reliability and efficiency of semi-supervised training, we introduce a real-time quality estimation of the model's segmentation performance and propose a directional cross-training approach through the design of directional weights. We further design a truncated form of sample-wise loss weighting to mitigate the impact of inaccurate predictions and collapsed samples in semi-supervised training. Extensive experiments on LA and Pancreas-CT datasets demonstrate that QDC-Net surpasses other state-of-the-art methods in semi-supervised medical image segmentation. Code release is available at https://github.com/Medsemiseg.


Subject(s)
Supervised Machine Learning , Humans , Deep Learning , Image Processing, Computer-Assisted/methods , Pancreas/diagnostic imaging , Tomography, X-Ray Computed
10.
Int J Med Mushrooms ; 26(6): 1-12, 2024.
Article in English | MEDLINE | ID: mdl-38801084

ABSTRACT

The prevalence of diabetes is increasing worldwide, and it is very important to study new hypoglycemic active substances. In this study, we investigated the hypoglycemic effect of Chroogomphus rutilus crude polysaccharide (CRCP) in HepG2 cells and streptozotocin-induced diabetic mice. A glucose consumption experiment conducted in HepG2 cells demonstrated the in vitro hypoglycemic activity of CRCP. Furthermore, CRCP exhibited significant hypoglycemic effects and effectively ameliorated insulin resistance in insulin resistant HepG2 cells. In high-fat diet and streptozotocin-induced diabetic mice, after 4 weeks of CRCP administration, fasting blood glucose, fasting serum insulin, triglyceride, total cholesterol, low-density lipoprotein cholesterol, glutamate transaminase, alanine transaminase, and insulin resistance index significantly decreased, while high-density lipoprotein cholesterol and insulin sensitivity index (ISI) were markedly increased. Moreover, hematoxylin-eosin (HE) staining and immunofluorescence labeling of tissue sections indicated that CRCP attenuated the pathological damage of liver and pancreas in diabetic mice. These results indicate that CRCP is a potential hypoglycemic agent.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Hypoglycemic Agents , Insulin Resistance , Polysaccharides , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Humans , Diabetes Mellitus, Experimental/drug therapy , Mice , Hep G2 Cells , Male , Blood Glucose/drug effects , Blood Glucose/metabolism , Polysaccharides/pharmacology , Polysaccharides/chemistry , Liver/drug effects , Liver/metabolism , Diet, High-Fat/adverse effects , Insulin/blood , Insulin/metabolism , Pancreas/drug effects , Pancreas/pathology , Agaricales/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Streptozocin
11.
Drug Dev Res ; 85(4): e22199, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38812443

ABSTRACT

It has been reported that lipophilic statins such as atorvastatin can more readily penetrate into ß-cells and reach the mitochondria, resulting in mitochondrial dysfunction, oxidative stress, decrease in insulin release. Many studies have shown that natural products can protect mitochondrial dysfunction induced by drug in different tissue. We aimed to explore mitochondrial protection potency of hesperidin, vanillic acid, and sinapic acid as natural compounds against mitochondrial dysfunction induced by atorvastatin in pancreas isolated mitochondria. Mitochondria were isolated form rat pancreas and directly treated with toxic concentration of atorvastatin (500 µM) in presence of various concentrations hesperidin, vanillic acid, and sinapic acid (1, 10, and 100 µM) separately. Mitochondrial toxicity parameters such as the reactive oxygen species (ROS) formation, succinate dehydrogenases (SDH) activity, mitochondrial swelling, depletion of glutathione (GSH), mitochondrial membrane potential (MMP) collapse, and malondialdehyde (MDA) production were measured. Our findings demonstrated that atorvastatin directly induced mitochondrial toxicity at concentration of 500 µM and higher in pancreatic mitochondria. Except MDA, atorvastatin caused significantly reduction in SDH activity, mitochondrial swelling, ROS formation, depletion of GSH, and collapse of MMP. While, our data showed that all three protective compounds at low concentrations ameliorated atorvastatin-induced mitochondrial dysfunction with the increase of SDH activity, improvement of mitochondrial swelling, MMP collapse and mitochondrial GSH, and reduction of ROS formation. We can conclude that hesperidin, vanillic acid, and sinapic acid can directly reverse the toxic of atorvastatin in rat pancreas isolated mitochondria, which may be beneficial for protection against diabetogenic-induced mitochondrial dysfunction in pancreatic ß-cells.


