Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
SAR QSAR Environ Res ; 25(4): 289-323, 2014.
Article in English | MEDLINE | ID: mdl-24779616

ABSTRACT

Regulatory agencies are charged with addressing the endocrine disrupting potential of large numbers of chemicals for which there is often little or no data on which to make decisions. Prioritizing the chemicals of greatest concern for further screening for potential hazard to humans and wildlife is an initial step in the process. This paper presents the collection of in vitro data using assays optimized to detect low affinity estrogen receptor (ER) binding chemicals and the use of that data to build effects-based chemical categories following QSAR approaches and principles pioneered by Gilman Veith and colleagues for application to environmental regulatory challenges. Effects-based chemical categories were built using these QSAR principles focused on the types of chemicals in the specific regulatory domain of concern, i.e. non-steroidal industrial chemicals, and based upon a mechanistic hypothesis of how these non-steroidal chemicals of seemingly dissimilar structure to 17ß-estradiol (E2) could interact with the ER via two distinct binding types. Chemicals were also tested to solubility thereby minimizing false negatives and providing confidence in determination of chemicals as inactive. The high-quality data collected in this manner were used to build an ER expert system for chemical prioritization described in a companion article in this journal.


Subject(s)
Estrogens/classification , Animals , Endocrine Disruptors/chemistry , Endocrine Disruptors/classification , Endocrine Disruptors/toxicity , Estrogens/toxicity , Parabens/chemistry , Parabens/classification , Parabens/toxicity , Phenols/chemistry , Phenols/classification , Phenols/toxicity , Quantitative Structure-Activity Relationship , Receptors, Estrogen/metabolism , Salicylates/chemistry , Salicylates/classification , Salicylates/toxicity , Trout
2.
Reprod Toxicol ; 30(2): 301-12, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20381602

ABSTRACT

Parabens are preservatives used in a wide range of cosmetic products, including products for children, and some are permitted in foods. However, there is concern for endocrine disrupting effects. This paper critically discusses the conclusions of recent reviews and original research papers and provides an overview of studies on toxicokinetics. After dermal uptake, parabens are hydrolyzed and conjugated and excreted in urine. Despite high total dermal uptake of paraben and metabolites, little intact paraben can be recovered in blood and urine. Paraben metabolites may play a role in the endocrine disruption seen in experimental animals and studies are needed to determine human levels of parabens and metabolites. Overall, the estrogenic burden of parabens and their metabolites in blood may exceed the action of endogenous estradiol in childhood and the safety margin for propylparaben is very low when comparing worst-case exposure to NOAELs from experimental studies in rats and mice.


Subject(s)
Endocrine Disruptors/toxicity , Environmental Exposure/adverse effects , Environmental Pollutants/toxicity , