Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 507
Filter
1.
Int J Mol Sci ; 25(16)2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39201422

ABSTRACT

Chronic pancreatitis (CP) in young individuals may lead to disease-related secondary sarcopenia (SSARC), characterized by muscle loss and systemic inflammation. In this study, CP was induced in young pigs, and serum levels of key hormones, muscle fiber diameters in various muscles, and the mRNA expression of genes related to oxidative stress and programmed cell death were assessed. A decrease in muscle fiber diameters was observed in SSARC pigs, particularly in the longissimus and diaphragm muscles. Hormonal analysis revealed alterations in dehydroepiandrosterone, testosterone, oxytocin, myostatin, and cortisol levels, indicating a distinct hormonal response in SSARC pigs compared to controls. Oxytocin levels in SSARC pigs were significantly lower and myostatin levels higher. Additionally, changes in the expression of catalase (CAT), caspase 8 (CASP8), B-cell lymphoma 2 (BCL2), and BCL2-associated X protein (BAX) mRNA suggested a downregulation of oxidative stress response and apoptosis regulation. A reduced BAX/BCL2 ratio in SSARC pigs implied potential caspase-independent cell death pathways. The findings highlight the complex interplay between hormonal changes and muscle degradation in SSARC, underscoring the need for further research into the apoptotic and inflammatory pathways involved in muscle changes due to chronic organ inflammation in young individuals.


Subject(s)
Disease Models, Animal , Oxidative Stress , Pancreatitis, Chronic , Sarcopenia , Animals , Sarcopenia/metabolism , Sarcopenia/pathology , Swine , Pancreatitis, Chronic/metabolism , Pancreatitis, Chronic/pathology , Pancreatitis, Chronic/genetics , Apoptosis , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Male
2.
Mol Ther ; 32(8): 2624-2640, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38956871

ABSTRACT

Chronic pancreatitis (CP) is marked by progressive fibrosis and the activation of pancreatic stellate cells (PSCs), accompanied by the destruction of pancreatic parenchyma, leading to the loss of acinar cells (ACs). Few research studies have explored the mechanism by which damaged ACs (DACs) contribute to PSCs activation and pancreatic fibrosis. Currently, there are no effective drugs for curing CP or limiting the progression of pancreatic fibrosis. In this research, co-culture with intact acinar cells (IACs) suppressed PSC activation, while co-culture with DACs did the opposite. Krüppel-like factor 4 (KLF4) was significantly upregulated in DACs and was established as the key molecule that switches ACs from PSCs-suppressor to PSCs-activator. We revealed the exosomes of IACs contributed to the anti-activated function of IACs-CS on PSCs. MiRNome profiling showed that let-7 family is significantly enriched in IAC-derived exosomes (>30% miRNome), which partially mediates IACs' suppressive impacts on PSCs. Furthermore, it has been observed that the enrichment of let-7 in exosomes was influenced by the expression level of KLF4. Mechanistic studies demonstrated that KLF4 in ACs upregulated Lin28A, thereby decreasing let-7 levels in AC-derived exosomes, and thus promoting PSCs activation. We utilized an adeno-associated virus specifically targeting KLF4 in ACs (shKLF4-pAAV) to suppress PSCs activation in CP, resulting in reduced pancreatic fibrosis. IAC-derived exosomes hold potential as potent weapons against PSCs activation via let-7s, while activated KLF4/Lin28A signaling in DACs diminished such functions. ShKLF4-pAAV holds promise as a novel therapeutic approach for CP.


Subject(s)
Acinar Cells , Exosomes , Fibrosis , Kruppel-Like Factor 4 , MicroRNAs , Pancreatic Stellate Cells , Pancreatitis, Chronic , Kruppel-Like Factor 4/metabolism , Animals , Pancreatic Stellate Cells/metabolism , Pancreatic Stellate Cells/pathology , Exosomes/metabolism , Pancreatitis, Chronic/metabolism , Pancreatitis, Chronic/genetics , Pancreatitis, Chronic/pathology , MicroRNAs/genetics , Acinar Cells/metabolism , Acinar Cells/pathology , Dependovirus/genetics , Mice , Humans , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Disease Models, Animal , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Male , Coculture Techniques , Pancreas/metabolism , Pancreas/pathology , Genetic Therapy/methods
3.
Sci Adv ; 10(23): eadk3081, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848367

ABSTRACT

Clinical outcomes for total-pancreatectomy followed by intraportal islet autotransplantation (TP-IAT) to treat chronic pancreatitis (CP) are suboptimal due to pancreas inflammation, oxidative stress during islet isolation, and harsh engraftment conditions in the liver's vasculature. We describe a thermoresponsive, antioxidant macromolecule poly(polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN) to protect islet redox status and function and to enable extrahepatic omentum islet engraftment. PPCN solution transitions from a liquid to a hydrogel at body temperature. Islets entrapped in PPCN and exposed to oxidative stress remain functional and support long-term euglycemia, in contrast to islets entrapped in a plasma-thrombin biologic scaffold. In the nonhuman primate (NHP) omentum, PPCN is well-tolerated and mostly resorbed without fibrosis at 3 months after implantation. In NHPs, autologous omentum islet transplantation using PPCN restores normoglycemia with minimal exogenous insulin requirements for >100 days. This preclinical study supports TP-IAT with PPCN in patients with CP and highlights antioxidant properties as a mechanism for islet function preservation.