Subject(s)
Atorvastatin , Coumaric Acids , Hesperidin , Membrane Potential, Mitochondrial , Mitochondria , Mitochondrial Swelling , Pancreas , Reactive Oxygen Species , Vanillic Acid , Animals , Atorvastatin/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Pancreas/drug effects , Pancreas/pathology , Pancreas/metabolism , Coumaric Acids/pharmacology , Rats , Reactive Oxygen Species/metabolism , Male , Mitochondrial Swelling/drug effects , Membrane Potential, Mitochondrial/drug effects , Vanillic Acid/pharmacology , Hesperidin/pharmacology , Glutathione/metabolism , Rats, Wistar , Succinate Dehydrogenase/metabolism , Malondialdehyde/metabolism
12.
World J Gastroenterol ; 30(17): 2311-2320, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38813054

ABSTRACT

Contrast-enhanced endoscopic ultrasound (CH-EUS) can overcome the limitations of endoscopic ultrasound-guided acquisition by identifying microvessels inside inhomogeneous tumours and improving the characterization of these tumours. Despite the initial enthusiasm that oriented needle sampling under CH-EUS guidance could provide better diagnostic yield in pancreatic solid lesions, further studies did not confirm the supplementary values in cases of tissue acquisition guided by CH-EUS. This review details the knowledge based on the available data on contrast-guided procedures. The indications for CH-EUS tissue acquisition include isoechoic EUS lesions with poor visible delineation where CH-EUS can differentiate the lesion vascularisation from the surrounding parenchyma and also the mural nodules within biliopancreatic cystic lesions, which occur in select cases. Additionally, the roles of CH-EUS-guided therapy in patients whose pancreatic fluid collections or bile ducts that have an echogenic content have indications for drainage, and patients who have nonvisualized vessels that need to be highlighted via Doppler EUS are presented. Another indication is represented if there is a need for an immediate assessment of the post-radiofrequency ablation of pancreatic neuroendocrine tumours, in which case CH-EUS can be used to reveal the incomplete tumour destruction.


Subject(s)
Contrast Media , Endosonography , Pancreatic Neoplasms , Humans , Contrast Media/administration & dosage , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/surgery , Pancreatic Neoplasms/pathology , Endosonography/methods , Pancreas/diagnostic imaging , Pancreas/surgery , Pancreas/blood supply , Pancreas/pathology , Endoscopic Ultrasound-Guided Fine Needle Aspiration/methods , Ultrasonography, Interventional/methods , Drainage/methods , Pancreatic Diseases/diagnostic imaging , Pancreatic Diseases/surgery , Pancreatic Diseases/pathology
13.
Medicina (Kaunas) ; 60(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38792878

ABSTRACT

Background and Objectives: The pancreas, ensconced within the abdominal cavity, requires a plethora of sophisticated imaging modalities for its comprehensive evaluation, with ultrasonography serving as a primary investigative technique. A myriad of pancreatic pathologies, encompassing pancreatic neoplasia and a spectrum of inflammatory diseases, are detectable through these imaging strategies. Nevertheless, the intricate anatomical confluence and the pancreas's deep-seated topography render the visualization and accurate diagnosis of its pathologies a formidable endeavor. The objective of our paper is to review the best diagnostic imagistic tools for the pancreas. Materials and Methods: we have gathered several articles using Prisma guidelines to determine the best imagistic methods. The imperative of pancreatic scanning transcends its diagnostic utility, proving to be a pivotal element in a multitude of clinical specialties, notably surgical oncology. Within this domain, multidetector computed tomography (MDCT) of the pancreas holds the distinction of being the paramount imaging modality, endorsed for its unrivaled capacity to delineate the staging and progression of pancreatic carcinoma. In synergy with MDCT, there has been a notable advent of avant-garde imaging techniques in recent years. These advanced methodologies, including ultrasonography, endoscopic ultrasonography, contrast-enhanced ultrasonography, and magnetic resonance imaging (MRI) conjoined with magnetic resonance cholangiopancreatography (MRCP), have broadened the horizon of tumor characterization, offering unparalleled depth and precision in oncological assessment. Other emerging diagnostic techniques, such as elastography, also hold a lot of potential and promise for the future of pancreatic imaging. Fine needle aspiration (FNA) is a quick, minimally invasive procedure to evaluate lumps using a thin needle to extract tissue for analysis. It is less invasive than surgical biopsies and usually performed as an outpatient with quick recovery. Its accuracy depends on sample quality, and the risks include minimal bleeding or discomfort. Results, guiding further treatment, are typically available within a week. Elastography is a non-invasive medical imaging technique that maps the elastic properties and stiffness of soft tissue. This method, often used in conjunction with ultrasound or MRI, helps differentiate between hard and soft areas in tissue, providing valuable diagnostic information. It is particularly useful for assessing liver fibrosis, thyroid nodules, breast lumps, and musculoskeletal conditions. The technique is painless and involves applying gentle pressure to the area being examined. The resulting images show tissue stiffness, indicating potential abnormalities. Elastography is advantageous for its ability to detect diseases in early stages and monitor treatment effectiveness. The procedure is quick, safe, and requires no special preparation, with results typically available immediately. Results: The assembled and gathered data shows the efficacy of various techniques in discerning the nature and extent of neoplastic lesions within the pancreas. Conclusions: The most common imaging modalities currently used in diagnosing pancreatic neoplasms are multidetector computed tomography (MDCT), endoscopic ultrasound (EUS), and magnetic resonance imaging (MRI), alongside new technologies, such as elastography.


Subject(s)
Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/diagnosis , Ultrasonography/methods , Magnetic Resonance Imaging/methods , Multidetector Computed Tomography/methods , Pancreas/diagnostic imaging , Pancreas/pathology
14.
Surg Endosc ; 38(6): 3388-3394, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719986

ABSTRACT

BACKGROUND: Pancreatic fistula (PF) is one of the most serious postoperative complications of gastrectomy. Misidentification of the boundary between the pancreas and the dissected fat is a primary concern. In this study, we focused on differences in the appearance of the pancreas and the dissected fat in actual surgical images and statistically analyzed the relationship between the pancreas and the dissected fat. METHODS: We analyzed data from 109 gastric cancer patients who underwent curative gastrectomy between November 2018 and March 2023. Intraoperative images were taken from videos of lymph node dissections of Nos.6 and 8a regions, and the mean gray value of the areas was measured using ImageJ software for analysis. The visceral fat area (VFA) was evaluated by preoperative axial CT at the umbilical level using Ziostation software. RESULTS: A significant correlation was observed between the fat/pancreas gray value ratio in the No.8a lymph node region and the drain/serum amylase ratio (P < 0.001). The fat/pancreas gray value ratio in the No.6 lymph node region correlated with VFA (P < 0.001). The VFA and drain/serum amylase ratio were significantly higher in the group with intra-abdominal complications (P = 0.004). CONCLUSIONS: We revealed significant relationships between the fat/pancreas gray value ratio with drain/serum amylase and VFA. Detecting differences in gray values between the pancreas and the dissected fat may lead to a decrease in the drain/serum amylase ratio and PF.


Subject(s)
Gastrectomy , Laparoscopy , Pancreatic Fistula , Robotic Surgical Procedures , Stomach Neoplasms , Humans , Pancreatic Fistula/etiology , Pancreatic Fistula/epidemiology , Gastrectomy/methods , Gastrectomy/adverse effects , Male , Laparoscopy/methods , Laparoscopy/adverse effects , Female , Robotic Surgical Procedures/methods , Robotic Surgical Procedures/adverse effects , Middle Aged , Aged , Risk Assessment/methods , Stomach Neoplasms/surgery , Stomach Neoplasms/pathology , Lymph Node Excision/methods , Lymph Node Excision/adverse effects , Postoperative Complications/epidemiology , Postoperative Complications/diagnostic imaging , Postoperative Complications/etiology , Intra-Abdominal Fat/diagnostic imaging , Pancreas/diagnostic imaging , Pancreas/surgery , Pancreas/pathology , Retrospective Studies , Adult
15.
Front Endocrinol (Lausanne) ; 15: 1332895, 2024.
Article in English | MEDLINE | ID: mdl-38694937

ABSTRACT

Background: More than 700 million people worldwide suffer from diseases of the pancreas, such as diabetes, pancreatitis and pancreatic cancer. Often dysregulation of potassium (K+) channels, co-transporters and pumps can promote development and progression of many types of these diseases. The role of K+ transport system in pancreatic cell homeostasis and disease development remains largely unexplored. Potassium isotope analysis (δ41K), however, might have the potential to detect minute changes in metabolic processes relevant for pancreatic diseases. Methods: We assessed urinary K isotope composition in a case-control study by measuring K concentrations and δ41K in spot urines collected from patients diagnosed with pancreatic cancer (n=18), other pancreas-related diseases (n=14) and compared those data to healthy controls (n=16). Results: Our results show that urinary K+ levels for patients with diseased pancreas (benign and pancreatic cancer) are significantly lower than the healthy controls. For δ41K, the values tend to be higher for individuals with pancreatic cancer (mean δ41K = -0.58 ± 0.33‰) than for healthy individuals (mean δ41K = -0.78 ± 0.19‰) but the difference is not significant (p=0.08). For diabetics, urinary K+ levels are significantly lower (p=0.03) and δ41K is significantly higher (p=0.009) than for the healthy controls. These results suggest that urinary K+ levels and K isotopes can help identify K disturbances related to diabetes, an associated factors of all-cause mortality for diabetics. Conclusion: Although the K isotope results should be considered exploratory and hypothesis-generating and future studies should focus on larger sample size and δ41K analysis of other K-disrupting diseases (e.g., chronic kidney disease), our data hold great promise for K isotopes as disease marker.


Subject(s)
Diabetes Mellitus , Pancreatic Neoplasms , Potassium , Humans , Pancreatic Neoplasms/urine , Male , Female , Case-Control Studies , Middle Aged , Aged , Potassium/urine , Diabetes Mellitus/urine , Diabetes Mellitus/metabolism , Adult , Pancreas/metabolism , Isotopes/urine
16.
J Oleo Sci ; 73(5): 717-727, 2024.
Article in English | MEDLINE | ID: mdl-38692894

ABSTRACT

The anti-diabetic effect of Ficus carica (Fig) seed oil was investigated. 4 groups with 6 rats in each group were used in the experiment as control, diabetes (45 mg/kg streptozotocin), fig seed oil (FSO) (6 mL/ kg/day/rat by gavage) and diabetes+FSO groups. Glucose, urea, creatinine, ALT, AST, GSH, AOPP and MDA analyses were done. Pancreatic tissues were examined histopathologically. When fig seed oil was given to the diabetic group, the blood glucose level decreased. In the diabetes+FSO group, serum urea, creatinine, AOPP, MDA levels and ALT and AST activities decreased statistically significantly compared to the diabetes group, while GSH levels increased significantly, histopathological, immunohistochemical, and immunofluorescent improvements were observed. It has been shown for the first time that FSO has positive effects on blood glucose level and pancreatic health. It can be said that the protective effect of fig seed oil on tissues may be due to its antioxidant activity.


Subject(s)
Antioxidants , Blood Glucose , Diabetes Mellitus, Experimental , Ficus , Hypoglycemic Agents , Pancreas , Plant Oils , Seeds , Streptozocin , Animals , Ficus/chemistry , Diabetes Mellitus, Experimental/drug therapy , Plant Oils/pharmacology , Plant Oils/isolation & purification , Seeds/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Blood Glucose/metabolism , Male , Pancreas/drug effects , Pancreas/pathology , Pancreas/metabolism , Antioxidants/pharmacology , Rats , Rats, Wistar , Creatinine/blood
17.
Nature ; 629(8012): 679-687, 2024 May.
Article in English | MEDLINE | ID: mdl-38693266

ABSTRACT

Pancreatic intraepithelial neoplasias (PanINs) are the most common precursors of pancreatic cancer, but their small size and inaccessibility in humans make them challenging to study1. Critically, the number, dimensions and connectivity of human PanINs remain largely unknown, precluding important insights into early cancer development. Here, we provide a microanatomical survey of human PanINs by analysing 46 large samples of grossly normal human pancreas with a machine-learning pipeline for quantitative 3D histological reconstruction at single-cell resolution. To elucidate genetic relationships between and within PanINs, we developed a workflow in which 3D modelling guides multi-region microdissection and targeted and whole-exome sequencing. From these samples, we calculated a mean burden of 13 PanINs per cm3 and extrapolated that the normal intact adult pancreas harbours hundreds of PanINs, almost all with oncogenic KRAS hotspot mutations. We found that most PanINs originate as independent clones with distinct somatic mutation profiles. Some spatially continuous PanINs were found to contain multiple KRAS mutations; computational and in situ analyses demonstrated that different KRAS mutations localize to distinct cell subpopulations within these neoplasms, indicating their polyclonal origins. The extensive multifocality and genetic heterogeneity of PanINs raises important questions about mechanisms that drive precancer initiation and confer differential progression risk in the human pancreas. This detailed 3D genomic mapping of molecular alterations in human PanINs provides an empirical foundation for early detection and rational interception of pancreatic cancer.


Subject(s)
Exome Sequencing , Mutation , Pancreatic Neoplasms , Precancerous Conditions , Proto-Oncogene Proteins p21(ras) , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Carcinoma in Situ/genetics , Carcinoma in Situ/pathology , Pancreas/cytology , Female , Genomics , Single-Cell Analysis , Male , Machine Learning , Clone Cells/metabolism , Clone Cells/cytology , Genetic Heterogeneity , Imaging, Three-Dimensional , Adult , Workflow
18.
Sci Rep ; 14(1): 11141, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750103

ABSTRACT

This study aimed to analyze the characteristics of the non-specific uptake (NSU) of 18F-labeled fibroblast activation protein inhibitor (18F-FAPI) of the pancreas and investigate the related factors. Totally, 78 patients who underwent both 18F-fluorodeoxyglucose (FDG) and 18F-FAPI PET/CT examinations were divided into normal (n = 53) and NSU (n = 25) groups. The differences in general information, medical history, laboratory indexes and uptake were compared. Receiver operating characteristic (ROC) curves were used to analyze the optimal cut-off values. The correlations between 18F-FAPI-SUVmax and blood cell analysis, liver function indexes, tumor markers, and inflammatory indices were analyzed. The logistic regression model was used to estimate the independent factors. Both 18F-FAPI (4.48 ± 0.98 vs. 2.01 ± 0.53, t = 11.718, P < 0.05) and 18F-FDG (2.23 ± 0.42 vs. 2.02 ± 0.44, t = 2.036, P = 0.045) showed significantly higher in NSU group. Patients in the NSU group tended to be complicated with a history of drinking (P = 0.034), chronic liver diseases (P = 0.006), and surgery of gastrectomy (P = 0.004). ROC analysis showed cutoff values of 3.25 and 2.05 for 18F-FAPI and 18F-FDG in identifying the NSU. Patients in the NSU group showed less platelet count, higher platelet volume, higher total bilirubin, direct or indirect bilirubin (P < 0.05). Platelet count, platelet crit, large platelet ratio, aspartate aminotransferase (AST), α-L-fucosidase, and total, direct or indirect bilirubin were correlated with 18F-FAPI-SUVmax (P < 0.05). AST [1.099 (1.014, 1.192), P = 0.021] and total bilirubin [1.137 (1.035, 1.249), P = 0.007] were two independent factors in the step forward logistic regression, and platelet/% [1.079 (1.004, 1.160), P = 0.039] and total bilirubin [1.459 (1.016, 2.095), P = 0.041] were two independent factors in the step backward logistic regression for the prediction of pancreatic uptake of 18F-FAPI. 18F-FAPI-PET/CT was better than 18F-FDG in predicting the pancreatic NSU, and NSU is related to a history of drinking, chronic liver diseases, gastrectomy, heteromorphic platelet, and impaired liver function.


Subject(s)
Pancreas , Positron Emission Tomography Computed Tomography , Humans , Male , Female , Middle Aged , Pancreas/metabolism , Pancreas/diagnostic imaging , Aged , Prospective Studies , Fluorodeoxyglucose F18 , ROC Curve , Adult , Radiopharmaceuticals , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/surgery
19.
Luminescence ; 39(5): e4765, 2024 May.
Article in English | MEDLINE | ID: mdl-38769927

ABSTRACT

Isovitexin is a main natural flavonoid component in various plants. Currently, the inhibitory effect of isovitexin on pancreatic lipase (PL) and its mechanism have not been elucidated yet. In the present study, we investigated the inhibitory effect of isovitexin on PL, as well as its interaction mechanism, using enzyme inhibition methods, spectroscopic analysis, and molecular simulations. Results showed that isovitexin possessed significant PL inhibitory activity, with IC50 values of 0.26 ± 0.02 mM. The interaction between isovitexin and PL was dominated by static quenching, and mainly through hydrogen bonding and hydrophobic interaction forces. Analysis of fluorescence spectroscopy confirmed that isovitexin binding altered the conformation of the PL. Circular dichroism (CD) spectrum indicated that isovitexin altered the secondary structure of PL by decreasing the α-helix content and increasing the ß-fold content. Molecular simulations further characterize the conformational changes produced by the interaction between isovitexin with PL. The performed study may provide a new insight into the inhibitory mechanism of isovitexin as a novel PL inhibitor.


Subject(s)
Apigenin , Circular Dichroism , Enzyme Inhibitors , Lipase , Pancreas , Spectrometry, Fluorescence , Lipase/antagonists & inhibitors , Lipase/metabolism , Lipase/chemistry , Pancreas/enzymology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Apigenin/chemistry , Apigenin/pharmacology , Animals
20.
Development ; 151(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38727565

ABSTRACT

Proper embryonic development depends on the timely progression of a genetic program. One of the key mechanisms for achieving precise control of developmental timing is to use gene expression oscillations. In this Review, we examine how gene expression oscillations encode temporal information during vertebrate embryonic development by discussing the gene expression oscillations occurring during somitogenesis, neurogenesis, myogenesis and pancreas development. These oscillations play important but varied physiological functions in different contexts. Oscillations control the period of somite formation during somitogenesis, whereas they regulate the proliferation-to-differentiation switch of stem cells and progenitor cells during neurogenesis, myogenesis and pancreas development. We describe the similarities and differences of the expression pattern in space (i.e. whether oscillations are synchronous or asynchronous across neighboring cells) and in time (i.e. different time scales) of mammalian Hes/zebrafish Her genes and their targets in different tissues. We further summarize experimental evidence for the functional role of their oscillations. Finally, we discuss the outstanding questions for future research.


Subject(s)
Embryonic Development , Gene Expression Regulation, Developmental , Somites , Animals , Embryonic Development/genetics , Humans , Somites/metabolism , Somites/embryology , Muscle Development/genetics , Neurogenesis/genetics , Neurogenesis/physiology , Pancreas/embryology , Pancreas/metabolism , Cell Differentiation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...