Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.232
Filter
1.
PeerJ ; 12: e17350, 2024.
Article in English | MEDLINE | ID: mdl-38827297

ABSTRACT

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related deaths, with very limited therapeutic options available. This study aims to comprehensively depict the heterogeneity and identify prognostic targets for PDAC with single-cell RNA sequencing (scRNA-seq) analysis. Methods: ScRNA-seq analysis was performed on 16 primary PDAC and three adjacent lesions. A series of analytical methods were applied for analysis in cell clustering, gene profiling, lineage trajectory analysis and cell-to-cell interactions. In vitro experiments including colony formation, wound healing and sphere formation assay were performed to assess the role of makers. Results: A total of 32,480 cells were clustered into six major populations, among which the ductal cell cluster expressing high copy number variants (CNVs) was defined as malignant cells. Malignant cells were further subtyped into five subgroups which exhibited specific features in immunologic and metabolic activities. Pseudotime trajectory analysis indicated that components of various oncogenic pathways were differentially expressed along tumor progression. Furthermore, intensive substantial crosstalk between ductal cells and stromal cells was identified. Finally, genes (REG4 and SPINK1) screened out of differentially expressed genes (DEGs) were upregulated in PDAC cell lines. Silencing either of them significantly impaired proliferation, invasion, migration and stemness of PDAC cells. Conclusions: Our findings offer a valuable resource for deciphering the heterogeneity of malignant ductal cells in PDAC. REG4 and SPINK1 are expected to be promising targets for PDAC therapy.


Subject(s)
Carcinoma, Pancreatic Ductal , Lectins, C-Type , Pancreatic Neoplasms , Single-Cell Analysis , Transcriptome , Trypsin Inhibitor, Kazal Pancreatic , Humans , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/mortality , Trypsin Inhibitor, Kazal Pancreatic/genetics , Trypsin Inhibitor, Kazal Pancreatic/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Prognosis , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Female , Male , Pancreatitis-Associated Proteins
2.
Cell Death Dis ; 15(5): 348, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769308

ABSTRACT

Regenerating gene family member 4 (Reg4) has been implicated in acute pancreatitis, but its precise functions and involved mechanisms have remained unclear. Herein, we sought to investigate the contribution of Reg4 to the pathogenesis of pancreatitis and evaluate its therapeutic effects in experimental pancreatitis. In acute pancreatitis, Reg4 deletion increases inflammatory infiltrates and mitochondrial cell death and decreases autophagy recovery, which are rescued by the administration of recombinant Reg4 (rReg4) protein. In chronic pancreatitis, Reg4 deficiency aggravates inflammation and fibrosis and inhibits compensatory cell proliferation. Moreover, C-X-C motif ligand 12 (CXCL12)/C-X-C motif receptor 4 (CXCR4) axis is sustained and activated in Reg4-deficient pancreas. The detrimental effects of Reg4 deletion are attenuated by the administration of the approved CXCR4 antagonist plerixafor (AMD3100). Mechanistically, Reg4 mediates its function in pancreatitis potentially via binding its receptor exostosin-like glycosyltransferase 3 (Extl3). In conclusion, our findings suggest that Reg4 exerts a therapeutic effect during pancreatitis by limiting inflammation and fibrosis and improving cellular regeneration.


Subject(s)
Fibrosis , Mitochondria , Pancreatitis-Associated Proteins , Pancreatitis , Receptors, CXCR4 , Animals , Pancreatitis-Associated Proteins/metabolism , Pancreatitis-Associated Proteins/genetics , Mitochondria/metabolism , Mitochondria/pathology , Pancreatitis/pathology , Pancreatitis/metabolism , Mice , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Humans , Mice, Inbred C57BL , Cyclams/pharmacology , Male , Mice, Knockout , Benzylamines/pharmacology , Chemokine CXCL12/metabolism , Cell Proliferation , Signal Transduction , Autophagy , Pancreas/pathology , Pancreas/metabolism , Cell Death
3.
Microbiome ; 12(1): 76, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38649950

ABSTRACT

BACKGROUND: The etiology of inflammatory bowel disease (IBD) is unclear but involves both genetics and environmental factors, including the gut microbiota. Indeed, exacerbated activation of the gastrointestinal immune system toward the gut microbiota occurs in genetically susceptible hosts and under the influence of the environment. For instance, a majority of IBD susceptibility loci lie within genes involved in immune responses, such as caspase recruitment domain member 9 (Card9). However, the relative impacts of genotype versus microbiota on colitis susceptibility in the context of CARD9 deficiency remain unknown. RESULTS: Card9 gene directly contributes to recovery from dextran sodium sulfate (DSS)-induced colitis by inducing the colonic expression of the cytokine IL-22 and the antimicrobial peptides Reg3ß and Reg3γ independently of the microbiota. On the other hand, Card9 is required for regulating the microbiota capacity to produce AhR ligands, which leads to the production of IL-22 in the colon, promoting recovery after colitis. In addition, cross-fostering experiments showed that 5 weeks after weaning, the microbiota transmitted from the nursing mother before weaning had a stronger impact on the tryptophan metabolism of the pups than the pups' own genotype. CONCLUSIONS: These results show the role of CARD9 and its effector IL-22 in mediating recovery from DSS-induced colitis in both microbiota-independent and microbiota-dependent manners. Card9 genotype modulates the microbiota metabolic capacity to produce AhR ligands, but this effect can be overridden by the implantation of a WT or "healthy" microbiota before weaning. It highlights the importance of the weaning reaction occurring between the immune system and microbiota for host metabolism and immune functions throughout life. A better understanding of the impact of genetics on microbiota metabolism is key to developing efficient therapeutic strategies for patients suffering from complex inflammatory disorders. Video Abstract.


Subject(s)
CARD Signaling Adaptor Proteins , Colitis , Dextran Sulfate , Gastrointestinal Microbiome , Interleukin-22 , Interleukins , Pancreatitis-Associated Proteins , Animals , CARD Signaling Adaptor Proteins/genetics , Colitis/microbiology , Colitis/genetics , Colitis/immunology , Mice , Pancreatitis-Associated Proteins/genetics , Interleukins/genetics , Interleukins/metabolism , Mice, Knockout , Genetic Predisposition to Disease , Disease Models, Animal , Mice, Inbred C57BL , Colon/microbiology , Colon/metabolism , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/immunology , Female , Male
4.
FASEB J ; 38(8): e23603, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648368

ABSTRACT

Recent evidence suggests that chronic exposure to opioid analgesics such as morphine disrupts the intestinal epithelial layer and causes intestinal dysbiosis. Depleting gut bacteria can preclude the development of tolerance to opioid-induced antinociception, suggesting an important role of the gut-brain axis in mediating opioid effects. The mechanism underlying opioid-induced dysbiosis, however, remains unclear. Host-produced antimicrobial peptides (AMPs) are critical for the integrity of the intestinal epithelial barrier as they prevent the pathogenesis of the enteric microbiota. Here, we report that chronic morphine or fentanyl exposure reduces the antimicrobial activity in the ileum, resulting in changes in the composition of bacteria. Fecal samples from morphine-treated mice had increased levels of Akkermansia muciniphila with a shift in the abundance ratio of Firmicutes and Bacteroidetes. Fecal microbial transplant (FMT) from morphine-naïve mice or oral supplementation with butyrate restored (a) the antimicrobial activity, (b) the expression of the antimicrobial peptide, Reg3γ, (c) prevented the increase in intestinal permeability and (d) prevented the development of antinociceptive tolerance in morphine-dependent mice. Improved epithelial barrier function with FMT or butyrate prevented the enrichment of the mucin-degrading A. muciniphila in morphine-dependent mice. These data implicate impairment of the antimicrobial activity of the intestinal epithelium as a mechanism by which opioids disrupt the microbiota-gut-brain axis.


Subject(s)
Analgesics, Opioid , Dysbiosis , Fentanyl , Gastrointestinal Microbiome , Intestinal Mucosa , Mice, Inbred C57BL , Morphine , Animals , Morphine/pharmacology , Mice , Dysbiosis/chemically induced , Dysbiosis/microbiology , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Male , Fentanyl/pharmacology , Analgesics, Opioid/pharmacology , Brain-Gut Axis/drug effects , Fecal Microbiota Transplantation , Pancreatitis-Associated Proteins/metabolism , Akkermansia/drug effects , Antimicrobial Peptides/pharmacology , Bacteroidetes/drug effects
5.
Infect Immun ; 92(5): e0009924, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38557196

ABSTRACT

The mouse pathogen Citrobacter rodentium is utilized as a model organism for studying infections caused by the human pathogens enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) and to elucidate mechanisms of mucosal immunity. In response to C. rodentium infection, innate lymphoid cells and T cells secrete interleukin (IL)-22, a cytokine that promotes mucosal barrier function. IL-22 plays a pivotal role in enabling mice to survive and recover from C. rodentium infection, although the exact mechanisms involved remain incompletely understood. Here, we investigated whether particular components of the host response downstream of IL-22 contribute to the cytokine's protective effects during C. rodentium infection. In line with previous research, mice lacking the IL-22 gene (Il22-/- mice) were highly susceptible to C. rodentium infection. To elucidate the role of specific antimicrobial proteins modulated by IL-22, we infected the following knockout mice: S100A9-/- (calprotectin), Lcn2-/- (lipocalin-2), Reg3b-/- (Reg3ß), Reg3g-/- (Reg3γ), and C3-/- (C3). All knockout mice tested displayed a considerable level of resistance to C. rodentium infection, and none phenocopied the lethality observed in Il22-/- mice. By investigating another arm of the IL-22 response, we observed that C. rodentium-infected Il22-/- mice exhibited an overall decrease in gene expression related to intestinal barrier integrity as well as significantly elevated colonic inflammation, gut permeability, and pathogen levels in the spleen. Taken together, these results indicate that host resistance to lethal C. rodentium infection may depend on multiple antimicrobial responses acting in concert, or that other IL-22-regulated processes, such as tissue repair and maintenance of epithelial integrity, play crucial roles in host defense to attaching and effacing pathogens.


Subject(s)
Citrobacter rodentium , Enterobacteriaceae Infections , Interleukin-22 , Animals , Mice , Citrobacter rodentium/immunology , Disease Models, Animal , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/microbiology , Interleukin-22/genetics , Interleukin-22/metabolism , Mice, Inbred C57BL , Mice, Knockout , Pancreatitis-Associated Proteins/genetics , Pancreatitis-Associated Proteins/metabolism , Pancreatitis-Associated Proteins/immunology
6.
Free Radic Biol Med ; 218: 16-25, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574974

ABSTRACT

A critical feature of the cellular antioxidant response is the induction of gene expression by redox-sensitive transcription factors. In many cells, activating these transcription factors is a dynamic process involving multiple redox steps, but it is unclear how these dynamics should be measured. Here, we show how the dynamic profile of the Schizosaccharomyces pombe Pap1 transcription factor is quantifiable by three parameters: signal amplitude, signal time and signal duration. In response to increasing hydrogen peroxide concentrations, the Pap1 amplitude decreased while the signal time and duration showed saturable increases. In co-response plots, these parameters showed a complex, non-linear relationship to the mRNA levels of four Pap1-regulated genes. We also demonstrate that hydrogen peroxide and tert-butyl hydroperoxide trigger quantifiably distinct Pap1 activation profiles and transcriptional responses. Based on these findings, we propose that different oxidants and oxidant concentrations modulate the Pap1 dynamic profile, leading to specific transcriptional responses. We further show how the effect of combination and pre-exposure stresses on Pap1 activation dynamics can be quantified using this approach. This method is therefore a valuable addition to the redox signalling toolbox that may illuminate the role of dynamics in determining appropriate responses to oxidative stress.


Subject(s)
Hydrogen Peroxide , Oxidation-Reduction , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Signal Transduction , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces/genetics , Hydrogen Peroxide/metabolism , tert-Butylhydroperoxide/pharmacology , Pancreatitis-Associated Proteins/metabolism , Pancreatitis-Associated Proteins/genetics , Gene Expression Regulation, Fungal , Oxidative Stress , Transcription Factors/metabolism , Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Oxidants/pharmacology , Oxidants/metabolism
7.
Mitochondrion ; 76: 101875, 2024 May.
Article in English | MEDLINE | ID: mdl-38499131

ABSTRACT

Pentatricopeptide repeat proteins are involved in mitochondrial both transcriptional and posttranscriptional regulation. Schizosaccharomyces pombe Ppr2 is a general mitochondrial translation factor that plays a critical role in the synthesis of all mitochondrial DNA-encoded oxidative phosphorylation subunits, which are essential for mitochondrial respiration. Our previous analysis showed that ppr2 deletion resulted in increased expression of iron uptake genes and caused ferroptosis-like cell death in S. pombe. In the present work, we showed that deletion of ppr2 reduced viability on glycerol- and galactose-containing media.Php4 is a transcription repressor that regulates iron homeostasis in fission yeast. We found that in the ppr2 deletion strain, Php4 was constitutively active and accumulated in the nucleus in the stationary phase. We also found that deletion of ppr2 decreased the ferroptosis-related protein Gpx1 in the mitochondria. Overexpression of Gpx1 improves the viability of Δppr2 cells. We showed that the deletion of ppr2 increased the production of ROS, downregulated heme synthesis and iron-sulfur cluster proteins, and induced stress proteins. Finally, we observed the nuclear accumulation of Pap1-GFP and Sty1-GFP, suggesting that Sty1 and Pap1 in response to cellular stress in the ppr2 deletion strain. These results suggest thatppr2 deletion may cause mitochondrial dysfunction, which is likely to lead to iron-sensing defect and iron starvation response, resulting in perturbation of iron homeostasis and increased hydroxyl radical production. The increased hydroxyl radical production triggers cellular responses in theppr2 deletion strain.


Subject(s)
Gene Deletion , Iron , Oxidative Stress , Pancreatitis-Associated Proteins , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Iron/metabolism , Pancreatitis-Associated Proteins/metabolism , Pancreatitis-Associated Proteins/genetics , Gene Expression Regulation, Fungal , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Reactive Oxygen Species/metabolism , Microbial Viability , CCAAT-Binding Factor , Basic-Leucine Zipper Transcription Factors
8.
Transplant Cell Ther ; 30(6): 603.e1-603.e11, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38548227

ABSTRACT

Acute graft versus host disease (GVHD) is a common and serious complication of allogeneic hematopoietic cell transplantation (HCT) in children but overall clinical grade at onset only modestly predicts response to treatment and survival outcomes. Two tools to assess risk at initiation of treatment were recently developed. The Minnesota risk system stratifies children for risk of nonrelapse mortality (NRM) according to the pattern of GVHD target organ severity. The Mount Sinai Acute GVHD International Consortium (MAGIC) algorithm of 2 serum biomarkers (ST2 and REG3α) predicts NRM in adult patients but has not been validated in a pediatric population. We aimed to develop and validate a system that stratifies children at the onset of GVHD for risk of 6-month NRM. We determined the MAGIC algorithm probabilities (MAPs) and Minnesota risk for a multicenter cohort of 315 pediatric patients who developed GVHD requiring treatment with systemic corticosteroids. MAPs created 3 risk groups with distinct outcomes at the start of treatment and were more accurate than Minnesota risk stratification for prediction of NRM (area under the receiver operating curve (AUC), .79 versus .62, P = .001). A novel model that combined Minnesota risk and biomarker scores created from a training cohort was more accurate than either biomarkers or clinical systems in a validation cohort (AUC .87) and stratified patients into 2 groups with highly different 6-month NRM (5% versus 38%, P < .001). In summary, we validated the MAP as a prognostic biomarker in pediatric patients with GVHD, and a novel risk stratification that combines Minnesota risk and biomarker risk performed best. Biomarker-based risk stratification can be used in clinical trials to develop more tailored approaches for children who require treatment for GVHD.


Subject(s)
Biomarkers , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Pancreatitis-Associated Proteins , Humans , Graft vs Host Disease/blood , Graft vs Host Disease/diagnosis , Child , Biomarkers/blood , Female , Male , Hematopoietic Stem Cell Transplantation/adverse effects , Child, Preschool , Adolescent , Pancreatitis-Associated Proteins/blood , Acute Disease , Risk Assessment , Infant , Interleukin-1 Receptor-Like 1 Protein/blood , Algorithms , Transplantation, Homologous/adverse effects , Treatment Outcome
9.
Microbiol Spectr ; 12(5): e0390523, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38501823

ABSTRACT

Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative facultative anaerobe that has become an important cause of severe infections in humans, particularly in patients with cystic fibrosis. The development of efficacious methods or mendicants against P. aeruginosa is still needed. We previously reported that regenerating islet-derived family member 4 (Reg4) has bactericidal activity against Salmonella Typhimurium, a Gram-negative flagellated bacterium. We herein explore whether Reg4 has bactericidal activity against P. aeruginosa. In the P. aeruginosa PAO1-chronic infection model, Reg4 significantly inhibits the colonization of PAO1 in the lung and subsequently ameliorates pulmonary inflammation and fibrosis. Reg4 recombinant protein suppresses the growth motility and biofilm formation capability of PAO1 in vitro. Mechanistically, Reg4 not only exerts bactericidal action via direct binding to the P. aeruginosa cell wall but also enhances the phagocytosis of alveolar macrophages in the host. Taken together, our study demonstrates that Reg4 may provide protection against P. aeruginosa-induced pulmonary inflammation and fibrosis via its antibacterial activity.IMPORTANCEChronic lung infection with Pseudomonas aeruginosa is a leading cause of morbidity and mortality in patients with cystic fibrosis. Due to the antibiotic resistance of Pseudomonas aeruginosa, antimicrobial peptides appear to be a potential alternative to combat its infection. In this study, we report an antimicrobial peptide, regenerating islet-derived 4 (Reg4), that showed killing activity against clinical strains of Pseudomonas aeruginosa PAO1 and ameliorated PAO1-induced pulmonary inflammation and fibrosis. Experimental data also showed Reg4 directly bound to the bacterial cell membrane and enhanced the phagocytosis of host alveolar macrophages. Our presented study will be a helpful resource in searching for novel antimicrobial peptides that could have the potential to replace conventional antibiotics.


Subject(s)
Anti-Bacterial Agents , Pancreatitis-Associated Proteins , Pseudomonas Infections , Pseudomonas aeruginosa , Pseudomonas aeruginosa/drug effects , Animals , Pseudomonas Infections/microbiology , Pseudomonas Infections/drug therapy , Mice , Pancreatitis-Associated Proteins/metabolism , Pancreatitis-Associated Proteins/genetics , Anti-Bacterial Agents/pharmacology , Humans , Macrophages, Alveolar/microbiology , Macrophages, Alveolar/immunology , Biofilms/drug effects , Biofilms/growth & development , Mice, Inbred C57BL , Pneumonia/microbiology , Antimicrobial Peptides/pharmacology , Phagocytosis/drug effects , Lung/microbiology , Lung/pathology , Cystic Fibrosis/microbiology , Cystic Fibrosis/complications , Pulmonary Fibrosis/microbiology , Disease Models, Animal
10.
PeerJ ; 12: e16921, 2024.
Article in English | MEDLINE | ID: mdl-38426148

ABSTRACT

Objective: Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease characterized by an unclear pathogenesis. This study aims to screen out key genes related to UC pathogenesis. Methods: Bioinformatics analysis was conducted for screening key genes linked to UC pathogenesis, and the expression of the screened key genes was verified by establishing a UC mouse model. Results: Through bioinformatics analysis, five key genes were obtained. Subsequent infiltration analysis revealed seven significantly different immune cell types between the UC and general samples. Additionally, animal experiment results illustrated markedly decreased body weight, visible colonic shortening and damage, along with a significant increase in the DAI score of the DSS-induced mice in the UC group in comparison with the NC group. In addition, H&E staining results demonstrated histological changes including marked inflammatory cell infiltration, loss of crypts, and epithelial destruction in the colon mucosa epithelium. qRT-PCR analysis indicated a down-regulation of ABCG2 and an up-regulation of IL1RN, REG4, SERPINB5 and TRIM29 in the UC mouse model. Notably, this observed trend showed a significant dependence on the concentration of DSS, with the mouse model of UC induced by 7% DSS demonstrating a more severe disease state compared to that induced by 5% DSS. Conclusion: ABCG2, IL1RN, REG4, SERPINB5 and TRIM29 were screened out as key genes related to UC by bioinformatics analysis. The expression of ABCG2 was down-regulated, and that of IL1RN, REG4, SERPINB5 and TRIM29 were up-regulated in UC mice as revealed by animal experiments.


Subject(s)
Colitis, Ulcerative , Inflammatory Bowel Diseases , Mice , Animals , Colitis, Ulcerative/chemically induced , Down-Regulation/genetics , Pancreatitis-Associated Proteins/genetics
11.
Am J Pathol ; 194(6): 975-988, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38423356

ABSTRACT

Radiation-induced enteritis, a significant concern in abdominal radiation therapy, is associated closely with gut microbiota dysbiosis. The mucus layer plays a pivotal role in preventing the translocation of commensal and pathogenic microbes. Although significant expression of REGγ in intestinal epithelial cells is well established, its role in modulating the mucus layer and gut microbiota remains unknown. The current study revealed notable changes in gut microorganisms and metabolites in irradiated mice lacking REGγ, as compared to wild-type mice. Concomitant with gut microbiota dysbiosis, REGγ deficiency facilitated the infiltration of neutrophils and macrophages, thereby exacerbating intestinal inflammation after irradiation. Furthermore, fluorescence in situ hybridization assays unveiled an augmented proximity of bacteria to intestinal epithelial cells in REGγ knockout mice after irradiation. Mechanistically, deficiency of REGγ led to diminished goblet cell populations and reduced expression of key goblet cell markers, Muc2 and Tff3, observed in both murine models, minigut organoid systems and human intestinal goblet cells, indicating the intrinsic role of REGγ within goblet cells. Interestingly, although administration of broad-spectrum antibiotics did not alter the goblet cell numbers or mucin 2 (MUC2) secretion, it effectively attenuated inflammation levels in the ileum of irradiated REGγ absent mice, bringing them down to the wild-type levels. Collectively, these findings highlight the contribution of REGγ in counteracting radiation-triggered microbial imbalances and cell-autonomous regulation of mucin secretion.


Subject(s)
Enteritis , Gastrointestinal Microbiome , Goblet Cells , Homeostasis , Mice, Knockout , Animals , Enteritis/microbiology , Enteritis/metabolism , Enteritis/pathology , Mice , Goblet Cells/pathology , Goblet Cells/metabolism , Humans , Pancreatitis-Associated Proteins/metabolism , Mucin-2/metabolism , Dysbiosis/microbiology , Dysbiosis/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Trefoil Factor-3/metabolism , Mice, Inbred C57BL , Radiation Injuries/metabolism , Radiation Injuries/microbiology , Radiation Injuries/pathology , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/microbiology
12.
Plant Commun ; 5(5): 100821, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38229439

ABSTRACT

Anthocyanin accumulation is acknowledged as a phenotypic indicator of phosphate (Pi) starvation. However, negative regulators of this process and their molecular mechanisms remain largely unexplored. In this study, we demonstrate that WRKY33 acts as a negative regulator of phosphorus-status-dependent anthocyanin biosynthesis. WRKY33 regulates the expression of the gene encoding dihydroflavonol 4-reductase (DFR), a rate-limiting enzyme in anthocyanin production, both directly and indirectly. WRKY33 binds directly to the DFR promoter to repress its expression and also interferes with the MBW complex through interacting with PAP1 to indirectly influence DFR transcriptional activation. Under -Pi conditions, PHR1 interacts with WRKY33, and the protein level of WRKY33 decreases; the repression of DFR expression by WRKY33 is thus attenuated, leading to anthocyanin accumulation in Arabidopsis. Further genetic and biochemical assays suggest that PHR1 is also involved in regulating factors that affect WRKY33 protein turnover. Taken together, our findings reveal that Pi starvation represses WRKY33, a repressor of anthocyanin biosynthesis, to finely tune anthocyanin biosynthesis. This "double-negative logic" regulation of phosphorus-status-dependent anthocyanin biosynthesis is required for the maintenance of plant metabolic homeostasis during acclimation to Pi starvation.


Subject(s)
Anthocyanins , Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Phosphates , Transcription Factors , Anthocyanins/biosynthesis , Anthocyanins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Phosphates/metabolism , Acclimatization , Pancreatitis-Associated Proteins/metabolism , Pancreatitis-Associated Proteins/genetics , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/genetics
13.
Peptides ; 173: 171148, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215942

ABSTRACT

Type 2 diabetes (T2D) is characterized by peripheral insulin resistance and altered insulin secretion due to a progressive loss of ß-cell mass and function. Today, most antidiabetic agents are designed to resolve impaired insulin secretion and/or insulin resistance, and only GLP-1-based formulations contribute to stopping the decline in ß-cell mass. HTD4010, a peptide carrying two modifications of the amino acid sequence of INGAP-PP (N-terminus acetylation and substitution of Asn13 by Ala) showed greater plasma stability and could be a good candidate for proposal as a drug that could improve ß cell mass and function lost in T2D. In the present study, we showed that HTD4010 included in the culture media of normal rat islets at a dose 100 times lower than that used for INGAP-PP was able to modulate, in the same way as the original peptide, both insulin secretion in response to glucose and the expression of key genes related to insular function, insulin and leptin intracellular pathways, neogenesis, apoptosis, and inflammatory response. Our results confirm the positive effect of HTD4010 on ß-cell function and gene expression of factors involved in the maintenance of ß-cell mass. Although new assays in animal models of prediabetes and T2D must be performed to be conclusive, our results are very encouraging, and they suggest that the use of HTD4010 at a dose 100 times lower than that of INGAP-PP could minimize its side effects in a future clinical trial.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Islets of Langerhans , Rats , Animals , Insulin Secretion , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Pancreatitis-Associated Proteins/genetics , Rats, Wistar , Peptide Fragments/pharmacology , Peptides/genetics , Peptides/pharmacology , Peptides/metabolism , Insulin/metabolism , Gene Expression , Islets of Langerhans/metabolism
14.
J Thromb Thrombolysis ; 57(3): 370-380, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38066386