Subject(s)
Islets of Langerhans Transplantation , Islets of Langerhans , Omentum , Oxidative Stress , Islets of Langerhans Transplantation/methods , Omentum/metabolism , Animals , Islets of Langerhans/metabolism , Islets of Langerhans/drug effects , Oxidative Stress/drug effects , Citric Acid/pharmacology , Humans , Antioxidants/pharmacology , Pancreatitis, Chronic/metabolism , Pancreatitis, Chronic/surgery , Pancreatitis, Chronic/pathology , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Male , Phase Transition
4.
Biomed Pharmacother ; 177: 116977, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901203

ABSTRACT

BACKGROUND: Pancreatic cancer (PanCa), ranked as the 4th leading cause of cancer-related death worldwide, exhibits an dismal 5-year survival rate of less than 5 %. Chronic pancreatitis (CP) is a known major risk factor for PanCa. Brusatol (BRT) possesses a wide range of biological functions, including the inhibition of PanCa proliferation. However, its efficacy in halting the progression from CP to pancreatic carcinogenesis remains unexplored. METHODS: We assess the effects of BRT against pancreatic carcinogenesis from CP using an experimentally induced CP model with cerulein, and further evaluate the therapeutic efficacy of BRT on PanCa by employing Krastm4TyjTrp53tm1BrnTg (Pdx1-cre/Esr1*) #Dam/J (KPC) mouse model. RESULTS: Our finding demonstrated that BRT mitigated the severity of cerulein-induced pancreatitis, reduced pancreatic fibrosis and decreased the expression of α-smooth muscle actin (α-SMA), which is a biomarker for pancreatic fibrosis. In addition, BRT exerted effects against cerulein-induced pancreatitis via inactivation of NLRP3 inflammasome. Moreover, BRT significantly inhibited tumor growth and impeded cancer progression. CONCLUSIONS: The observed effect of BRT on impeding pancreatic carcinogenesis through targeting NLRP3 inflammasome suggests its good potential as a potential agent for treatment of PanCa.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein , Pancreatic Neoplasms , Pancreatitis, Chronic , Animals , Male , Mice , Carcinogenesis/drug effects , Carcinogenesis/pathology , Carcinogenesis/genetics , Ceruletide , Disease Models, Animal , Fibrosis , Inflammasomes/metabolism , Inflammasomes/drug effects , Mice, Inbred C57BL , Mice, Transgenic , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pancreas/pathology , Pancreas/drug effects , Pancreas/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatitis, Chronic/pathology , Pancreatitis, Chronic/chemically induced , Pancreatitis, Chronic/drug therapy , Pancreatitis, Chronic/metabolism , Pancreatitis, Chronic/genetics , Quassins , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics
5.
Clin Transl Med ; 14(6): e1733, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38877637

ABSTRACT

BACKGROUND AND AIMS: Smoking is recognised as an independent risk factor in the development of chronic pancreatitis (CP). Cystic fibrosis transmembrane conductance regulator (CFTR) function and ductal fluid and bicarbonate secretion are also known to be impaired in CP, so it is crucial to understand the relationships between smoking, pancreatic ductal function and the development of CP. METHODS: We measured sweat chloride (Cl-) concentrations in patients with and without CP, both smokers and non-smokers, to assess CFTR activity. Serum heavy metal levels and tissue cadmium concentrations were determined by mass spectrometry in smoking and non-smoking patients. Guinea pigs were exposed to cigarette smoke, and cigarette smoke extract (CSE) was prepared to characterise its effects on pancreatic HCO3 - and fluid secretion and CFTR function. We administered cerulein to both the smoking and non-smoking groups of mice to induce pancreatitis. RESULTS: Sweat samples from smokers, both with and without CP, exhibited elevated Cl- concentrations compared to those from non-smokers, indicating a decrease in CFTR activity due to smoking. Pancreatic tissues from smokers, regardless of CP status, displayed lower CFTR expression than those from non-smokers. Serum levels of cadmium and mercury, as well as pancreatic tissue cadmium, were increased in smokers. Smoking, CSE, cadmium, mercury and nicotine all hindered fluid and HCO3 - secretion and CFTR activity in pancreatic ductal cells. These effects were mediated by sustained increases in intracellular calcium ([Ca2+]i), depletion of intracellular ATP (ATPi) and mitochondrial membrane depolarisation. CONCLUSION: Smoking impairs pancreatic ductal function and contributes to the development of CP. Heavy metals, notably cadmium, play a significant role in the harmful effects of smoking. KEY POINTS: Smoking and cigarette smoke extract diminish pancreatic ductal fluid and HCO3 - secretion as well as the expression and function of CFTR Cd and Hg concentrations are significantly higher in the serum samples of smokers Cd accumulates in the pancreatic tissue of smokers.


Subject(s)
Metals, Heavy , Pancreatitis, Chronic , Humans , Pancreatitis, Chronic/metabolism , Pancreatitis, Chronic/chemically induced , Animals , Metals, Heavy/metabolism , Male , Mice , Female , Middle Aged , Guinea Pigs , Adult , Pancreatic Ducts/metabolism , Pancreatic Ducts/drug effects , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Smoking/adverse effects , Smoking/metabolism , Disease Models, Animal
6.
Pancreas ; 53(7): e595-e602, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38696350

ABSTRACT

OBJECTIVE: This study primarily aimed to assess the expression of MUC4 in patients with pancreatic ductal adenocarcinoma (PDAC) as compared with controls and assess its clinical relevance. MATERIALS AND METHODS: Serum MUC4 levels and MUC4 gene expression in snap-frozen tissue were analyzed through surface plasmon resonance and quantitative polymerase chain reaction, respectively. Tumor tissues and control tissues were analyzed for MUC4 and other mucins through immunohistochemistry. RESULT: MUC4 expression in tumor tissue was found to be significantly elevated in PDAC patients as compared with chronic pancreatitis tissues and normal pancreatic tissues. Periampullary carcinoma and cholangiocarcinoma tissue also showed increased expression of MUC4 and other mucins. CONCLUSIONS: Differential expression of MUC4 in pancreatic tumor tissues can help to differentiate PDAC from benign conditions.


Subject(s)
Carcinoma, Pancreatic Ductal , Cholangiocarcinoma , Immunohistochemistry , Mucin-4 , Pancreatic Neoplasms , Humans , Mucin-4/metabolism , Mucin-4/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/blood , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/pathology , Male , Middle Aged , Female , Aged , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/diagnosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/blood , Adult , Pancreatitis, Chronic/metabolism , Pancreatitis, Chronic/genetics , Pancreatitis, Chronic/diagnosis , Pancreatitis, Chronic/blood , Case-Control Studies , Ampulla of Vater/metabolism , Ampulla of Vater/pathology , Gene Expression Regulation, Neoplastic , Common Bile Duct Neoplasms/metabolism , Common Bile Duct Neoplasms/genetics , Common Bile Duct Neoplasms/diagnosis , Common Bile Duct Neoplasms/pathology , Clinical Relevance
7.
Pancreas ; 53(9): e760-e773, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38710022

ABSTRACT

OBJECTIVES: Diabetes secondary to chronic pancreatitis (CP) presents clinical challenges due to lack of understanding on factor(s) triggering insulin secretory defects. Therefore, we aimed to delineate the molecular mechanism of ß-cell dysfunction in CP. MATERIALS AND METHODS: Transcriptomic analysis was conducted to identify endocrine-specific receptor expression in mice and human CP on microarray. The identified receptor (NR4A1) was overexpressed in MIN6 cells using PEI linear transfection. RNA-Seq analysis of NR4A1-overexpressed (OE) MIN6 cells on NovaSeq6000 identified aberrant metabolic pathways. Upstream trigger for NR4A1OE was studied by InBio Discover and cytokine exposure, whereas downstream effect was examined by Fura2 AM-based fluorimetric and imaging studies. Mice with CP were treated with IFN-γ-neutralizing monoclonal antibodies to assess NR4A1 expression and insulin secretion. RESULTS: Increased expression of NR4A1 associated with decreased insulin secretion in islets (humans: controls 9 ± 0.2, CP 3.7 ± 0.2, mice: controls 8.5 ± 0.2, CP 2.1 ± 0.1 µg/L). NR4A1OE in MIN6 cells (13.2 ± 0.1) showed reduction in insulin secretion (13 ± 5 to 0.2 ± 0.1 µg/mg protein per minute, P = 0.001) and downregulation of calcium and cAMP signaling pathways. IFN-γ was identified as upstream signal for NR4A1OE in MIN6. Mice treated with IFN-γ-neutralizing antibodies showed decreased NR4A1 expression 3.4 ± 0.11-fold ( P = 0.03), showed improved insulin secretion (4.4 ± 0.2-fold, P = 0.01), and associated with increased Ca 2+ levels (2.39 ± 0.06-fold, P = 0.009). CONCLUSIONS: Modulating NR4A1 expression can be a promising therapeutic strategy to improve insulin secretion in CP.


Subject(s)
Disease Models, Animal , Insulin Secretion , Nuclear Receptor Subfamily 4, Group A, Member 1 , Pancreatitis, Chronic , Animals , Pancreatitis, Chronic/metabolism , Pancreatitis, Chronic/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Humans , Mice , Male , Insulin-Secreting Cells/metabolism , Mice, Inbred C57BL , Insulin/metabolism , Interferon-gamma/metabolism , Cell Line
8.
Nat Commun ; 15(1): 4099, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816352

ABSTRACT

Chronic inflammation is a major cause of cancer worldwide. Interleukin 33 (IL-33) is a critical initiator of cancer-prone chronic inflammation; however, its induction mechanism by environmental causes of chronic inflammation is unknown. Herein, we demonstrate that Toll-like receptor (TLR)3/4-TBK1-IRF3 pathway activation links environmental insults to IL-33 induction in the skin and pancreas inflammation. An FDA-approved drug library screen identifies pitavastatin to effectively suppress IL-33 expression by blocking TBK1 membrane recruitment/activation through the mevalonate pathway inhibition. Accordingly, pitavastatin prevents chronic pancreatitis and its cancer sequela in an IL-33-dependent manner. The IRF3-IL-33 axis is highly active in chronic pancreatitis and its associated pancreatic cancer in humans. Interestingly, pitavastatin use correlates with a significantly reduced risk of chronic pancreatitis and pancreatic cancer in patients. Our findings demonstrate that blocking the TBK1-IRF3-IL-33 signaling axis suppresses cancer-prone chronic inflammation. Statins present a safe and effective prophylactic strategy to prevent chronic inflammation and its cancer sequela.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Interferon Regulatory Factor-3 , Interleukin-33 , Pancreatic Neoplasms , Protein Serine-Threonine Kinases , Quinolines , Signal Transduction , Animals , Female , Humans , Male , Mice , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Inflammation/prevention & control , Inflammation/metabolism , Interferon Regulatory Factor-3/metabolism , Interleukin-33/drug effects , Interleukin-33/metabolism , Mevalonic Acid/metabolism , Mice, Inbred C57BL , Mice, Knockout , Pancreatic Neoplasms/prevention & control , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatitis, Chronic/prevention & control , Pancreatitis, Chronic/metabolism , Protein Serine-Threonine Kinases/metabolism , Quinolines/pharmacology , Quinolines/therapeutic use , Signal Transduction/drug effects , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 4/metabolism
9.
Am J Physiol Endocrinol Metab ; 326(6): E856-E868, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38656128

ABSTRACT

Chronic pancreatitis (CP) is a progressive inflammatory disease with an increasing global prevalence. In recent years, a strong association between CP and metabolic bone diseases (MBDs), especially osteoporosis, has been identified, attracting significant attention in the research field. Epidemiological data suggest a rising trend in the incidence of MBDs among CP patients. Notably, recent studies have highlighted a profound interplay between CP and altered nutritional and immune profiles, offering insights into its linkage with MBDs. At the molecular level, CP introduces a series of biochemical disturbances that compromise bone homeostasis. One critical observation is the disrupted metabolism of vitamin D and vitamin K, both essential micronutrients for maintaining bone integrity, in CP patients. In this review, we provide physio-pathological perspectives on the development and mechanisms of CP-related MBDs. We also outline some of the latest therapeutic strategies for treating patients with CP-associated MBDs, including stem cell transplantation, monoclonal antibodies, and probiotic therapy. In summary, CP-associated MBDs represent a rising medical challenge, involving multiple tissues and organs, complex disease mechanisms, and diverse treatment approaches. More in-depth studies are required to understand the complex interplay between CP and MBDs to facilitate the development of more specific and effective therapeutic approaches.


Subject(s)
Bone Diseases, Metabolic , Pancreatitis, Chronic , Humans , Pancreatitis, Chronic/epidemiology , Pancreatitis, Chronic/metabolism , Pancreatitis, Chronic/complications , Bone Diseases, Metabolic/epidemiology , Bone Diseases, Metabolic/etiology , Bone Diseases, Metabolic/metabolism , Vitamin D/metabolism , Vitamin D/therapeutic use , Vitamin K/metabolism , Animals
11.
Sci Rep ; 14(1): 9382, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654064

ABSTRACT

Acute Pancreatitis (AP) is associated with high mortality and current treatment options are limited to supportive care. We found that blockade of activin A (activin) in mice improves outcomes in two murine models of AP. To test the hypothesis that activin is produced early in response to pancreatitis and is maintained throughout disease progression to stimulate immune cells, we first performed digital spatial profiling (DSP) of human chronic pancreatitis (CP) patient tissue. Then, transwell migration assays using RAW264.7 mouse macrophages and qPCR analysis of "neutrophil-like" HL-60 cells were used for functional correlation. Immunofluorescence and western blots on cerulein-induced pancreatitis samples from pancreatic acinar cell-specific Kras knock-in (Ptf1aCreER™; LSL-KrasG12D) and functional WT Ptf1aCreER™ mouse lines mimicking AP and CP to allow for in vivo confirmation. Our data suggest activin promotes neutrophil and macrophage activation both in situ and in vitro, while pancreatic activin production is increased as early as 1 h in response to pancreatitis and is maintained throughout CP in vivo. Taken together, activin is produced early in response to pancreatitis and is maintained throughout disease progression to promote neutrophil and macrophage activation.


Subject(s)
Activins , Cell Movement , Macrophages , Neutrophil Activation , Pancreatitis , Signal Transduction , Animals , Activins/metabolism , Mice , Humans , Macrophages/metabolism , Macrophages/immunology , Pancreatitis/metabolism , Pancreatitis/pathology , Neutrophils/metabolism , Neutrophils/immunology , Disease Models, Animal , RAW 264.7 Cells , Macrophage Activation , HL-60 Cells , Pancreatitis, Chronic/metabolism , Pancreatitis, Chronic/pathology , Male
12.
Cell Signal ; 118: 111135, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38479555

ABSTRACT

BACKGROUND: Pancreatic fibrosis is one of the most important pathological features of chronic pancreatitis (CP) and pancreatic stellate cells (PSCs) are the key cells of fibrosis. As an extracellular matrix (ECM) glycoprotein, cartilage oligomeric matrix protein (COMP) is critical for collagen assembly and ECM stability and recent studies showed that COMP exert promoting fibrosis effect in the skin, lungs and liver. However, the role of COMP in activation of PSCs and pancreatic fibrosis remain unclear. We aimed to investigate the role and specific mechanisms of COMP in regulating the profibrotic phenotype of PSCs and pancreatic fibrosis. METHODS: ELISA method was used to determine serum COMP in patients with CP. Mice model of CP was established by repeated intraperitoneal injection of cerulein and pancreatic fibrosis was evaluated by Hematoxylin-Eosin staining (H&E) and Sirius red staining. Immunohistochemical staining was used to detect the expression changes of COMP and fibrosis marker such as α-SMA and Fibronectin in pancreatic tissue of mice. Cell Counting Kit-8, Wound Healing and Transwell assessed the proliferation and migration of human pancreatic stellate cells (HPSCs). Western blotting, qRT-PCR and immunofluorescence staining were performed to detect the expression of fibrosis marker, AKT and MAPK family proteins in HPSCs. RNA-seq omics analysis as well as small interfering RNA of COMP, recombinant human COMP (rCOMP), MEK inhibitors and PI3K inhibitors were used to study the effect and mechanism of COMP on activation of HPSCs. RESULTS: ELISA showed that the expression of COMP significantly increased in the serum of CP patients. H&E and Sirius red staining analysis showed that there was a large amount of collagen deposition in the mice in the CP model group and high expression of COMP, α-SMA, Fibronectin and Vimentin were observed in fibrotic tissues. TGF-ß1 stimulates the activation of HPSCs and increases the expression of COMP. Knockdown of COMP inhibited proliferation and migration of HPSCs. Further, RNA-seq omics analysis and validation experiments in vitro showed that rCOMP could significantly promote the proliferation and activation of HPSCs, which may be due to promoting the phosphorylation of ERK and AKT through membrane protein receptor CD36. rCOMP simultaneously increased the expression of α-SMA, Fibronectin and Collagen I in HPSCs. CONCLUSION: In conclusion, this study showed that COMP was up-regulated in CP fibrotic tissues and COMP induced the activation, proliferation and migration of PSCs through the CD36-ERK/AKT signaling pathway. COMP may be a potential therapeutic candidate for the treatment of CP. Interfering with the expression of COMP or the communication between COMP and CD36 on PSCs may be the next direction for therapeutic research.


Subject(s)
Pancreatic Diseases , Pancreatitis, Chronic , Animals , Humans , Mice , Cartilage Oligomeric Matrix Protein/metabolism , Cartilage Oligomeric Matrix Protein/pharmacology , Cartilage Oligomeric Matrix Protein/therapeutic use , Cells, Cultured , Collagen Type I/metabolism , Fibronectins/metabolism , Fibrosis , Pancreatic Diseases/metabolism , Pancreatic Stellate Cells/metabolism , Pancreatic Stellate Cells/pathology , Pancreatitis, Chronic/drug therapy , Pancreatitis, Chronic/metabolism , Pancreatitis, Chronic/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
13.
Pancreas ; 53(5): e416-e423, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38530954

ABSTRACT

OBJECTIVES: Chronic pancreatitis (CP) is an inflammatory disease affecting the absorption of fat-soluble nutrients. Signaling in pancreatic cells that lead to inflammation may be influenced by fatty acids (FAs) through diet and de novo lipogenesis. Here, we investigated the relationship between plasma FA composition in CP with heterogeneity of etiology and complications of CP. MATERIALS AND METHODS: Blood and clinical parameters were collected from subjects with CP (n = 47) and controls (n = 22). Plasma was analyzed for FA composition using gas chromatography and compared between controls and CP and within CP. RESULTS: Palmitic acid increased, and linoleic acid decreased in CP compared with controls. Correlations between age or body mass index and FAs are altered in CP compared with controls. Diabetes, pancreatic calcifications, and substance usage, but not exocrine pancreatic dysfunction, were associated with differences in oleic acid and linoleic acid relative abundance in CP. De novo lipogenesis index was increased in the plasma of subjects with CP compared with controls and in calcific CP compared with noncalcific CP. CONCLUSIONS: Fatty acids that are markers of de novo lipogenesis and linoleic acid are dysregulated in CP depending on the etiology or complication. These results enhance our understanding of CP and highlight potential pathways targeting FAs for treating CP.


Subject(s)
Fatty Acids , Linoleic Acid , Pancreatitis, Chronic , Humans , Pilot Projects , Pancreatitis, Chronic/blood , Pancreatitis, Chronic/metabolism , Male , Female , Middle Aged , Adult , Fatty Acids/blood , Linoleic Acid/blood , Case-Control Studies , Lipogenesis , Aged , Palmitic Acid/blood , Oleic Acid/blood , Biomarkers/blood
14.
Eur J Pharmacol ; 967: 176374, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38309676

ABSTRACT

Pancreatic stellate cells (PSCs) are activated following loss of cytoplasmic vitamin A (retinol)-containing lipid droplets, which is a key event in the process of fibrogenesis of chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDCA). PSCs are the major source of cancer-associated fibroblasts (CAFs) that produce stroma to induce PDAC cancer cell growth, invasion, and metastasis. As an active metabolite of retinol, retinoic acid (RA) can regulate target gene expression in PSCs through its nuclear receptor complex (RAR/RXR or RXR/RXR) or transcriptional intermediary factor. Additionally, RA also has extranuclear and non-transcriptional effects. In vitro studies have shown that RA induces PSC deactivation which reduces extracellular matrix production through multiple modes of action, such as inhibiting TßRⅡ, PDGFRß, ß-catenin and Wnt production, downregulating ERK1/2 and JNK phosphorylation and suppressing active TGF-ß1 release. RA alone or in combination with other reagents have been demonstrated to have an effective anti-fibrotic effect on cerulein-induced mouse CP models in vivo studies. Clinical trial data have shown that repurposing all-trans retinoic acid (ATRA) as a stromal-targeting agent for human pancreatic cancer is safe and tolerable, suggesting the possibility of using RA for the treatment of CP and PDCA in humans. This review focuses on RA signaling pathways in PSCs and the effects and mechanisms of RA in PSC-mediated fibrogenesis as well as the anti-fibrotic and anti-tumor effects of RA targeting PSCs or CAFs in vitro and in vivo, highlighting the potential therapies of RA against CP and PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Pancreatitis, Chronic , Mice , Humans , Animals , Tretinoin/therapeutic use , Pancreatic Stellate Cells/metabolism , Pancreatic Stellate Cells/pathology , Vitamin A/metabolism , Signal Transduction , Pancreatic Neoplasms/pathology , Pancreatitis, Chronic/drug therapy , Pancreatitis, Chronic/metabolism , Pancreatitis, Chronic/pathology , Carcinoma, Pancreatic Ductal/drug therapy
15.
J Pathol ; 262(1): 61-75, 2024 01.
Article in English | MEDLINE | ID: mdl-37796386

ABSTRACT

Pancreatic stellate cells (PSCs) are stromal cells in the pancreas that play an important role in pancreatic pathology. In chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC), PSCs are known to get activated to form myofibroblasts or cancer-associated fibroblasts (CAFs) that promote stromal fibroinflammatory reactions. However, previous studies on PSCs were mainly based on the findings obtained using ex vivo expanded PSCs, with few studies that addressed the significance of in situ tissue-resident PSCs using animal models. Their contributions to fibrotic reactions in CP and PDAC are also lesser-known. These limitations in our understanding of PSC biology have been attributed to the lack of specific molecular markers of PSCs. Herein, we established Meflin (Islr), a glycosylphosphatidylinositol-anchored membrane protein, as a PSC-specific marker in both mouse and human by using human pancreatic tissue samples and Meflin reporter mice. Meflin-positive (Meflin+ ) cells contain lipid droplets and express the conventional PSC marker Desmin in normal mouse pancreas, with some cells also positive for Gli1, the marker of pancreatic tissue-resident fibroblasts. Three-dimensional analysis of the cleared pancreas of Meflin reporter mice showed that Meflin+ PSCs have long and thin cytoplasmic protrusions, and are localised on the abluminal side of vessels in the normal pancreas. Lineage tracing experiments revealed that Meflin+ PSCs constitute one of the origins of fibroblasts and CAFs in CP and PDAC, respectively. In these diseases, Meflin+ PSC-derived fibroblasts showed a distinctive morphology and distribution from Meflin+ PSCs in the normal pancreas. Furthermore, we showed that the genetic depletion of Meflin+ PSCs accelerated fibrosis and attenuated epithelial regeneration and stromal R-spondin 3 expression, thereby implying that Meflin+ PSCs and their lineage cells may support tissue recovery and Wnt/R-spondin signalling after pancreatic injury and PDAC development. Together, these data indicate that Meflin may be a marker specific to tissue-resident PSCs and useful for studying their biology in both health and disease. © 2023 The Pathological Society of Great Britain and Ireland.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Pancreatitis, Chronic , Animals , Humans , Mice , Carcinoma, Pancreatic Ductal/pathology , Fibrosis , Pancreas/pathology , Pancreatic Neoplasms/pathology , Pancreatic Stellate Cells/pathology , Pancreatitis, Chronic/genetics , Pancreatitis, Chronic/metabolism , Pancreatitis, Chronic/pathology , Regeneration
16.
Pancreatology ; 23(8): 957-963, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37949771

ABSTRACT

BACKGROUND: Genetic predisposition is crucial in the pathogenesis of early-onset chronic pancreatitis (CP). So far, several genetic alterations have been identified as risk factors, predominantly in genes encoding digestive enzymes. However, many early-onset CP cases have no identified underlying cause. Chymotrypsins are a family of serine proteases that can cleave trypsinogen and lead to its degradation. Because genetic alterations in the chymotrypsins CTRC, CTRB1, and CTRB2 are associated with CP, we genetically and functionally investigated chymotrypsin-like protease (CTRL) as a potential risk factor. METHODS: We screened 1005 non-alcoholic CP patients and 1594 controls for CTRL variants by exome sequencing. We performed Western blots and activity assays to analyse secretion and proteolytic activity. We measured BiP mRNA expression to investigate the potential impact of identified alterations on endoplasmic reticulum (ER) stress. RESULTS: We identified 13 heterozygous non-synonymous CTRL variants: five exclusively in patients and three only in controls. Functionality was unchanged in 6/13 variants. Four alterations showed normal secretion but reduced (p.G20S, p.G56S, p.G61S) or abolished (p.S208F) activity. Another three variants (p.C201Y, p.G215R and p.C220G) were not secreted and already showed reduced or no activity intracellularly. However, intracellular retention did not lead to ER stress. CONCLUSION: We identified several CTRL variants, some showing potent effects on protease function and secretion. We observed these effects in variants found in patients and controls, and CTRL loss-of-function variants were not significantly more common in patients than controls. Therefore, CTRL is unlikely to play a relevant role in the development of CP.


Subject(s)
Chymases , Pancreatitis, Chronic , Humans , Chymases/genetics , Genetic Predisposition to Disease , Mutation , Pancreatitis, Chronic/genetics , Pancreatitis, Chronic/metabolism , Risk Factors
17.
J Mater Chem B ; 11(38): 9163-9178, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37642526

ABSTRACT

Chronic pancreatitis (CP) is a multifactorial fibroinflammatory syndrome. At present, there is no effective way to treat it clinically. In this study, we proposed a new approach by application of a highly active calcium silicate ion solution derived from calcium silicate (CS) bioceramics, which effectively inhibited the development of CP. This bioceramic derived bioactive ionic solution mainly regulated pancreatic acinar cells (PACs), macrophages and pancreatic stellate cells (PSCs) by SiO32- ions to inhibit inflammation and fibrosis and promote acinar regeneration. The possible mechanism of the therapeutic effect of CS ion solution mainly includes the inhibition of PAC apoptosis by down-regulating the c-caspase3 signal pathway and promotion of the regeneration of PACs by up-regulating the WNT/ß-catenin signaling pathway. In addition, the CS ion solution also effectively down-regulated the NF-κB signaling pathway to reduce macrophage infiltration and PAC inflammatory factor secretion, thereby reducing PSC mediated pancreatic fibrosis. This bioceramics-based ion solution provides a new idea for disease treatment using biomaterials, which may have the potential for the development of new therapy for CP.


Subject(s)
Pancreatitis, Chronic , Humans , Pancreatitis, Chronic/drug therapy , Pancreatitis, Chronic/metabolism , Silicates , Fibrosis , Ions
18.
Dig Dis Sci ; 68(9): 3644-3659, 2023 09.
Article in English | MEDLINE | ID: mdl-37526905

ABSTRACT

BACKGROUND: Nintedanib (Ninte) has been approved for the treatment of pulmonary fibrosis, and whether it can ameliorate chronic pancreatitis (CP) is unknown. AIMS: This study was conducted to investigate the effect and molecular mechanism of Ninte on pancreatic fibrosis and inflammation in vivo and in vitro. METHODS: The caerulein-induced CP model of murine was applied, and Ninte was orally administered. Pathological changes in pancreas were evaluated using hematoxylin & eosin, Sirius Red, Masson's trichrome, and anti-Ki-67 staining. For in vitro studies, the effects of Ninte on cell viability, apoptosis, and migration of pancreatic stellate cells (PSCs) were determined by CCK-8, flow cytometry, and wound healing assays, respectively. The potential molecular mechanisms of the effects of Ninte on PSCs were analyzed by RNA-Seq and verified at the gene expression and protein activity levels by qRT-PCR and Western Blot. RESULTS: Ninte significantly alleviated the weight loss in mice with caerulein-induced CP and simultaneously attenuated the pancreatic damage, as evidenced by reduced acinar atrophy, collagen deposition, infiltration of inflammatory cells, and inhibited cell proliferation/regeneration. Besides, Ninte markedly suppressed the transcription of fibrogenic and proinflammatory genes in pancreatic tissues. Further in vitro studies showed that Ninte significantly inhibited the transcription and protein expression of genes corresponding to fibrogenesis and proliferation in PSCs. The results of RNA-Seq analysis and subsequent verification assays indicated that Ninte inhibited the activation and proliferation of PSCs via the JAK/STAT3 and ERK1/2 pathways. CONCLUSIONS: These findings indicate that Ninte may be a potential anti-inflammatory and anti-fibrotic therapeutic agent for CP.


Subject(s)
MAP Kinase Signaling System , Pancreatitis, Chronic , Mice , Animals , Pancreatic Stellate Cells/pathology , Ceruletide/toxicity , Pancreatitis, Chronic/chemically induced , Pancreatitis, Chronic/drug therapy , Pancreatitis, Chronic/metabolism , Pancreas/pathology , Fibrosis
19.
Sci Rep ; 13(1): 12201, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37500741

ABSTRACT

Chronic pancreatitis (CP) is a disease characterized by the inflammation and destruction of pancreatic tissue, leading to the replacement of functional tissue with fibrotic tissue. The regenerating gene (Reg) family proteins have recently been implicated in the repair and regeneration of inflamed pancreatic tissue, though the exact mechanisms of their involvement in the pathogenesis of CP are not yet fully understood. To investigate the role of Reg family proteins in CP, we generated global knockout mice (Reg-/-) for Reg1-3 (Reg1,2,3a,3b,3d,3g) genes using the CRISPR/Cas9 system. We then investigated the effect of Reg family protein deficiency in a genetic model of CP (X-SPINK1) mice by knocking out Reg1-3 genes. We examined pancreatic morphology, inflammatory cytokines expression, and activation of pancreatic stellate cells (PSCs) at different ages. Reg-/- mice showed no abnormalities in general growth and pancreas development. Deficiency of Reg1-3 in CP mice led to a reduction in pancreatic parenchymal loss, decreased deposition of collagen, and reduced expression of proinflammatory cytokines. Additionally, Reg proteins were found to stimulate PSCs activation. Overall, our study suggests that Reg1-3 deficiency can lead to the remission of CP and Reg family proteins could be a potential therapeutic target for the treatment of CP.


Subject(s)
Pancreatic Stellate Cells , Pancreatitis, Chronic , Mice , Animals , Pancreatic Stellate Cells/metabolism , Pancreatitis, Chronic/metabolism , Pancreas/metabolism , Inflammation/pathology , Mice, Knockout , Collagen/metabolism , Cytokines/metabolism , Regeneration , Fibrosis , Lithostathine/genetics , Lithostathine/metabolism
20.
Pancreatology ; 23(5): 507-511, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37270400

ABSTRACT

Mutations in the PNLIP gene have recently been implicated in chronic pancreatitis. Several PNLIP missense variants have been reported to cause protein misfolding and endoplasmic reticulum stress although genetic evidence supporting their association with chronic pancreatitis is currently lacking. Protease-sensitive PNLIP missense variants have also been associated with early-onset chronic pancreatitis although the underlying pathological mechanism remains enigmatic. Herein, we provide new evidence to support the association of protease-sensitive PNLIP variants (but not misfolding PNLIP variants) with pancreatitis. Specifically, we identified protease-sensitive PNLIP variants in 5 of 373 probands (1.3%) with a positive family history of pancreatitis. The protease-sensitive variants, p.F300L and p.I265R, were found to segregate with the disease in three families, including one exhibiting a classical autosomal dominant inheritance pattern. Consistent with previous findings, protease-sensitive variant-positive patients were often characterized by early-onset disease and invariably experienced recurrent acute pancreatitis, although none has so far developed chronic pancreatitis.


Subject(s)
Lipase , Pancreatitis, Chronic , Peptide Hydrolases , Humans , Acute Disease , Mutation , Pancreatitis, Chronic/genetics , Pancreatitis, Chronic/metabolism , Peptide Hydrolases/genetics , Lipase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL