Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.827
Filter
1.
J Cell Mol Med ; 28(17): e18512, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39248454

ABSTRACT

Acute pancreatitis (AP) is a common gastrointestinal disease with high morbidity and mortality rate. Unfortunately, neither the etiology nor the pathophysiology of AP are fully understood and causal treatment options are not available. Recently we demonstrated that heparanase (Hpa) is adversely involved in the pathogenesis of AP and inhibition of this enzyme ameliorates the manifestation of the disease. Moreover, a pioneer study demonstrated that Aspirin has partial inhibitory effect on Hpa. Another compound, which possesses a mild pancreato-protective effect against AP, is Trehalose, a common disaccharide. We hypothesized that combination of Aspirin, Trehalose, PG545 (Pixatimod) and SST0001 (Roneparstat), specific inhibitors of Hpa, may exert pancreato-protective effect better than each drug alone. Thus, the current study examines the pancreato-protective effects of Aspirin, Trehalose, PG545 and SST0001 in experimental model of AP induced by cerulein in wild-type (WT) and Hpa over-expressing (Hpa-Tg) mice. Cerulein-induced AP in WT mice was associated with significant rises in the serum levels of lipase (X4) and amylase (X3) with enhancement of pancreatic edema index, inflammatory response, and autophagy. Responses to cerulein were all more profound in Hpa-Tg mice versus WT mice, evident by X7 and X5 folds increase in lipase and amylase levels, respectively. Treatment with Aspirin or Trehalose alone and even more so in combination with PG545 or SST0001 were highly effective, restoring the serum level of lipase back to the basal level. Importantly, a novel newly synthesized compound termed Aspirlose effectively ameliorated the pathogenesis of AP as a single agent. Collectively, the results strongly indicate that targeting Hpa by using anti-Hpa drug combinations constitute a novel therapy for this common orphan disease.


Subject(s)
Glucuronidase , Pancreatitis , Animals , Pancreatitis/drug therapy , Pancreatitis/pathology , Mice , Glucuronidase/metabolism , Glucuronidase/antagonists & inhibitors , Trehalose/pharmacology , Trehalose/therapeutic use , Ceruletide , Aspirin/pharmacology , Aspirin/therapeutic use , Disease Models, Animal , Acute Disease , Autophagy/drug effects , Pancreas/drug effects , Pancreas/pathology , Pancreas/enzymology , Male , Mice, Transgenic , Lipase/metabolism , Lipase/antagonists & inhibitors , Amylases/blood , Mice, Inbred C57BL , Saponins
2.
Sci Rep ; 14(1): 20633, 2024 09 04.
Article in English | MEDLINE | ID: mdl-39232184

ABSTRACT

Herbs have been used as medicines since antiquity, and it has been discovered that the human body responds well to herbal remedies. Research on the effect of butin was conducted in the current study in the alloxan-induced diabetic rat paradigm. A total of 30 Wistar rats were randomly assigned into the following groups (n = 6): I-Normal; II-Alloxan-induced (50 mg/kg); III-Alloxan + butin 25 mg/kg; IV-Alloxan + butin 50 mg/kg; V-Butin per se 50 mg/kg. Various diabetic parameters (blood glucose, insulin, HbA1c), lipid profile, inflammatory (TNF-α, IL-1ß, IL-6 and NF-κB), antioxidant enzymes (CAT, SOD and GSH), oxidative stress indicators (MDA), apoptosis marker (caspase-3), hepatic markers (ALT and AST), and histopathological changes were assessed. Additionally, molecular docking and dynamics were performed to evaluate the interaction of butin with target proteins. Butin treatment, at both doses, significantly restored biochemical parameters and preserved pancreatic histopathology in diabetic rats. It effectively modulated blood parameters, lipid profiles, inflammatory markers, apoptosis, antioxidant enzyme activity, oxidative stress, and hepatic markers. Molecular docking revealed that butin binds to proteins such as caspase-3 (1NME), NF-κB (1SVC), and serum insulin (4IBM) with binding affinities of - 7.4, - 6.5, and - 8.2 kcal/mol, respectively. Molecular dynamics simulations further suggested that butin induces significant conformational changes in these proteins. Butin exhibits potential effects against alloxan-induced diabetic rats by restoring biochemical balance, reducing inflammation, and protecting pancreatic tissue. Its binding to key proteins involved in apoptosis and inflammation highlights its therapeutic potential in diabetes management.


Subject(s)
Alloxan , Diabetes Mellitus, Experimental , Molecular Docking Simulation , Rats, Wistar , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Rats , Male , Oxidative Stress/drug effects , Antioxidants/pharmacology , Antioxidants/metabolism , Blood Glucose/metabolism , Pancreas/pathology , Pancreas/drug effects , Pancreas/metabolism , Apoptosis/drug effects , Insulin/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Liver/metabolism , Liver/drug effects , Liver/pathology , Molecular Dynamics Simulation
3.
J Hazard Mater ; 478: 135455, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39154485

ABSTRACT

The unsustainable use of manmade chemicals poses significant threats to biodiversity and human health. Emerging evidence highlights the potential of certain chemicals to cause transgenerational impacts on metabolic health. Here, we investigate male transmitted epigenetic transgenerational effects of the anti-androgenic herbicide linuron in the pancreas of Xenopus tropicalis frogs, and their association with metabolic phenotypes. Reduced representation bisulfite sequencing (RRBS) was used to assess genome-wide DNA methylation patterns in the pancreas of adult male F2 generation ancestrally exposed to environmentally relevant linuron levels (44 ± 4.7 µg/L). We identified 1117 differentially methylated regions (DMRs) distributed across the X. tropicalis genome, revealing potential regulatory mechanisms underlying metabolic disturbances. DMRs were identified in genes crucial for pancreatic function, including calcium signalling (clstn2, cacna1d and cadps2), genes associated with type 2 diabetes (tcf7l2 and adcy5) and a biomarker for pancreatic ductal adenocarcinoma (plec). Correlation analysis revealed associations between DNA methylation levels in these genes and metabolic phenotypes, indicating epigenetic regulation of glucose metabolism. Moreover, differential methylation in genes related to histone modifications suggests alterations in the epigenetic machinery. These findings underscore the long-term consequences of environmental contamination on pancreatic function and raise concerns about the health risks associated with transgenerational effects of pesticides.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Pancreas , Phenotype , Xenopus , Animals , DNA Methylation/drug effects , Male , Pancreas/drug effects , Pancreas/metabolism , Epigenesis, Genetic/drug effects , Linuron/toxicity , Herbicides/toxicity , Pesticides/toxicity
4.
Int J Biol Macromol ; 277(Pt 1): 134092, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39059523

ABSTRACT

Inhibition of pancreatic lipase (PL) is a strategy to prevent obesity. The inhibitory effects of Flos Sophorae Immaturus (FSI) extract and its main flavonoid components, rutin and quercetin, on PL were investigated. The contents of rutin and quercetin in FSI extract were 44.10 ± 1.33 % and 6.07 ± 1.62 %, respectively. The IC50 values of FSI extract, rutin and quercetin on PL were 322, 258 and 71 µg/mL, respectively. Rutin and quercetin inhibited PL in a reversible and noncompetitive manner. The combination of rutin and quercetin exhibited synergistic inhibitory effects at low concentration. The binding of rutin/quercetin with PL caused the fluorescence quenching of protein. Fluorescence titration showed the binding affinity of quercetin with PL protein was stronger than that of rutin. Circular dichroism analysis showed the binding changed the secondary structure of PL with an increase in random coil and a decrease in α-Helix and ß-Sheet. Molecular docking revealed that rutin and quercetin could interact with the amino acid residues around the catalytic site through multiple secondary interactions. In vivo studies showed that FSI extract can reduce fat absorption and promote fecal fat excretion through inhibition of PL activity, and the effects were mainly due to rutin and quercetin.


Subject(s)
Flavonoids , Lipase , Molecular Docking Simulation , Pancreas , Plant Extracts , Quercetin , Rutin , Lipase/antagonists & inhibitors , Lipase/metabolism , Lipase/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Quercetin/pharmacology , Quercetin/chemistry , Pancreas/enzymology , Pancreas/drug effects , Flavonoids/pharmacology , Flavonoids/chemistry , Rutin/pharmacology , Rutin/chemistry , Animals , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Male , Sophora/chemistry
5.
J Food Sci ; 89(8): 4771-4790, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38992877

ABSTRACT

Polygonatum sibiricum polysaccharide (PSP) was extracted and purified from raw material obtained from P. sibiricum. The structural features of PSP were investigated by Congo red, circular dichroism spectrum, high-performance gel permeation chromatography, scanning electron microscope, atomic force microscope, ultraviolet spectroscopy, and Fourier transform infrared spectroscopy analysis. In vitro simulations were conducted to investigate the kinetics of PSP enzyme inhibition. Moreover, a type II diabetes mouse model (T2DM) with streptozotocin-induced insulin resistance was established, and the indexes of lipid quadruple, insulin resistance index, oral glucose tolerance (OGTT), organ index, and pancreatic morphology of model mice were measured. The results showed that PSP mainly consists of monosaccharides, such as mannose, glucose, galactose, xylose, and arabinose. It also has a ß-glycosidic bond of a pyranose ring and an irregular reticulated aggregated structure with a triple helix. In vitro enzyme inhibition assays revealed that PSP acts as a reversible competitive inhibitor of α-glucosidase and α-amylase. Furthermore, PSP was found to reduce insulin resistance index, increase OGTT and serum insulin levels, decrease free fatty acid content to improve lipid metabolism, and lower glycated serum protein content to enhance glucose metabolism in T2DM mice, thereby leading to a reduction in blood glucose concentration. Additionally, PSP exhibited reparative effects on the damaged liver tissue cells and pancreatic tissue in T2DM mice. The experiment results provide a preliminary basis for the therapeutic mechanism of PSP about type II diabetes and a theoretical reference for application in food and pharmaceutical development.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Insulin Resistance , Polygonatum , Polysaccharides , Animals , Polygonatum/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Mice , Hypoglycemic Agents/pharmacology , Blood Glucose/drug effects , Blood Glucose/metabolism , Male , Diabetes Mellitus, Type 2/drug therapy , Insulin/blood , Diabetes Mellitus, Experimental/drug therapy , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Pancreas/drug effects , Pancreas/pathology , Spectroscopy, Fourier Transform Infrared/methods
6.
Pancreas ; 53(7): e588-e594, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38986079

ABSTRACT

OBJECTIVE: It was targeted to assess the efficacy of certolizumab on pancreas and target organs via biochemical parameters and histopathologic scores in experimental acute pancreatitis (AP). MATERIALS AND METHODS: Forty male Sprague Dawley rats were divided into the following 5 equal groups: group 1 (sham group), group 2 (AP group), group 3 (AP + low-dose certolizumab group), group 4 (AP + high-dose certolizumab group), and group 5 (placebo group). Rats in all groups were sacrificed 24 hours after the last injection and amylase, tumor necrosis factor α, transforming growth factor ß, interleukin 1ß, malondialdehyde, superoxide dismutase, and glutathione peroxidase levels were studied in blood samples. Histopathological investigation of both the pancreas and target organs (lungs, liver, heart, kidneys) was performed by a pathologist blind to the groups. In silico analysis were also accomplished. RESULTS: The biochemical results in the certolizumab treatment groups were identified to be significantly favorable compared to the AP group (P < 0.001). The difference between the high-dose group (group 4) and low-dose treatment group (group 3) was found to be significant in terms of biochemical parameters and histopathological scores (P < 0.001). In terms of the effect of certolizumab treatment on the target organs (especially on lung tissue), the differences between the low-dose treatment group (group 3) and high-dose treatment group (group 4) with the AP group (group 2) were significant. CONCLUSIONS: Certolizumab has favorable protective effects on pancreas and target organs in AP. It may be a beneficial agent for AP treatment and may prevent target organ damage.


Subject(s)
Amylases , Lung , Pancreas , Pancreatitis , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha , Animals , Male , Pancreatitis/prevention & control , Pancreatitis/chemically induced , Pancreatitis/pathology , Pancreatitis/drug therapy , Pancreas/drug effects , Pancreas/pathology , Pancreas/metabolism , Amylases/blood , Acute Disease , Lung/drug effects , Lung/pathology , Lung/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/blood , Certolizumab Pegol/pharmacology , Malondialdehyde/metabolism , Liver/drug effects , Liver/pathology , Liver/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Interleukin-1beta/blood , Interleukin-1beta/metabolism , Superoxide Dismutase/metabolism , Glutathione Peroxidase/metabolism , Myocardium/pathology , Myocardium/metabolism , Transforming Growth Factor beta/metabolism , Rats , Disease Models, Animal , Oxidative Stress/drug effects
8.
Food Funct ; 15(16): 8238-8247, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39073342

ABSTRACT

Caffeine, a controversial substance, was once known to be addictive and harmful. In recent years, new effects of caffeine on the human body have been confirmed. Recent research over the past few decades has shown the potential of caffeine in treating pancreas-related diseases. This review aims to analyze the known and possible mechanisms of caffeine on pancreatic diseases and provides an overview of the current research status regarding the correlation between caffeine and pancreatic disease, while enhancing our understanding of their relationship.


Subject(s)
Caffeine , Pancreatic Diseases , Humans , Caffeine/pharmacology , Pancreatic Diseases/drug therapy , Animals , Pancreas/drug effects
9.
Am J Physiol Gastrointest Liver Physiol ; 327(3): G466-G480, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39010833

ABSTRACT

Acute pancreatitis, an acute inflammatory injury of the pancreas, lacks a specific treatment. The circulatory protein renalase is produced by the kidney and other tissues and has potent anti-inflammatory and prosurvival properties. Recombinant renalase can reduce the severity of mild cerulein pancreatitis; the activity is contained in a conserved 20 aa renalase site (RP220). Here, we investigated the therapeutic effects of renalase on pancreatitis using two clinically relevant models of acute pancreatitis. The ability of peptides containing the RP220 site to reduce injury in a 1-day post-endoscopic retrograde cholangiopancreatography (ERCP) and a 2-day severe cerulein induced in mice was examined. The initial dose of renalase peptides was given either prophylactically (before) or therapeutically (after) the initiation of the disease. Samples were collected to determine early pancreatitis responses (tissue edema, plasma amylase, active zymogens) and later histologic tissue injury and inflammatory changes. In both preclinical models, renalase peptides significantly reduced histologic damage associated with pancreatitis, especially inflammation, necrosis, and overall injury. Quantifying inflammation using specific immunohistochemical markers demonstrated that renalase peptides significantly reduced overall bone marrow-derived inflammation and neutrophils and macrophage populations in both models. In the severe cerulein model, administering a renalase peptide with or without pretreatment significantly reduced injury. Pancreatitis and renalase peptide effects appeared to be the same in female and male mice. These studies suggest renalase peptides that retain the anti-inflammatory and prosurvival properties of recombinant renalase can reduce the severity of acute pancreatitis and might be attractive candidates for therapeutic development.NEW & NOTEWORTHY Renalase is a secretory protein. The prosurvival and anti-inflammatory effects of the whole molecule are contained in a 20 aa renalase site (RP220). Systemic treatment with peptides containing this renalase site reduced the severity of post-endoscopic retrograde cholangiopancreatography (ERCP) and severe cerulein pancreatitis in mouse models.


Subject(s)
Ceruletide , Mice, Inbred C57BL , Pancreatitis , Animals , Pancreatitis/prevention & control , Pancreatitis/pathology , Male , Mice , Female , Disease Models, Animal , Severity of Illness Index , Peptides/pharmacology , Pancreas/pathology , Pancreas/drug effects , Pancreas/metabolism , Anti-Inflammatory Agents/pharmacology , Chymases/metabolism , Monoamine Oxidase
10.
Nanoscale ; 16(34): 16058-16074, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39082128

ABSTRACT

Diabetic nephropathy (DN) is a progressive kidney disorder that develops as a complication of diabetes due to long-term exposure to elevated blood glucose levels (BGLs). In this case, an intervention of therapeutic moieties is needed to target the specific elements involved in diabetes to prevent/delay the deterioration of kidney function. Therefore, the present study focused on designing and evaluating a potent nano-formulation of a combination of C-peptide (CPep) and the anti-diabetic drug lisofylline (LSF) to prevent streptozotocin (STZ)-induced DN. As a strategic intervention, an LSF-oleic acid prodrug (LSF-OA) was initially synthesized and further encapsulated in an in-house-synthesized cationic polymer [(mPEG-b-P(CB-{g-DMDP}-co-LA)); mPLM] to prepare polymeric nano-complexes of CPep via electrostatic interaction, possessing a size of 218.6 ± 14.4 nm and zeta potential of +5.2 mV together with stability for 30 days at 25 °C. mPLM-LSF-OA-CPep nanoparticles demonstrated hemocompatibility with RBCs and exhibited potent anti-oxidant activity by reducing nitrite levels, inducing the release of anti-oxidant GSH and protecting metabolically stressed rat kidneys and murine insulinoma cells from apoptosis. In vivo pharmacokinetics depicted an increase in t½ and mean residence time in rats, which further improved the BGL and renal conditions and reduced plasma IL-6 and TNF-α levels in the STZ-induced DN animal model when treated with mPLM-LSF-OA-CPep compared to free LSF and CPep. Moreover, an increase in the plasma insulin level and detection of proliferative marker cells in pancreatic islets suggested the regeneration of ß-cells in diabetic animals.


Subject(s)
C-Peptide , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Kidney , Nanoparticles , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/pathology , Diabetic Nephropathies/metabolism , Rats , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Male , C-Peptide/blood , C-Peptide/chemistry , Nanoparticles/chemistry , Mice , Pancreas/pathology , Pancreas/metabolism , Pancreas/drug effects , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Polymers/chemistry , Polymers/pharmacology , Streptozocin , Rats, Sprague-Dawley , Pentoxifylline/analogs & derivatives
11.
Int J Mol Sci ; 25(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39062940

ABSTRACT

Diabetes mellitus, as a chronic metabolic disorder, significantly impacts the pancreas and among other organs, affects duodenal function. Emerging evidence suggests that probiotics can exert beneficial effects on gut health and metabolism. In our previous research, we evaluated the probiotic Lactobacillus paraplantarum BGCG11 primarily for its protective properties against diabetic rats' damaged liver and kidneys. In this work, we further examined the effects of probiotic strain BGCG11 on the function of the duodenum and pancreas in diabetic rats. We explored the potential mechanisms underlying the probiotic's effects, focusing on general indicators of diabetes, the architecture and morphology of pancreatic islets, duodenal integrity (measuring the transfer of fluid and serum zonulin level), and the modulation of gut microbiota composition. Our findings reveal the protective and regulatory roles of L. paraplantarum BGCG11 in mitigating diabetes-induced pancreatic and duodenal dysfunction regardless of its application time (pre- or post-treatment), highlighting its therapeutic potential in managing diabetes-related gastrointestinal complications.


Subject(s)
Diabetes Mellitus, Experimental , Duodenum , Gastrointestinal Microbiome , Lactobacillus , Pancreas , Probiotics , Animals , Probiotics/pharmacology , Duodenum/microbiology , Duodenum/metabolism , Rats , Diabetes Mellitus, Experimental/therapy , Male , Gastrointestinal Microbiome/drug effects , Pancreas/pathology , Pancreas/metabolism , Pancreas/drug effects , Islets of Langerhans/metabolism , Islets of Langerhans/drug effects
12.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000526

ABSTRACT

In recent years, the worldwide epidemic of metabolic diseases, namely obesity, metabolic syndrome, diabetes and metabolic-associated fatty liver disease (MAFLD) has been strongly associated with constant exposure to endocrine-disruptive chemicals (EDCs), in particular, the ones able to disrupt various metabolic pathways. EDCs have a negative impact on several human tissues/systems, including metabolically active organs, such as the liver and pancreas. Among their deleterious effects, EDCs induce mitochondrial dysfunction and oxidative stress, which are also the major pathophysiological mechanisms underlying metabolic diseases. In this narrative review, we delve into the current literature on EDC toxicity effects on the liver and pancreatic tissues in terms of impaired mitochondrial function and redox homeostasis.


Subject(s)
Endocrine Disruptors , Liver , Mitochondria , Oxidative Stress , Pancreas , Humans , Oxidative Stress/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Endocrine Disruptors/toxicity , Animals , Pancreas/drug effects , Pancreas/metabolism , Pancreas/pathology
13.
J Med Food ; 27(7): 627-635, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38976324

ABSTRACT

Type 2 diabetes (T2D) is a serious health problem, and its prevalence is expected to increase worldwide in the years ahead. Cruciferous vegetables such as Brassica oleracea var. capitata L. (green cabbage) and Raphanus sativus L. (radish) have therapeutic properties that can be used to support the treatment of T2D. This study evaluated the effect of B. oleracea (BAE) and R. sativus (RAE) aqueous extracts on zoometric parameters, glycemic profiles, and pancreas and liver in prediabetic rats induced by a high-sucrose diet (HSD). BAE and RAE were administered to male HSD-induced Wistar rats (n = 35) at 5 and 10 mg/kg doses for 5 weeks. Zoometric and biochemical changes were measured, and then the pancreas and liver histological preparations were analyzed to observe the protective effect. BAE decreased feed intake and weight gain. Both extracts decreased fasting glucose and insulin levels compared with control (not treated), although not significantly (P > .05). The extracts significantly (P < .05) reduced homeostatic model assessment for insulin resistance, homeostasis model assessment of ß-cell function, and glucose intolerance, similar to metformin control. In addition, minor damage occurred in the pancreas and liver. The results indicated that BAE and RAE decreased weight gain, improved glucose regulation, and protected the pancreas and liver in HSD rats. Therefore, they have multiple therapeutical properties and may be helpful in the prevention of T2D.


Subject(s)
Blood Glucose , Brassica , Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Insulin , Liver , Plant Extracts , Prediabetic State , Raphanus , Rats, Wistar , Animals , Brassica/chemistry , Male , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Rats , Prediabetic State/drug therapy , Blood Glucose/metabolism , Blood Glucose/drug effects , Raphanus/chemistry , Insulin/blood , Insulin/metabolism , Liver/drug effects , Liver/metabolism , Hypoglycemic Agents/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Pancreas/drug effects , Pancreas/metabolism , Pancreas/pathology , Humans , Insulin Resistance , Disease Models, Animal
14.
Tissue Cell ; 89: 102439, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38889555

ABSTRACT

Hydroxychloroquine (HCQ), an antimalarial drug widely used in treating rheumatoid disorders. Many side effects have been reported with HCQ administration indicating its hazardous effects on various organs. No previous studies reported the effect of long-term administration of oral HCQ on pancreatic tissue. Our study assessed pancreatic tissues functional and histopathological alterations following prolonged oral administration of HCQ. We also investigated the possible ameliorative effects of the lactoferrin (LF) coadministration with HCQ in adult male albino rats. Forty adult male Wister albino rats were divided into: negative control, LF positive control (2 g/kg), HCQ-treated (200 mg/kg), and HCQ+LF treated. Biochemical, histological, immunohistochemical, and morphometric analyses of the pancreatic tissues were conducted. Our findings revealed that prolonged oral administration of HCQ induced significant disruption of the pancreatic acinar architecture, enlarged congested islets of Langerhans, and elevated plasma insulin, amylase, and lipase levels. Interestingly, LF administration ameliorated the deleterious effects of prolonged HCQ administration on pancreatic tissue of adult male albino rats. In conclusion, prolonged oral administration of HCQ induced pancreatic tissue damage in rats, while LF attenuates HCQ-induced pancreatic injury. Our results emphasized the necessity of prescribing HCQ with caution, considering both dosage and treatment duration.


Subject(s)
Hydroxychloroquine , Lactoferrin , Pancreas , Animals , Lactoferrin/pharmacology , Hydroxychloroquine/pharmacology , Male , Pancreas/drug effects , Pancreas/pathology , Pancreas/metabolism , Rats , Rats, Wistar
15.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167313, 2024 10.
Article in English | MEDLINE | ID: mdl-38901652

ABSTRACT

BACKGROUND: Chronic pancreatic dysfunction is frequently observed as a consequence of prolonged high-fat diet consumption and is a serious public health concern. This pro-diabetic insult aggravates inflammation-influenced fibrotic lesions and is associated with deregulated autophagy. Metformin, a conventional anti-hyperglycemic drug, might be beneficial for pancreatic health, but the complex molecular regulations are not clarified. Considering the worldwide prevalence of chronic pancreatic dysfunction in obese individuals, we aimed to unwind the molecular intricacies explaining the involvement of oxidative stress, inflammation and fibrosis and to approbate metformin as a plausible intervention in this crossroad. MAIN METHODS: Age-matched Swiss Albino mice were exposed to high-fat diet (60 kcal%) against control diet (10 kcal%) to establish diet-induced stress model. Metformin treatment was introduced after 4 weeks to metformin-control and HFD-exposed metformin groups. After 8 weeks, metabolic and molecular outcomes were assessed to establish the impact of metformin on chronic consequences of HFD-mediated injury. KEY FINDINGS: High-fat diet administration to healthy mice primes oxidative stress-mediated chronic inflammation through Nrf2/Keap1/NF-κB interplay. Besides, pro-inflammatory cytokine bias leading to fibrotic (increased TGF-ß, α-SMA, and MMP9) and pro-EMT (Twist1, Slug, Vimentin, E-cadherin) repercussions in pancreatic lobules were evident. Metformin distinctly rescues high-fat diet-induced remodeling of pancreatic pro-diabetic alterations and cellular survival/death switch. Further, metformin abrogates the p62-Twist1 crosstalk in an autophagy-dependent manner (elevated beclin1, LC3-II/I, Lamp2) to restore pancreatic homeostasis. CONCLUSION: Our research validates the therapeutic potential of metformin in the inflammation-fibrosis nexus to ameliorate high-fat diet-induced pancreatic dysfunction and related metabolic alterations.


Subject(s)
Autophagy , Diet, High-Fat , Fibrosis , Metformin , Oxidative Stress , Animals , Metformin/pharmacology , Diet, High-Fat/adverse effects , Autophagy/drug effects , Mice , Oxidative Stress/drug effects , Male , Epithelial-Mesenchymal Transition/drug effects , Inflammation/pathology , Inflammation/metabolism , Inflammation/drug therapy , Pancreas/pathology , Pancreas/drug effects , Pancreas/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism
16.
Nutrients ; 16(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38931174

ABSTRACT

Zinc deficiency has been associated with the worsening of diabetes while zinc supplementation has been proposed to ameliorate diabetes. This study examined the effects of marginal zinc deficiency (MZD) and zinc supplementation (ZS) on obesity, glycemic control, pancreatic islets, hepatic steatosis and renal function of Zucker diabetic fatty (ZDF) rats. Male ZDF rats were fed an MZD, zinc control (ZC) or ZS diet (4, 30 and 300 mg Zn/kg diet, respectively), and lean Zucker rats were fed a ZC diet for 8 weeks. MZD and ZS did not alter body weight or whole-body composition in ZDF rats. MZD ZDF rats had reduced zinc concentrations in the femur and pancreas, a greater number of enlarged pancreatic islets and a diminished response to an oral glucose load based on a 1.8-fold greater incremental area-under-the-curve (AUC) for glucose compared to ZC ZDF. ZS ZDF rats had elevated serum, femur and pancreatic zinc concentrations, unchanged pancreatic parameters and a 50% reduction in the AUC for insulin compared to ZC ZDF rats, suggesting greater insulin sensitivity. Dietary zinc intake did not alter hepatic steatosis, creatinine clearance, or levels of proteins that contribute to insulin signaling, inflammation or zinc transport in epididymal fat. Potential adverse effects of ZS were suggested by reduced hepatic copper concentrations and elevated serum urea compared to ZC ZDF rats. In summary, ZS improved the pancreatic insulin response but not the glucose handling. In contrast, reduced zinc status in ZDF rats led to impaired glucose tolerance and a compensatory increase in the number and size of pancreatic islets which could lead to ß-cell exhaustion.


Subject(s)
Dietary Supplements , Insulin , Islets of Langerhans , Zinc , Animals , Male , Rats , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Insulin/blood , Insulin/metabolism , Insulin Resistance , Islets of Langerhans/metabolism , Islets of Langerhans/drug effects , Liver/metabolism , Liver/drug effects , Obesity/metabolism , Pancreas/metabolism , Pancreas/drug effects , Rats, Zucker , Zinc/deficiency
17.
Int Immunopharmacol ; 136: 112284, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38823179

ABSTRACT

Cathepsin B (CTSB) and inflammatory cytokines are critical in initiating and developing pancreatitis. Calcineurin, a central calcium (Ca2+)-responsive signaling molecule, mediates acinar cell death and inflammatory responses leading to pancreatitis. However, the detailed mechanisms for regulating CTSB activity and inflammatory cytokine production are unknown. Myricetin (MC) exhibits various biological activities, including anti-inflammatory effects. Here, we aimed to investigate MC effects on pancreatitis and the underlying mechanisms. Prophylactic and therapeutic MC treatment ameliorated the severity of cerulein-, L-arginine-, and PDL-induced acute pancreatitis (AP). The inhibition of CTSB activity by MC was mediated via decreased calcineurin activity and macrophage infiltration, not neutrophils infiltration, into the pancreas. Additionally, calcineurin activity inhibition by MC prevented the phosphorylation of Ca2+/CaM-dependent protein kinase kinase 2 (CaMKK2) during AP, resulting in the inhibition of CaMKIV phosphorylation and adenosine monophosphate-activated protein kinase (AMPK) dephosphorylation. Furthermore, MC reduced nuclear factor-κB activation by modulating the calcineurin-CaMKIV-IKKα/ß-Iκ-Bα and calcineurin-AMPK-sirtuin1 axes, resulting in reduced production of tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6. Our results showed that MC alleviated AP severity by inhibiting acinar cell death and inflammatory responses, suggesting that MC as a calcineurin and CaMKK2 signaling modulator may be a potential treatment for AP.


Subject(s)
Calcineurin , Cathepsin B , Cytokines , Flavonoids , Mice, Inbred C57BL , Pancreatitis , Animals , Pancreatitis/drug therapy , Pancreatitis/immunology , Pancreatitis/pathology , Pancreatitis/chemically induced , Flavonoids/pharmacology , Flavonoids/therapeutic use , Cytokines/metabolism , Cathepsin B/metabolism , Mice , Male , Calcineurin/metabolism , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Ceruletide , NF-kappa B/metabolism , Pancreas/pathology , Pancreas/drug effects , Pancreas/immunology , Signal Transduction/drug effects , Arginine/metabolism , Disease Models, Animal , AMP-Activated Protein Kinases/metabolism
18.
Eur J Pharmacol ; 977: 176705, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38830457

ABSTRACT

Obesity is a major health issue that contributes significantly to increased mortality and morbidity worldwide. Obesity is caused by uncontrolled adipogenesis and lipogenesis, leading to several metabolism-associated problems. Pancreatic lipase, an enzyme that breaks down dietary lipids, is a prominent target for obesity. Orlistat, a known inhibitor of pancreatic lipase, is commonly employed for the management of obesity. However, its side effects, such as diarrhoea, nausea and bladder pain, urge to look out for safer alternatives. Morin is a pentahydroxyflavone, exerts a broad spectrum of pharmacological effects including antioxidant, anti-inflammatory, lipid lowering, anti-diabetic, anti-fibrotic, anti-cancer, etc. This study investigated the effect of morin on pancreatic lipase activity, in vitro and in vivo adipogenesis. Molecular docking and simulation studies showed morin to have a higher binding affinity towards pancreatic lipase compared with orlistat, which also inhibited its activity in vitro. Morin also reduced lipid droplet accretion and downregulated the expression of adipogenic and lipogenic genes. The acute oral toxicity of morin was determined in C57BL/6 mice, where morin did not show toxicity up to 2000 mg/kg body weight dose. Oral administration of morin to high fat diet fed mice reduced body weight, glucose and insulin levels. Also, the histopathological examination revealed reduction in adipocyte size and decreased mRNA expression of adipogenesis markers in white adipose tissue of morin administered group compared to high fat diet group. Overall, the results suggested morin inhibited pancreatic lipase activity, adipogenesis and further studies are warranted to explore its therapeutic potential for obesity.


Subject(s)
Adipogenesis , Flavonoids , Lipase , Mice, Inbred C57BL , Molecular Docking Simulation , Animals , Adipogenesis/drug effects , Flavonoids/pharmacology , Mice , Lipase/antagonists & inhibitors , Lipase/metabolism , Male , 3T3-L1 Cells , Diet, High-Fat/adverse effects , Pancreas/drug effects , Pancreas/pathology , Anti-Obesity Agents/pharmacology , Obesity/drug therapy , Obesity/metabolism , Adipocytes/drug effects , Adipocytes/metabolism , Humans , Orlistat/pharmacology , Flavones
19.
Environ Pollut ; 357: 124448, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38942272

ABSTRACT

Mercuric chloride (HgCl2) is a widespread inorganic mercury with digestive toxicity. The pancreas is an important digestive organ in animals, and pancreatic fibrosis (PF) is a major pathological feature of chronic pancreatitis, which can be caused by heavy metals. Selenium (Se) is an essential trace element for the animal organism, performing biological functions in the form of selenoproteins, as well as alleviating the toxicity of heavy metals. In this study, we explored the specific mechanisms underlying the protective effect of Se on HgCl2-induced pancreatic injury in chickens. Morphological observation and serum biochemical analysis showed that Se attenuated HgCl2-caused pancreatic tissue damage and elevated glucose concentration and α-amylase activity. Next, the expression of oxidative stress indicators such as MDA and GSH-Px as well as inflammation-related markers including IL-1ß, IL-6, and TNF-α were detected. Results showed that Se had an inhibitory effect on HgCl2-induced oxidative stress and inflammation. Furthermore, we found that Se alleviated HgCl2-induced PF by detecting the expression of markers related to PF including TGF-ß1, α-SMA, COL1A1, and FN1. Mechanistically, Se attenuated HgCl2-induced PF via the MAPK signaling pathway. Importantly, several selenoproteins, especially those with antioxidant activity, were involved in the protective effect of Se on HgCl2 toxicity. In conclusion, our findings demonstrated that Se inhibited HgCl2-induced oxidative stress and inflammation and alleviated chicken PF through the MAPK signaling pathway, in which some antioxidant selenoproteins were involved.


Subject(s)
Chickens , Fibrosis , MAP Kinase Signaling System , Mercuric Chloride , Oxidative Stress , Pancreas , Selenium , Selenoproteins , Animals , Mercuric Chloride/toxicity , Selenium/pharmacology , Selenoproteins/metabolism , Oxidative Stress/drug effects , MAP Kinase Signaling System/drug effects , Pancreas/drug effects , Poultry Diseases/drug therapy , Poultry Diseases/chemically induced , Pancreatic Diseases/chemically induced , Pancreatic Diseases/drug therapy
20.
Int J Biol Macromol ; 275(Pt 1): 133523, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945336

ABSTRACT

Human pancreatic lipase (hPL) is a vital digestive enzyme responsible for breaking down dietary fats in humans, inhibiting hPL is a feasible strategy for preventing and treating obesity. This study aims to investigate the structure-activity relationships (SARs) of flavonoids as hPL inhibitors, and to find potent hPL inhibitors from natural and synthetic flavonoids. In this work, the anti-hPL effects of forty-nine structurally diverse naturally occurring flavonoids were assessed and the SARs were summarized. The results demonstrated that the pyrogallol group on the A ring was a key moiety for hPL inhibition. Subsequently, a series of baicalein derivatives were synthesized, while 4'-amino baicalein (ABA) and 4'-pyrrolidine baicalein (PBA) were identified as novel potent hPL inhibitors (IC50 < 1 µM). Further investigations showed that scutellarein, ABA and PBA potently inhibited hPL in a non-competitive manner (Ki < 1 µM). Among all tested flavonoids, PBA showed the most potent anti-hPL effect in vitro, while this agent also exhibited favorable safety profiles, unique tissue distribution (high exposure level to intestinal system but low exposure levels to deep organs) and impressive in vivo effects for lowering blood triglyceride levels in mice. Collectively, this work uncovers the SARs of flavonoids against hPL, while a newly synthetic flavonoid (PBA) emerges as a potent hPL inhibitor with favorable safety profiles and impressive anti-hPL effects in vivo.


Subject(s)
Enzyme Inhibitors , Flavanones , Lipase , Flavanones/pharmacology , Flavanones/chemistry , Lipase/antagonists & inhibitors , Lipase/metabolism , Structure-Activity Relationship , Humans , Animals , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Mice , Molecular Docking Simulation , Pancreas/enzymology , Pancreas/drug effects , Male , Flavonoids/pharmacology , Flavonoids/chemistry , Drug Discovery
SELECTION OF CITATIONS
SEARCH DETAIL