ABSTRACT

Novel biomarkers are needed to improve current imperfect risk prediction models for cancer-associated thrombosis (CAT). We recently identified an RNA-sequencing profile that associates with CAT in colorectal cancer (CRC) patients, with REG4, SPINK4, and SERPINA1 as the top-3 upregulated genes at mRNA level. In the current study, we investigated whether protein expression of REG4, SPINK4 and alpha-1 antitrypsin (A1AT, encoded by SERPINA1) in the tumor associated with CAT in an independent cohort of CRC patients. From 418 patients with resected CRC, 18 patients who developed CAT were age, sex, and tumor stage-matched to 18 CRC patients without CAT. Protein expression was detected by immunohistochemical staining and scored blindly by assessing the H-score (percentage positive cells*scoring intensity). The association with CAT was assessed by means of logistic regression, using patients with an H-score below 33 as reference group. The odds ratios (ORs) for developing CAT for patients with A1AThigh, REG4high, SPINK4high tumors were 3.5 (95%CI 0.8-14.5), 2.0 (95%CI 0.5-7.6) and 2.0 (95%CI 0.5-7.4) when compared to A1ATlow, REG4low, SPINK4low, respectively. The OR was increased to 24.0 (95%CI 1.1-505.1) when two proteins were combined (A1AThigh/REG4high). This nested case-control study shows that combined protein expression of A1AT and REG4 associate with CAT in patients with colorectal cancer. Therefore, REG4/A1AT are potential biomarkers to improve the identification of patients with CRC who may benefit from thromboprophylaxis.


Subject(s)
Colorectal Neoplasms , Venous Thromboembolism , Humans , Case-Control Studies , Anticoagulants , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Biomarkers , Pancreatitis-Associated Proteins , Serine Peptidase Inhibitors, Kazal Type
15.
J Cyst Fibros ; 23(1): 120-125, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37716879

ABSTRACT

BACKGROUND: Dutch newborn screening (NBS) for Cystic Fibrosis (CF) introduced in 2011 showed a sensitivity of 90% and a positive predictive value (PPV) of 63%. We describe a study including an optimization phase and evaluation of the modified protocol. METHODS: Dutch protocol consists of four steps: determination of immunoreactive trypsinogen (IRT) and pancreatitis-associated protein (PAP), DNA analysis by INNO-LiPA and extended gene analysis (EGA). For the optimization phase we used results of 556,952 newborns screened between April 2011 and June 2014 to calculate effects of 13 alternative protocols on sensitivity, specificity, PPV, ratios of CF to other diagnoses, and costs. One alternative protocol was selected based on calculated sensitivity, PPV and costs and was implemented on 1st July 2016. In this modified protocol DNA analysis is performed in samples with a combination of IRT ≥60 µg/l and PAP ≥3.0 µg/l, IRT ≥100 µg/l and PAP ≥1.2 µg/l or IRT ≥124 µg/l and PAP not relevant. Results of 599,137 newborns screened between 1st July 2016 and 31st December 2019 were similarly evaluated as in the optimization phase. RESULTS: The modified protocol showed a sensitivity of 95%, PPV of 76%, CF to CF transmembrane conductance regulator-related metabolic syndrome/CF screen positive, inconclusive diagnoses (CRMS/CFSPID) ratio 12/1, CF/CF carrier ratio 4/1. Costs per screened newborn were slightly higher. Eleven children, of whom five with classic CF, would not have been referred with the previous protocol. CONCLUSIONS: The modified protocol results in acceptable sensitivity (95%) and good PPV of 76% with minimal increase in costs.


Subject(s)
Cystic Fibrosis , Child , Infant, Newborn , Humans , Cystic Fibrosis/diagnosis , Cystic Fibrosis/genetics , Neonatal Screening/methods , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Pancreatitis-Associated Proteins , Trypsinogen , DNA
16.
Front Endocrinol (Lausanne) ; 14: 1226615, 2023.
Article in English | MEDLINE | ID: mdl-37842306

ABSTRACT

Background: Diabetes mellitus is characterized by chronic hyperglycemia with loss of ß-cell function and mass. An attractive therapeutic approach to treat patients with diabetes in a non-invasive way is to harness the innate regenerative potential of the pancreas. The Islet Neogenesis-Associated Protein pentadecapeptide (INGAP-PP) has been shown to induce ß-cell regeneration and improve their function in rodents. To investigate its possible mechanism of action, we report here the global transcriptional effects induced by the short-term INGAP-PP in vitro treatment of adult rat pancreatic islets. Methods and findings: Rat pancreatic islets were cultured in vitro in the presence of INGAP-PP for 4 days, and RNA-seq was generated from triplicate treated and control islet samples. We performed a de novo rat gene annotation based on the alignment of RNA-seq reads. The list of INGAP-PP-regulated genes was integrated with epigenomic data. Using the new gene annotation generated in this work, we quantified RNA-seq data profiled in INS-1 cells treated with IL1ß, IL1ß+Calcipotriol (a vitamin D agonist) or vehicle, and single-cell RNA-seq data profiled in rat pancreatic islets. We found 1,669 differentially expressed genes by INGAP-PP treatment, including dozens of previously unannotated rat transcripts. Genes differentially expressed by the INGAP-PP treatment included a subset of upregulated transcripts that are associated with vitamin D receptor activation. Supported by epigenomic and single-cell RNA-seq data, we identified 9 previously unannotated long noncoding RNAs (lncRNAs) upregulated by INGAP-PP, some of which are also differentially regulated by IL1ß and vitamin D in ß-cells. These include Ri-lnc1, which is enriched in mature ß-cells. Conclusions: Our results reveal the transcriptional program that could explain the enhancement of INGAP-PP-mediated physiological effects on ß-cell mass and function. We identified novel lncRNAs that are induced by INGAP-PP in rat islets, some of which are selectively expressed in pancreatic ß-cells and downregulated by IL1ß treatment of INS-1 cells. Our results suggest a relevant function for Ri-lnc1 in ß-cells. These findings are expected to provide the basis for a deeper understanding of islet translational results from rodents to humans, with the ultimate goal of designing new therapies for people with diabetes.


Subject(s)
Diabetes Mellitus , Islets of Langerhans , RNA, Long Noncoding , Rats , Humans , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Pancreatitis-Associated Proteins/genetics , Pancreatitis-Associated Proteins/metabolism , Pancreatitis-Associated Proteins/pharmacology , Insulin/metabolism , Islets of Langerhans/metabolism , Peptides/metabolism , Diabetes Mellitus/metabolism , Vitamin D/metabolism
17.
World J Gastroenterol ; 29(35): 5104-5124, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37744296

ABSTRACT

BACKGROUND: Regenerating gene 4 (REG4) has been proved to be carcinogenic in some cancers, but its manifestation and possible carcinogenic mechanisms in colorectal cancer (CRC) have not yet been elucidated. Our previous study found that the drug resistance of CRC cells may be closely linked to their fat metabolism. AIM: To explore the role of REG4 in CRC and its association with lipid droplet formation and chemoresistance. METHODS: We conducted a meta-analysis and bioinformatics and pathological analyses of REG4 expression in CRC. The effects of REG4 on the phenotypes and related protein expression were also investigated in CRC cells. We detected the impacts of REG4 on the chemoresistance and lipid droplet formation in CRC cells. Finally, we analyzed how REG4 regulated the transcription and proteasomal degradation of lipogenic enzymes in CRC cells. RESULTS: Compared to normal mucosa, REG4 mRNA expression was high in CRC (P < 0.05) but protein expression was low. An inverse correlation existed between lymph node and distant metastases, tumor-node-metastasis staging or short overall survival and REG4 mRNA overexpression (P < 0.05), but vice versa for REG4 protein expression. REG4-related genes included: Chemokine activity; taste receptors; protein-DNA and DNA packing complexes; nucleosomes and chromatin; generation of second messenger molecules; programmed cell death signals; epigenetic regulation and DNA methylation; transcription repression and activation by DNA binding; insulin signaling pathway; sugar metabolism and transfer; and neurotransmitter receptors (P < 0.05). REG4 exposure or overexpression promoted proliferation, antiapoptosis, migration, and invasion of DLD-1 cells in an autocrine or paracrine manner by activating the epidermal growth factor receptor-phosphoinositide 3-kinase-Akt-nuclear factor-κB pathway. REG4 was involved in chemoresistance not through de novo lipogenesis, but lipid droplet assembly. REG4 inhibited the transcription of acetyl-CoA carboxylase 1 (ACC1) and ATP-citrate lyase (ACLY) by disassociating the complex formation of anti-acetyl (AC)-acetyl-histone 3-AC-histone 4-inhibitor of growth protein-5-si histone deacetylase;-sterol-regulatory element binding protein 1 in their promoters and induced proteasomal degradation of ACC1 or ACLY. CONCLUSION: REG4 may be involved in chemoresistance through lipid droplet assembly. REG4 reduces expression of de novo lipid synthesis key enzymes by inhibiting transcription and promoting ubiquitination-mediated proteasomal degradation.


Subject(s)
Colorectal Neoplasms , Drug Resistance, Neoplasm , Lipid Droplets , Pancreatitis-Associated Proteins , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , DNA , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic , Histones , Phosphatidylinositol 3-Kinases , Pancreatitis-Associated Proteins/genetics
18.
Exp Mol Med ; 55(8): 1672-1677, 2023 08.
Article in English | MEDLINE | ID: mdl-37524871

ABSTRACT

Regenerating family member gamma, Reg3γ (the mouse homolog of human REG3A), belonging to the antimicrobial peptides (AMPs), functions as a part of the host immune system to maintain spatial segregation between the gut bacteria and the host in the intestine via bactericidal activity. There is emerging evidence that gut manipulations such as bariatric surgery, dietary supplementation or drug treatment to produce metabolic benefits alter the gut microbiome. In addition to changes in a wide range of gut hormones, these gut manipulations also induce the expression of Reg3γ in the intestine. Studies over the past decades have revealed that Reg3γ not only plays a role in the gut lumen but can also contribute to host physiology through interaction with the gut microbiota. Herein, we discuss the current knowledge regarding the biology of Reg3γ, its role in various metabolic functions, and new opportunities for therapeutic strategies to treat metabolic disorders.


Subject(s)
Gastrointestinal Microbiome , Metabolic Diseases , Animals , Mice , Bacteria/metabolism , Metabolic Diseases/drug therapy , Pancreatitis-Associated Proteins/metabolism
19.
J Obstet Gynaecol ; 43(1): 2213764, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37218920

ABSTRACT

To clarify the clinicopathological importance of REG4 mRNA expression, we used GEO, TCGA, xiantao, UALCAN, and Kaplan-Meier plotter for a bioinformatics analysis in breast, cervical, endometrial and ovarian cancers. Compared to normal tissues, REG4 expression was found to be upregulated in breast, cervical, endometrial, and ovarian cancers (p < 0.05). Breast cancer had a higher level of REG4 methylation than normal tissues (p < 0.05), which was negatively correlated with its mRNA expression. REG4 expression was positively correlated with oestrogen and progesterone receptor expression, and aggressiveness of PAM50 classification of breast cancer patients (p < 0.05). Breast infiltrating lobular carcinomas expressed more REG4 than ductal carcinomas (p < 0.05). The REG4-related signal pathways mainly included peptidase, keratinisation, brush border and digestion and so forth in gynecological cancers. Our results indicated that REG4 overexpression was associated with gynecological carcinogenesis and their histogenesis, and may be used as a marker for aggressive behaviour and prognosis of breast or cervical cancer.IMPACT STATEMENTWhat is already known on this subject? REG4 encodes a secretory c-type lectin and plays an essential role in inflammation, carcinogenesis, apoptotic and radiochemotherapeutic resistance.What do the results of this study add? As a standalone predictor, REG4 expression was positively correlated with progression-free survival. Expression of REG4 mRNA was positively associated with the T stage and adenosquamous cell carcinoma of cervical cancer. The top signal pathways related to REG4 included smell and chemical stimulus, peptidase, intermediate filament, and keratinisation in breast cancer; ligand-receptor interaction, metabolism of hormone, xenobiotic and retinol, peptidase, brush border and digestion in cervical and ovarian cancers; bile secretion, intermediate filament, chemical carcinogenesis, brush border and keratinisation in endometrial cancer. REG4 mRNA expression was positively correlated with DC cell infiltration in breast cancer, positively with Th17 cells, TFH, cytotoxic cells and T cells in cervical and endometrial cancers, and negatively with DC cell infiltration, cytotoxic cells and T cells in ovarian cancer. The top hub genes mainly included small proline rich protein 2B in breast cancer; fibrinogens and apoproteins in cervical, endometrial and ovarian cancers.What are the implications of these finding for clinical practice and/or further research? Our study has showed that REG4 mRNA expression is a potential biomarker or therapeutic target for gynaecologic cancers.


Subject(s)
Breast Neoplasms , Endometrial Neoplasms , Ovarian Neoplasms , Uterine Cervical Neoplasms , Female , Humans , Prognosis , RNA, Messenger , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Ovarian Neoplasms/pathology , Endometrial Neoplasms/pathology , Carcinogenesis/genetics , Breast Neoplasms/genetics , Computational Biology , Pancreatitis-Associated Proteins/genetics
20.
Cell Mol Gastroenterol Hepatol ; 15(4): 971-984, 2023.
Article in English | MEDLINE | ID: mdl-36414210

ABSTRACT

BACKGROUND & AIMS: Deep crypt secretory (DCS) cells are a critical component of the colonic stem cell niche. However, the regulatory mechanisms controlling DCS cell numbers and function are not well understood. Sprouty2 is an inflammation-responsive regulator of intracellular signaling that influences colonic secretory cell numbers in colitis via an epithelial-stromal interleukin (IL)33/IL13 signaling loop. Here, we tested the hypothesis that IL13, induced by epithelial Sprouty2 down-regulation, promotes DCS cell differentiation and function. METHODS: Distal colons from mice with an intestinal epithelial-specific Sprouty2 deletion (Spry2ΔIE) and littermate controls were analyzed by in situ hybridization for Reg4+ DCS cells. Single-cell RNA sequencing and immunostaining were used to identify DCS cell-derived host defense peptides (HDPs) and localization of IL13 and IL13 receptor; bulk RNA sequencing and quantitative polymerase chain reaction were used to quantify changes in expression of identified HDPs. Cytokine-treated colonoids were assessed for DCS cells. A requirement for an IL33/IL13 signaling loop in the regulation of DCS cells was assessed in vivo using IL13 null mice. RESULTS: Reg4+ DCS cell numbers were increased 2-fold in distal colons of Spry2ΔIE mice with a concomitant overall increase in DCS cell marker expression (Reg4, Spink4, and Agr2). Single-cell transcriptomics showed the HDP Retnlb/Resistin Like Beta (RELMß) is highly enriched in DCS cells. Retnlb/RELMß expression was increased in Spry2ΔIE colons. IL13, but not IL33, induced Reg4 and Retnlb expression in colonic epithelial organoids, and IL33-mediated expansion of the DCS cell population in vivo was dependent on IL13, which was expressed predominantly by type II innate lymphoid cells in the colonic mucosa. CONCLUSIONS: Sprouty2 limits colonic DCS cell differentiation through suppression of IL13 signaling. At homeostasis, DCS cells are marked by high levels of the HDP RELMß. Loss of epithelial Sprouty2 activates type II innate lymphoid cells to release IL13, promoting expansion of the DCS cell population and increased colonic RELMß levels.


Subject(s)
Immunity, Innate , Interleukin-13 , Animals , Mice , Cell Differentiation , Epithelium , Lymphocytes , Mice, Knockout , Pancreatitis-Associated Proteins , Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...