Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.383
Filter
1.
Mol Biol Rep ; 51(1): 711, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824245

ABSTRACT

BACKGROUND: Diabetes is a chronic metabolic disease that affects many parts of the body. Considering diabetes as a beta cells' defect and loss, the focus is on finding mechanisms and compounds involved in stimulating the function and regeneration of pancreatic ß-cells. DNA methylation as an epigenetic mechanism plays a pivotal role in the ß-cells' function and development. Considering the regenerative and anti-diabetic effects of Rosa canina extract, this study aimed to assess the methylation levels of Pdx-1, Pax-4, and Ins-1 genes in diabetic rats treated with Rosa Canina extract. METHODS AND RESULTS: Streptozotocin-induced diabetic rats were used to evaluate the frequency of Pdx-1, Pax-4, and Ins-1 gene methylation. Treatment groups were exposed to Rosa canina as spray-dried and decoction extracts. Following blood glucose measurement, pancreatic DNA was extracted and bisulfited. Genes' methylation was measured using MSP-PCR and qRT-PCR techniques. Oral administration of Rosa canina extracts significantly reduced blood sugar levels in diabetic rats compared to the control group. The methylation levels of the Pdx-1, Pax-4, and Ins-1 genes promoter in streptozotocin-induced diabetic rats increased compared to the control rats while, the treatment of diabetic rats with Rosa canina extracts, spray-dried samples especially, led to a decreased methylation in these genes. CONCLUSION: The results of this study showed that Rosa canina extract as a spray-dried sample could be effective in treating diabetes by regulating the methylation of genes including Pdx-1, Pax-4, and Ins-1 involved in the activity and regeneration of pancreatic islet cells.


Subject(s)
Blood Glucose , DNA Methylation , Diabetes Mellitus, Experimental , Plant Extracts , Rosa , Trans-Activators , Animals , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/drug therapy , Rosa/chemistry , DNA Methylation/drug effects , DNA Methylation/genetics , Rats , Plant Extracts/pharmacology , Male , Trans-Activators/genetics , Trans-Activators/metabolism , Blood Glucose/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Pancreas/drug effects , Pancreas/metabolism , Pancreas/pathology , Streptozocin , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Promoter Regions, Genetic/drug effects , Promoter Regions, Genetic/genetics , Paired Box Transcription Factors/genetics , Paired Box Transcription Factors/metabolism , Insulin/metabolism
2.
J Vet Sci ; 25(3): e24, 2024 May.
Article in English | MEDLINE | ID: mdl-38834504

ABSTRACT

IMPORTANCE: In veterinary forensic science, accurately determining the postmortem interval (PMI) is crucial for identifying the causes of animal deaths. Autolysis, a significant postmortem process, influences PMI estimation, but its relationship with humidity is not well understood. OBJECTIVE: This study aimed to improve the accuracy of PMI estimates in veterinary forensic cases by looking into how different humidity levels affect autolysis in different organs of rats. METHODS: The study involved 38 male rats, examining histopathological changes in their heart, liver, and pancreas. These organs were subjected to controlled humidity levels (20%, 55%, and 80%) at a constant 22°C. Tissue samples were collected at several intervals (0 h, 12 h, 24 h, 3 days, and 8 days) for comprehensive analysis. RESULTS: Distinct autolytic characteristics in animal organs emerged under varying humidity conditions. The low-humidity environment rapidly activated autolysis more than the high-humidity environment. In addition, it was found that lower humidity caused nuclear pyknosis, cytoplasmic disintegration, and myofiber interruption. The liver, in particular, showed portal triad aggregation and hepatocyte individuation. The pancreas experienced cell fragmentation and an enlarged intracellular space. High humidity also caused the loss of striations in cardiac tissues, and the liver showed vacuolation. Under these conditions, the pancreas changed eosinophilic secretory granules. CONCLUSIONS AND RELEVANCE: The study successfully established a clear connection between the autolytic process in PMIs and relative humidity. These findings are significant for developing a more accurate and predictable method for PMI estimation in the field of veterinary forensic science.


Subject(s)
Humidity , Liver , Pancreas , Postmortem Changes , Animals , Male , Rats , Liver/pathology , Pancreas/pathology , Myocardium/pathology , Rats, Sprague-Dawley , Autolysis
3.
Hum Vaccin Immunother ; 20(1): 2358575, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38836382

ABSTRACT

To investigate immune checkpoint inhibitors (ICIs) induced pancreatic injury (ICIPI), the prognostic effect of COVID-19 vaccine on cancer patients, and whether COVID-19 vaccine increases the incidence of ICIPI. We conducted a retrospective study of 256 stage IV cancer patients treated with ICIs at The First Affiliated Hospital of Anhui Medical University from January 2020 to November 2022. Data collected included pancreatic enzyme levels, treatment outcomes, and vaccination status. Statistical significance was determined using the χ2 test and Kaplan-Meier method (p < .05). Compared to the control group, the vaccinated group (p < .0001) and the group with elevated pancreatic enzyme levels (p = .044) demonstrated higher disease control rates, indicating a direct benefit of vaccination and enzyme monitoring on treatment outcomes. Additionally, vaccinated patients demonstrated longer overall survival versus unvaccinated patients (23.9 months [95% CI, 22.3-25.5] vs 23.6 months [95% CI, 21.1-26.2], HR = 0.45 [95% CI, 0.24-0.86], p = .015) and progression-free survival (17.2 months [95% CI, 14.3-20.1] vs 13.7 months [95% CI, 11.3-16.1], HR = 0.54 [95% CI, 0.36-0.82], p = .004). Importantly, the analysis revealed no significant association between vaccination and pancreatic injury (p = .46). Monitoring pancreatic enzymes can effectively evaluate the therapeutic impact in patients using ICIs. Patients vaccinated against COVID-19 experience better immunotherapy outcomes without an increased risk of ICIPI.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immune Checkpoint Inhibitors , Neoplasms , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , COVID-19/prevention & control , COVID-19/mortality , COVID-19 Vaccines/administration & dosage , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , Pancreas/pathology , Prognosis , Retrospective Studies , Treatment Outcome
4.
Drug Des Devel Ther ; 18: 1785-1797, 2024.
Article in English | MEDLINE | ID: mdl-38828020

ABSTRACT

Objective: Pancreatic surgeries inherently cause ischemia-reperfusion (IR) injury, affecting not only the pancreas but also distant organs. This study was conducted to explore the potential use of dexmedetomidine, a sedative with antiapoptotic, anti-inflammatory, and antioxidant properties, in mitigating the impacts of pancreatic IR on kidney and liver tissues. Methods: A total of 24 rats were randomly divided into four groups: control (C), dexmedetomidine (D), ischemia reperfusion (IR), and dexmedetomidine ischemia reperfusion (D-IR). Pancreatic ischemia was induced in the IR and D-IR groups. Dexmedetomidine was administered intraperitoneally to the D and D-IR groups. Liver and kidney tissue samples were subjected to microscopic examinations after hematoxylin and eosin staining. The levels of thiobarbituric acid reactive substances (TBARS), aryllesterase (AES), catalase (CAT), and glutathione S-transferase (GST) enzyme activity were assessed in liver and kidney tissues. The serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), and creatinine were measured. Results: A comparison of the groups revealed that the IR group exhibited significantly elevated TBARS (p < 0.0001), AES (p = 0.004), and CAT enzyme activity (p < 0.0001) levels in the liver and kidney compared to groups C and D. Group D-IR demonstrated notably reduced histopathological damage (p < 0.05) and low TBARS (p < 0.0001), AES (p = 0.004), and CAT enzyme activity (p < 0.0001) in the liver and kidney as well as low AST and ALT activity levels (p < 0.0001) in the serum compared to the IR group. Conclusion: The preemptive administration of dexmedetomidine before pancreatic IR provides significant protection to kidney and liver tissues, as evidenced by the histopathological and biochemical parameters in this study. The findings underscored the potential therapeutic role of dexmedetomidine in mitigating the multiorgan damage associated with pancreatic surgeries.


Subject(s)
Dexmedetomidine , Kidney , Liver , Pancreas , Reperfusion Injury , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Reperfusion Injury/metabolism , Dexmedetomidine/pharmacology , Dexmedetomidine/administration & dosage , Rats , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Liver/drug effects , Liver/pathology , Liver/metabolism , Male , Pancreas/drug effects , Pancreas/pathology , Pancreas/metabolism , Rats, Sprague-Dawley
5.
J Oleo Sci ; 73(5): 717-727, 2024.
Article in English | MEDLINE | ID: mdl-38692894

ABSTRACT

The anti-diabetic effect of Ficus carica (Fig) seed oil was investigated. 4 groups with 6 rats in each group were used in the experiment as control, diabetes (45 mg/kg streptozotocin), fig seed oil (FSO) (6 mL/ kg/day/rat by gavage) and diabetes+FSO groups. Glucose, urea, creatinine, ALT, AST, GSH, AOPP and MDA analyses were done. Pancreatic tissues were examined histopathologically. When fig seed oil was given to the diabetic group, the blood glucose level decreased. In the diabetes+FSO group, serum urea, creatinine, AOPP, MDA levels and ALT and AST activities decreased statistically significantly compared to the diabetes group, while GSH levels increased significantly, histopathological, immunohistochemical, and immunofluorescent improvements were observed. It has been shown for the first time that FSO has positive effects on blood glucose level and pancreatic health. It can be said that the protective effect of fig seed oil on tissues may be due to its antioxidant activity.


Subject(s)
Antioxidants , Blood Glucose , Diabetes Mellitus, Experimental , Ficus , Hypoglycemic Agents , Pancreas , Plant Oils , Seeds , Streptozocin , Animals , Ficus/chemistry , Diabetes Mellitus, Experimental/drug therapy , Plant Oils/pharmacology , Plant Oils/isolation & purification , Seeds/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Blood Glucose/metabolism , Male , Pancreas/drug effects , Pancreas/pathology , Pancreas/metabolism , Antioxidants/pharmacology , Rats , Rats, Wistar , Creatinine/blood
6.
BMC Gastroenterol ; 24(1): 151, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698325

ABSTRACT

BACKGROUND: Acute pancreatitis (AP) is a prevalent exocrine inflammatory disorder of the pancreas characterized by pancreatic inflammation and injury to acinar cells. Vitamin B6 (VB6) is a vital nutrient that plays a significant role in preserving human health and has anti-inflammatory and anti-apoptotic effects. METHODS: This study aimed to explore the potential pancreatic protective effects of VB6 in mitigating pancreatic inflammation and apoptosis induced by taurocholate sodium (TLCS) in an AP model and to assess the underlying mechanism of action. AP was induced in Sprague‒Dawley (SD) rats through TLCS administration and lipopolysaccharide (LPS)-treated AR42J cells, followed by treatment with VB6. RESULTS: Various parameters associated with AP were assessed in both plasma and pancreatic tissues. VB6 has been shown to ameliorate the severity of AP through various mechanisms. It effectively reduces the levels of serum amylase, lipase, and inflammatory factors, thereby mitigating histological injury to the pancreas. Moreover, VB6 inhibited pancreatic apoptosis by downregulating bax expression and up-regulating Bcl2 expression in TLCS-treated rats. Additionally, VB6 suppressed the expression of caspase3. The anti-inflammatory and anti-apoptotic effects of VB6 observed in LPS-treated AR42J cells are consistent with those observed in a rat model of AP. CONCLUSIONS: These results suggest that VB6 exerts anti-inflammatory and anti-apoptotic effects through inhibition of the caspase3 signaling pathway and has a protective effect against AP.


Subject(s)
Apoptosis , Caspase 3 , Lipopolysaccharides , Pancreatitis , Rats, Sprague-Dawley , Signal Transduction , Taurocholic Acid , Vitamin B 6 , Animals , Pancreatitis/drug therapy , Pancreatitis/metabolism , Pancreatitis/pathology , Pancreatitis/chemically induced , Signal Transduction/drug effects , Apoptosis/drug effects , Caspase 3/metabolism , Rats , Vitamin B 6/pharmacology , Vitamin B 6/therapeutic use , Male , Amylases/blood , Pancreas/pathology , Pancreas/drug effects , Pancreas/metabolism , Disease Models, Animal , Anti-Inflammatory Agents/pharmacology , Acute Disease , bcl-2-Associated X Protein/metabolism , Lipase/metabolism , Lipase/blood , Proto-Oncogene Proteins c-bcl-2/metabolism
7.
World J Gastroenterol ; 30(17): 2311-2320, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38813054

ABSTRACT

Contrast-enhanced endoscopic ultrasound (CH-EUS) can overcome the limitations of endoscopic ultrasound-guided acquisition by identifying microvessels inside inhomogeneous tumours and improving the characterization of these tumours. Despite the initial enthusiasm that oriented needle sampling under CH-EUS guidance could provide better diagnostic yield in pancreatic solid lesions, further studies did not confirm the supplementary values in cases of tissue acquisition guided by CH-EUS. This review details the knowledge based on the available data on contrast-guided procedures. The indications for CH-EUS tissue acquisition include isoechoic EUS lesions with poor visible delineation where CH-EUS can differentiate the lesion vascularisation from the surrounding parenchyma and also the mural nodules within biliopancreatic cystic lesions, which occur in select cases. Additionally, the roles of CH-EUS-guided therapy in patients whose pancreatic fluid collections or bile ducts that have an echogenic content have indications for drainage, and patients who have nonvisualized vessels that need to be highlighted via Doppler EUS are presented. Another indication is represented if there is a need for an immediate assessment of the post-radiofrequency ablation of pancreatic neuroendocrine tumours, in which case CH-EUS can be used to reveal the incomplete tumour destruction.


Subject(s)
Contrast Media , Endosonography , Pancreatic Neoplasms , Humans , Contrast Media/administration & dosage , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/surgery , Pancreatic Neoplasms/pathology , Endosonography/methods , Pancreas/diagnostic imaging , Pancreas/surgery , Pancreas/blood supply , Pancreas/pathology , Endoscopic Ultrasound-Guided Fine Needle Aspiration/methods , Ultrasonography, Interventional/methods , Drainage/methods , Pancreatic Diseases/diagnostic imaging , Pancreatic Diseases/surgery , Pancreatic Diseases/pathology
8.
Pak J Pharm Sci ; 37(2): 307-314, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38767097

ABSTRACT

Long-lasting hyperglycemia can potentially cause damage to organs such as the kidneys, liver and pancreas. Glimepiride (GLIM), as a drug of choice in the treatment of diabetes mellitus (DM), has the risk of decreasing the functioning of organs such as the kidneys, liver and pancreas. Black rice bran ethanol extract (EEBRB) with antioxidant content has been shown to protect the kidney, liver and pancreas organs. The aim of this study was to establish the effect of EEBRB on lowering fasting blood glucose (FBG) and protecting several organs after GLIM administration in alloxan (ALX)-induced hyperglycemic rats. A total of 20 rats were divided into 4 groups and treated for 21 days treatments using following preparations: normal control (NC), diabetic group (DC), GLIM 1 mg/ kgBW and combination of glimepiride 1mg/kgBW and EEBRB 50 mg/KgBW (GLBR). The results showed that the GLBR was able to lower blood glucose levels back to normal (<126 mg/dL) and protect kidney, liver and pancreas cells by increasing the amount in normal cells.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Hypoglycemic Agents , Kidney , Liver , Oryza , Pancreas , Plant Extracts , Sulfonylurea Compounds , Animals , Sulfonylurea Compounds/pharmacology , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Kidney/drug effects , Kidney/metabolism , Blood Glucose/drug effects , Blood Glucose/metabolism , Oryza/chemistry , Liver/drug effects , Liver/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Pancreas/drug effects , Pancreas/metabolism , Pancreas/pathology , Male , Rats , Ethanol/chemistry , Rats, Wistar
9.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 59-68, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814234

ABSTRACT

Development of novel functional foods is trending as one of the hot topics in food science and food/beverage industries. In the present study, the anti-diabetic, anti-hyperlipidemic and histo-protective effects of the extra virgin olive oil (EVOO) enriched with the organosulfur diallyl sulfide (DAS) (DAS-rich EVOO) were evaluated in alloxan-induced diabetic mice. The ingestion of EVOO (500µL daily for two weeks) attenuated alloxan-induced elevated glucose, alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase, lactate dehydrogenase (LDH), urea and creatinine. It also normalized the levels of triglycerides (TG), total cholesterols (TC), low-density lipoprotein-cholesterol (LDL-c) and their consequent atherogenic index of plasma (AIP) in diabetic animals. Additionally, EVOO prevented lipid peroxidation (MDA) and reduced the level of hydrogen peroxide (H2O2) in diabetic animals. Concomitantly, it enhanced the activity of the antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD), reducing thereby tissue oxidative stress injury. The overall histologic (pancreas, liver, and kidney) alterations were also improved after EVOO ingestion. The manifest anti-diabetic, lipid-lowering and histo-protective properties of EVOO were markedly potentiated with DAS-rich EVOO suggesting possible synergistic interactions between DAS and EVOO lipophilic bioactive ingredients. Overall, EVOO and DAS-rich EVOO show promise as functional foods and/or adjuvants for the treatment of diabetes and its complications.


Subject(s)
Allyl Compounds , Diabetes Mellitus, Experimental , Hypoglycemic Agents , Hypolipidemic Agents , Olive Oil , Sulfides , Animals , Olive Oil/chemistry , Olive Oil/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Allyl Compounds/pharmacology , Allyl Compounds/therapeutic use , Sulfides/pharmacology , Sulfides/therapeutic use , Sulfides/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Mice , Hypolipidemic Agents/pharmacology , Male , Antioxidants/pharmacology , Oxidative Stress/drug effects , Lipid Peroxidation/drug effects , Blood Glucose/metabolism , Blood Glucose/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Pancreas/drug effects , Pancreas/pathology , Pancreas/metabolism , Glutathione Peroxidase/metabolism , Catalase/metabolism , Hydrogen Peroxide/metabolism , Superoxide Dismutase/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Alanine Transaminase/blood , Alanine Transaminase/metabolism , Aspartate Aminotransferases/metabolism , Aspartate Aminotransferases/blood , Triglycerides/blood , Triglycerides/metabolism
10.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731942

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) can originate from acinar-to-ductal metaplasia (ADM). Pancreatic acini harboring oncogenic Kras mutations are transdifferentiated to a duct-like phenotype that further progresses to become pancreatic intraepithelial neoplasia (PanIN) lesions, giving rise to PDAC. Although ADM formation is frequently observed in KrasG12D transgenic mouse models of PDAC, the exact mechanisms of how oncogenic KrasG12D regulates this process remain an enigma. Herein, we revealed a new downstream target of oncogenic Kras, cytokine CCL9, during ADM formation. Higher levels of CCL9 and its receptors, CCR1 and CCR3, were detected in ADM regions of the pancreas in p48cre:KrasG12D mice and human PDAC patients. Knockdown of CCL9 in KrasG12D-expressed pancreatic acini reduced KrasG12D-induced ADM in a 3D organoid culture system. Moreover, exogenously added recombinant CCL9 and overexpression of CCL9 in primary pancreatic acini induced pancreatic ADM. We also showed that, functioning as a downstream target of KrasG12D, CCL9 promoted pancreatic ADM through upregulation of the intracellular levels of reactive oxygen species (ROS) and metalloproteinases (MMPs), including MMP14, MMP3 and MMP2. Blockade of MMPs via its generic inhibitor GM6001 or knockdown of specific MMP such as MMP14 and MMP3 decreased CCL9-induced pancreatic ADM. In p48cre:KrasG12D transgenic mice, blockade of CCL9 through its specific neutralizing antibody attenuated pancreatic ADM structures and PanIN lesion formation. Furthermore, it also diminished infiltrating macrophages and expression of MMP14, MMP3 and MMP2 in the ADM areas. Altogether, our results provide novel mechanistic insight into how oncogenic Kras enhances pancreatic ADM through its new downstream target molecule, CCL9, to initiate PDAC.


Subject(s)
Acinar Cells , Carcinoma, Pancreatic Ductal , Metaplasia , Pancreatic Neoplasms , Proto-Oncogene Proteins p21(ras) , Reactive Oxygen Species , Animals , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Mice , Reactive Oxygen Species/metabolism , Humans , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Metaplasia/metabolism , Metaplasia/genetics , Acinar Cells/metabolism , Acinar Cells/pathology , Mice, Transgenic , Chemokines, CC/metabolism , Chemokines, CC/genetics , Macrophage Inflammatory Proteins/metabolism , Macrophage Inflammatory Proteins/genetics , Pancreas/metabolism , Pancreas/pathology
11.
Mol Med Rep ; 30(1)2024 07.
Article in English | MEDLINE | ID: mdl-38695254

ABSTRACT

As a pluripotent cell, activated pancreatic stellate cells (PSCs) can differentiate into various pancreatic parenchymal cells and participate in the secretion of extracellular matrix and the repair of pancreatic damage. Additionally, PSCs characteristics allow them to contribute to pancreatic inflammation and carcinogenesis. Moreover, a detailed study of the pathogenesis of activated PSCs in pancreatic disease can offer promise for the development of innovative therapeutic strategies and improved patient prognoses. Therefore, the present study review aimed to examine the involvement of activated PSCs in pancreatic diseases and elucidate the underlying mechanisms to provide a viable therapeutic strategy for the management of pancreas­related diseases.


Subject(s)
Pancreas , Pancreatic Diseases , Pancreatic Stellate Cells , Humans , Pancreatic Stellate Cells/metabolism , Pancreatic Stellate Cells/pathology , Pancreas/metabolism , Pancreas/pathology , Pancreas/cytology , Pancreatic Diseases/pathology , Pancreatic Diseases/metabolism , Animals , Extracellular Matrix/metabolism , Cell Differentiation , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism
12.
Korean J Radiol ; 25(6): 559-564, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38807337

ABSTRACT

Incidental pancreatic cystic lesions are a common challenge encountered by diagnostic radiologists. Specifically, given the prevalence of benign pancreatic cystic lesions, determining when to recommend aggressive actions such as surgical resection or endoscopic ultrasound with sampling is difficult. In this article, we review the common types of cystic pancreatic lesions including serous cystadenoma, intraductal papillary mucinous neoplasm, and mucinous cystic neoplasm with imaging examples of each. We also discuss high-risk or worrisome imaging features that warrant a referral to a surgeon or endoscopist and provid several examples of these features. These imaging features adhere to the latest guidelines from the International Consensus Guidelines, American Gastroenterological Association (2015), American College of Gastroenterology (2018), American College of Radiology (2010, 2017), and European Guidelines (2013, 2018). Our focused article addresses the imaging dilemma of managing incidental cystic pancreatic lesions, weighing the options between imaging follow-up and aggressive interventions.


Subject(s)
Incidental Findings , Pancreatic Cyst , Pancreatic Neoplasms , Humans , Pancreatic Cyst/diagnostic imaging , Pancreatic Neoplasms/diagnostic imaging , Diagnosis, Differential , Pancreas/diagnostic imaging , Pancreas/pathology , Tomography, X-Ray Computed/methods
13.
Int J Med Mushrooms ; 26(6): 1-12, 2024.
Article in English | MEDLINE | ID: mdl-38801084

ABSTRACT

The prevalence of diabetes is increasing worldwide, and it is very important to study new hypoglycemic active substances. In this study, we investigated the hypoglycemic effect of Chroogomphus rutilus crude polysaccharide (CRCP) in HepG2 cells and streptozotocin-induced diabetic mice. A glucose consumption experiment conducted in HepG2 cells demonstrated the in vitro hypoglycemic activity of CRCP. Furthermore, CRCP exhibited significant hypoglycemic effects and effectively ameliorated insulin resistance in insulin resistant HepG2 cells. In high-fat diet and streptozotocin-induced diabetic mice, after 4 weeks of CRCP administration, fasting blood glucose, fasting serum insulin, triglyceride, total cholesterol, low-density lipoprotein cholesterol, glutamate transaminase, alanine transaminase, and insulin resistance index significantly decreased, while high-density lipoprotein cholesterol and insulin sensitivity index (ISI) were markedly increased. Moreover, hematoxylin-eosin (HE) staining and immunofluorescence labeling of tissue sections indicated that CRCP attenuated the pathological damage of liver and pancreas in diabetic mice. These results indicate that CRCP is a potential hypoglycemic agent.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Hypoglycemic Agents , Insulin Resistance , Polysaccharides , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Humans , Diabetes Mellitus, Experimental/drug therapy , Mice , Hep G2 Cells , Male , Blood Glucose/drug effects , Blood Glucose/metabolism , Polysaccharides/pharmacology , Polysaccharides/chemistry , Liver/drug effects , Liver/metabolism , Diet, High-Fat/adverse effects , Insulin/blood , Insulin/metabolism , Pancreas/drug effects , Pancreas/pathology , Agaricales/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Streptozocin
14.
Cell Death Dis ; 15(5): 348, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769308

ABSTRACT

Regenerating gene family member 4 (Reg4) has been implicated in acute pancreatitis, but its precise functions and involved mechanisms have remained unclear. Herein, we sought to investigate the contribution of Reg4 to the pathogenesis of pancreatitis and evaluate its therapeutic effects in experimental pancreatitis. In acute pancreatitis, Reg4 deletion increases inflammatory infiltrates and mitochondrial cell death and decreases autophagy recovery, which are rescued by the administration of recombinant Reg4 (rReg4) protein. In chronic pancreatitis, Reg4 deficiency aggravates inflammation and fibrosis and inhibits compensatory cell proliferation. Moreover, C-X-C motif ligand 12 (CXCL12)/C-X-C motif receptor 4 (CXCR4) axis is sustained and activated in Reg4-deficient pancreas. The detrimental effects of Reg4 deletion are attenuated by the administration of the approved CXCR4 antagonist plerixafor (AMD3100). Mechanistically, Reg4 mediates its function in pancreatitis potentially via binding its receptor exostosin-like glycosyltransferase 3 (Extl3). In conclusion, our findings suggest that Reg4 exerts a therapeutic effect during pancreatitis by limiting inflammation and fibrosis and improving cellular regeneration.


Subject(s)
Fibrosis , Mitochondria , Pancreatitis-Associated Proteins , Pancreatitis , Receptors, CXCR4 , Animals , Pancreatitis-Associated Proteins/metabolism , Pancreatitis-Associated Proteins/genetics , Mitochondria/metabolism , Mitochondria/pathology , Pancreatitis/pathology , Pancreatitis/metabolism , Mice , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Humans , Mice, Inbred C57BL , Cyclams/pharmacology , Male , Mice, Knockout , Benzylamines/pharmacology , Chemokine CXCL12/metabolism , Cell Proliferation , Signal Transduction , Autophagy , Pancreas/pathology , Pancreas/metabolism , Cell Death
15.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791525

ABSTRACT

The worldwide incidence of prediabetes/type 2 has continued to rise the last 40 years. In the same period, the mean daily energy intake has increased, and the quality of food has significantly changed. The chronic exposure of pancreatic ß-cells to calorie excess (excessive energy intake) and food additives may increase pancreatic insulin secretion, decrease insulin pulses and/or reduce hepatic insulin clearance, thereby causing chronic hyperinsulinemia and peripheral insulin resistance. Chronic calorie excess and hyperinsulinemia may promote lipogenesis, inhibit lipolysis and increase lipid storage in adipocytes. In addition, calorie excess and hyperinsulinemia can induce insulin resistance and contribute to progressive and excessive ectopic fat accumulation in the liver and pancreas by the conversion of excess calories into fat. The personal fat threshold hypothesis proposes that in susceptible individuals, excessive ectopic fat accumulation may eventually lead to hepatic insulin receptor resistance, the loss of pancreatic insulin secretion, hyperglycemia and the development of frank type 2 diabetes. Thus, type 2 diabetes seems (partly) to be caused by hyperinsulinemia-induced excess ectopic fat accumulation in the liver and pancreas. Increasing evidence further shows that interventions (hypocaloric diet and/or bariatric surgery), which remove ectopic fat in the liver and pancreas by introducing a negative energy balance, can normalize insulin secretion and glucose tolerance and induce the sustained biochemical remission of type 2 diabetes. This pathophysiological insight may have major implications and may cause a paradigm shift in the management of type 2 diabetes: avoiding/reducing ectopic fat accumulation in the liver and pancreas may both be essential to prevent and cure type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperinsulinism , Overnutrition , Humans , Hyperinsulinism/metabolism , Hyperinsulinism/complications , Hyperinsulinism/etiology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/etiology , Overnutrition/complications , Insulin Resistance , Adipose Tissue/metabolism , Animals , Liver/metabolism , Liver/pathology , Insulin/metabolism , Pancreas/metabolism , Pancreas/pathology
16.
Medicina (Kaunas) ; 60(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38792878

ABSTRACT

Background and Objectives: The pancreas, ensconced within the abdominal cavity, requires a plethora of sophisticated imaging modalities for its comprehensive evaluation, with ultrasonography serving as a primary investigative technique. A myriad of pancreatic pathologies, encompassing pancreatic neoplasia and a spectrum of inflammatory diseases, are detectable through these imaging strategies. Nevertheless, the intricate anatomical confluence and the pancreas's deep-seated topography render the visualization and accurate diagnosis of its pathologies a formidable endeavor. The objective of our paper is to review the best diagnostic imagistic tools for the pancreas. Materials and Methods: we have gathered several articles using Prisma guidelines to determine the best imagistic methods. The imperative of pancreatic scanning transcends its diagnostic utility, proving to be a pivotal element in a multitude of clinical specialties, notably surgical oncology. Within this domain, multidetector computed tomography (MDCT) of the pancreas holds the distinction of being the paramount imaging modality, endorsed for its unrivaled capacity to delineate the staging and progression of pancreatic carcinoma. In synergy with MDCT, there has been a notable advent of avant-garde imaging techniques in recent years. These advanced methodologies, including ultrasonography, endoscopic ultrasonography, contrast-enhanced ultrasonography, and magnetic resonance imaging (MRI) conjoined with magnetic resonance cholangiopancreatography (MRCP), have broadened the horizon of tumor characterization, offering unparalleled depth and precision in oncological assessment. Other emerging diagnostic techniques, such as elastography, also hold a lot of potential and promise for the future of pancreatic imaging. Fine needle aspiration (FNA) is a quick, minimally invasive procedure to evaluate lumps using a thin needle to extract tissue for analysis. It is less invasive than surgical biopsies and usually performed as an outpatient with quick recovery. Its accuracy depends on sample quality, and the risks include minimal bleeding or discomfort. Results, guiding further treatment, are typically available within a week. Elastography is a non-invasive medical imaging technique that maps the elastic properties and stiffness of soft tissue. This method, often used in conjunction with ultrasound or MRI, helps differentiate between hard and soft areas in tissue, providing valuable diagnostic information. It is particularly useful for assessing liver fibrosis, thyroid nodules, breast lumps, and musculoskeletal conditions. The technique is painless and involves applying gentle pressure to the area being examined. The resulting images show tissue stiffness, indicating potential abnormalities. Elastography is advantageous for its ability to detect diseases in early stages and monitor treatment effectiveness. The procedure is quick, safe, and requires no special preparation, with results typically available immediately. Results: The assembled and gathered data shows the efficacy of various techniques in discerning the nature and extent of neoplastic lesions within the pancreas. Conclusions: The most common imaging modalities currently used in diagnosing pancreatic neoplasms are multidetector computed tomography (MDCT), endoscopic ultrasound (EUS), and magnetic resonance imaging (MRI), alongside new technologies, such as elastography.


Subject(s)
Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/diagnosis , Ultrasonography/methods , Magnetic Resonance Imaging/methods , Multidetector Computed Tomography/methods , Pancreas/diagnostic imaging , Pancreas/pathology
17.
Surg Endosc ; 38(6): 3388-3394, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719986

ABSTRACT

BACKGROUND: Pancreatic fistula (PF) is one of the most serious postoperative complications of gastrectomy. Misidentification of the boundary between the pancreas and the dissected fat is a primary concern. In this study, we focused on differences in the appearance of the pancreas and the dissected fat in actual surgical images and statistically analyzed the relationship between the pancreas and the dissected fat. METHODS: We analyzed data from 109 gastric cancer patients who underwent curative gastrectomy between November 2018 and March 2023. Intraoperative images were taken from videos of lymph node dissections of Nos.6 and 8a regions, and the mean gray value of the areas was measured using ImageJ software for analysis. The visceral fat area (VFA) was evaluated by preoperative axial CT at the umbilical level using Ziostation software. RESULTS: A significant correlation was observed between the fat/pancreas gray value ratio in the No.8a lymph node region and the drain/serum amylase ratio (P < 0.001). The fat/pancreas gray value ratio in the No.6 lymph node region correlated with VFA (P < 0.001). The VFA and drain/serum amylase ratio were significantly higher in the group with intra-abdominal complications (P = 0.004). CONCLUSIONS: We revealed significant relationships between the fat/pancreas gray value ratio with drain/serum amylase and VFA. Detecting differences in gray values between the pancreas and the dissected fat may lead to a decrease in the drain/serum amylase ratio and PF.


Subject(s)
Gastrectomy , Laparoscopy , Pancreatic Fistula , Robotic Surgical Procedures , Stomach Neoplasms , Humans , Pancreatic Fistula/etiology , Pancreatic Fistula/epidemiology , Gastrectomy/methods , Gastrectomy/adverse effects , Male , Laparoscopy/methods , Laparoscopy/adverse effects , Female , Robotic Surgical Procedures/methods , Robotic Surgical Procedures/adverse effects , Middle Aged , Aged , Risk Assessment/methods , Stomach Neoplasms/surgery , Stomach Neoplasms/pathology , Lymph Node Excision/methods , Lymph Node Excision/adverse effects , Postoperative Complications/epidemiology , Postoperative Complications/diagnostic imaging , Postoperative Complications/etiology , Intra-Abdominal Fat/diagnostic imaging , Pancreas/diagnostic imaging , Pancreas/surgery , Pancreas/pathology , Retrospective Studies , Adult
18.
Nat Commun ; 15(1): 4528, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811532

ABSTRACT

Metabolic dysfunction-associated steatohepatitis (MASH) is the most prevalent cause of liver disease worldwide, with a single approved therapeutic. Previous research has shown that interleukin-22 (IL-22) can suppress ß-cell stress, reduce local islet inflammation, restore appropriate insulin production, reverse hyperglycemia, and ameliorate insulin resistance in preclinical models of diabetes. In clinical trials long-acting forms of IL-22 have led to increased proliferation in the skin and intestine, where the IL-22RA1 receptor is highly expressed. To maximise beneficial effects whilst reducing the risk of epithelial proliferation and cancer, we designed short-acting IL-22-bispecific biologic drugs that successfully targeted the liver and pancreas. Here we show 10-fold lower doses of these bispecific biologics exceed the beneficial effects of native IL-22 in multiple preclinical models of MASH, without off-target effects. Treatment restores glycemic control, markedly reduces hepatic steatosis, inflammation, and fibrogenesis. These short-acting IL-22-bispecific targeted biologics are a promising new therapeutic approach for MASH.


Subject(s)
Fatty Liver , Interleukin-22 , Interleukins , Liver , Pancreas , Interleukins/metabolism , Animals , Liver/metabolism , Liver/pathology , Liver/drug effects , Pancreas/pathology , Pancreas/metabolism , Pancreas/drug effects , Humans , Mice , Fatty Liver/drug therapy , Fatty Liver/metabolism , Male , Mice, Inbred C57BL , Disease Models, Animal , Insulin Resistance , Receptors, Interleukin/metabolism
19.
Eur J Pharmacol ; 975: 176646, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38762157

ABSTRACT

Severe acute pancreatitis (SAP) is a complicated inflammatory reaction that impacts the pancreas, often resulting in damage to numerous organs. This disorder encompasses a range of processes such as inflammation, oxidative stress, and pancreatitis. The hormone melatonin (MT) is primarily secreted by the pineal gland and plays a crucial role in mitigating inflammation, countering the harmful effects of free radicals, and regulating oxidative stress. The aim of this research was to investigate the potential protective impact and the underlying mechanism of melatonin in mice afflicted with SAP. The biochemical and histological assessments unequivocally demonstrated that melatonin effectively inhibited necrosis, infiltration, edema and cell death in pancreatic tissues, thereby suppressing acute pancreatitis. Notably, melatonin also alleviated the consequent harm to distant organs, notably the lungs, liver, and kidneys. Furthermore, both preventive and therapeutic administration of melatonin prompted nuclear factor E2-related factor 2 (Nrf2) activation followed by Nrf2 target gene expression. Nrf2 initiates the activation of antioxidant genes, thereby providing defense against oxidative stress. Conversely, Nrf2 reduction may contribute to impaired antioxidant protection in SAP. The beneficial impact of Nrf2 on antioxidants was absent in Nrf2-knockout mice, leading to the accumulation of LDH and exacerbation of cell death. This deterioration in both pancreatitis and injuries in distant organs intensified significantly. The results indicate that melatonin has an enhanced ability to protect against multiorgan damage caused by SAP, which is accomplished through the increase in Nrf2 expression. Additionally, Nrf2 initiates the activation of antioxidant genes that offer defense against cell death.


Subject(s)
Melatonin , NF-E2-Related Factor 2 , Oxidative Stress , Pancreatitis , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Melatonin/pharmacology , Melatonin/therapeutic use , Signal Transduction/drug effects , Pancreatitis/drug therapy , Pancreatitis/pathology , Pancreatitis/metabolism , Mice , Oxidative Stress/drug effects , Male , Antioxidants/pharmacology , Antioxidants/therapeutic use , Mice, Knockout , Pancreas/drug effects , Pancreas/pathology , Pancreas/metabolism , Mice, Inbred C57BL , Acute Disease
20.
Drug Dev Res ; 85(4): e22199, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38812443

ABSTRACT

It has been reported that lipophilic statins such as atorvastatin can more readily penetrate into ß-cells and reach the mitochondria, resulting in mitochondrial dysfunction, oxidative stress, decrease in insulin release. Many studies have shown that natural products can protect mitochondrial dysfunction induced by drug in different tissue. We aimed to explore mitochondrial protection potency of hesperidin, vanillic acid, and sinapic acid as natural compounds against mitochondrial dysfunction induced by atorvastatin in pancreas isolated mitochondria. Mitochondria were isolated form rat pancreas and directly treated with toxic concentration of atorvastatin (500 µM) in presence of various concentrations hesperidin, vanillic acid, and sinapic acid (1, 10, and 100 µM) separately. Mitochondrial toxicity parameters such as the reactive oxygen species (ROS) formation, succinate dehydrogenases (SDH) activity, mitochondrial swelling, depletion of glutathione (GSH), mitochondrial membrane potential (MMP) collapse, and malondialdehyde (MDA) production were measured. Our findings demonstrated that atorvastatin directly induced mitochondrial toxicity at concentration of 500 µM and higher in pancreatic mitochondria. Except MDA, atorvastatin caused significantly reduction in SDH activity, mitochondrial swelling, ROS formation, depletion of GSH, and collapse of MMP. While, our data showed that all three protective compounds at low concentrations ameliorated atorvastatin-induced mitochondrial dysfunction with the increase of SDH activity, improvement of mitochondrial swelling, MMP collapse and mitochondrial GSH, and reduction of ROS formation. We can conclude that hesperidin, vanillic acid, and sinapic acid can directly reverse the toxic of atorvastatin in rat pancreas isolated mitochondria, which may be beneficial for protection against diabetogenic-induced mitochondrial dysfunction in pancreatic ß-cells.


Subject(s)
Atorvastatin , Coumaric Acids , Hesperidin , Membrane Potential, Mitochondrial , Mitochondria , Mitochondrial Swelling , Pancreas , Reactive Oxygen Species , Vanillic Acid , Animals , Atorvastatin/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Pancreas/drug effects , Pancreas/pathology , Pancreas/metabolism , Coumaric Acids/pharmacology , Rats , Reactive Oxygen Species/metabolism , Male , Mitochondrial Swelling/drug effects , Membrane Potential, Mitochondrial/drug effects , Vanillic Acid/pharmacology , Hesperidin/pharmacology , Glutathione/metabolism , Rats, Wistar , Succinate Dehydrogenase/metabolism , Malondialdehyde/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...