Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Publication year range
1.
Sci Rep ; 7(1): 11260, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28900161

ABSTRACT

Coenzyme A is an essential metabolite known for its central role in over one hundred cellular metabolic reactions. In cells, Coenzyme A is synthesized de novo in five enzymatic steps with vitamin B5 as the starting metabolite, phosphorylated by pantothenate kinase. Mutations in the pantothenate kinase 2 gene cause a severe form of neurodegeneration for which no treatment is available. One therapeutic strategy is to generate Coenzyme A precursors downstream of the defective step in the pathway. Here we describe the synthesis, characteristics and in vivo rescue potential of the acetyl-Coenzyme A precursor S-acetyl-4'-phosphopantetheine as a possible treatment for neurodegeneration associated with pantothenate kinase deficiency.


Subject(s)
Heredodegenerative Disorders, Nervous System/drug therapy , Pantetheine/analogs & derivatives , Phosphotransferases (Alcohol Group Acceptor)/deficiency , Serum/chemistry , Animals , Cell Line , Disease Models, Animal , Drosophila , Humans , Mice , Pantetheine/administration & dosage , Pantetheine/chemical synthesis , Pantetheine/isolation & purification , Pantetheine/pharmacokinetics , Treatment Outcome
2.
Curr Eye Res ; 20(1): 17-24, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10611711

ABSTRACT

PURPOSE: Few studies have examined the impact of long-term treatments or exposures on the development of cataract in maturity-onset animal models. We studied the effect of treatment with D-pantethine and exposure to ultraviolet-B (UVB) radiation on the development of lenticular opacity in the Emory mouse. METHODS: A total of 164 Emory mice were randomized by litter at weaning to exposure to UVB light at 12 mJ/cm(2) for 6 hr/day (UV) or usual room light (A), and within litter, were further randomized to bi-weekly intra-peritoneal injections of 0.8 g/kg pantethine (T) or no treatment (C). Retro illumination lens photos were taken at 2, 4, 6, 8, and 10 months after weaning, and graded in masked fashion. The animals were sacrificed at 10 months and the lenses analyzed for total pantethine and total cysteamine. RESULTS: Lens pantethine and cysteamine levels were significantly (P < 0.001) higher for the T as compared to C litters. Mean cataract grade increased monotonically over time for all four groups. Unadjusted mean grade for the AT group at 8 (1.32) and 10 (1.86) months appeared lower than for the other groups (AC: 2.17, 2.39; UVC: 1.77, 2.40; UVT: 1.88, 2.37). However, the mean grade for the pantethine-treated litters did not differ significantly from the untreated litters except at 2 months (when untreated litters had significantly lower grades), when adjusting for UV treatment, gender and litter effect. No significant difference in cataract score existed between UV-exposed and ambient litters. Mortality was higher among pantethine-treated (hazard ratio = 1.8, p = 0.05) and UV-exposed animals (hazard ratio = 1.8, p = 0. 03) than among the untreated and unexposed litters. CONCLUSION: Significantly increased lens levels of pantethine are achieved with long-term intra-peritoneal dosing. The impact of pantethine on the progression of lenticular opacity in the Emory mouse is less than has been reported in other models. This level of chronic UVB exposure appeared to have no effect on the development of cataract in this model.


Subject(s)
Cataract/pathology , Lens, Crystalline/drug effects , Lens, Crystalline/radiation effects , Pantetheine/analogs & derivatives , Ultraviolet Rays , Animals , Cataract/genetics , Cataract/metabolism , Cysteamine/metabolism , Disease Models, Animal , Disease Progression , Female , Lens, Crystalline/metabolism , Male , Mice , Mice, Inbred Strains/genetics , Pantetheine/pharmacokinetics , Pantetheine/pharmacology
3.
J Pharm Biomed Anal ; 15(5): 653-62, 1997 Feb.
Article in English | MEDLINE | ID: mdl-9127277

ABSTRACT

In several animal models, preliminary studies have indicated that pantethine may inhibit cataract formation. Therefore, preclinical trials need to be conducted to study the pharmacology of pantethine in the ocular lens and to establish its efficacy. Since pantethine, which is a disulfide, can undergo a variety of chemical modifications such as reduction and formation of mixed disulfides, a detailed study was first conducted to determine the stability of pantethine in rabbit lens homogenate. A knowledge of the stability of pantethine in lens homogenate was necessary to establish if pantethine could be metabolized in the time it takes to harvest and homogenize a lens. The results of this study will be used to establish a protocol for harvesting and homogenizing lens samples. Pantethine (100 microM) is completely reduced to pantetheine in rabbit lens homogenate in about 16 min. About 1.5% of the pantethine added to lens homogenate forms a mixed disulfide with lens proteins, and the remainder is found in the supernatant. The supernatant pantethine concentration decreases exponentially as a function of time, and the terminal half-life for this process is 3.3 min. The free supernatant pantetheine concentration increases in pseudo first order manner as a function of time with a rate constant of 4.3 min. Pantethinase activity is not significant, because the free supernatant pantetheine concentration did not decrease. The exact mechanism of pantethine reduction in rabbit lens homogenate remains to be determined.


Subject(s)
Lens, Crystalline/metabolism , Pantetheine/analogs & derivatives , Animals , Cattle , Chromatography, High Pressure Liquid , Drug Stability , Electrochemistry , Lens, Crystalline/enzymology , Oxidation-Reduction , Pantetheine/metabolism , Pantetheine/pharmacokinetics , Rabbits
4.
Ukr Biokhim Zh (1978) ; 59(5): 60-6, 1987.
Article in Russian | MEDLINE | ID: mdl-3686695

ABSTRACT

Distribution of [14C]labelled metabolites of pantothenic acid (PAA) has been studied in tissues of normal and PAA-deficient rats-weaners 6 h after single injection of the calcium pantothenate (PAA-Ca), calcium 4'-phosphopantothenate (PAA-Ca) or pantethine (PT) preparations. Essential differences in the intertissue distribution of vitamin derivatives to be injected are revealed against a background of a higher vitamin-retaining ability of the PAA-deficient tissues. A degree of radionuclides' biotransformation into CoA permits them to be arranged in the series: PPA-Ca greater than PAA-Ca greater than PT. In PAA-deficient animals which were injected labelled PPA-Ca up to 41% of the liver radioactivity is concentrated in the CoA fraction and the quantity of label in the composition of PAA-protein cytosolium complexes increases considerably. It is supposed that there is a special PAA-depositing system which provides the intracellular CoA biosynthesis.


Subject(s)
Pantothenic Acid/deficiency , Animals , Biotransformation , Cytosol/metabolism , Diet , Female , Liver/metabolism , Pantetheine/administration & dosage , Pantetheine/analogs & derivatives , Pantetheine/pharmacokinetics , Pantothenic Acid/administration & dosage , Pantothenic Acid/analogs & derivatives , Pantothenic Acid/metabolism , Pantothenic Acid/pharmacokinetics , Rats , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL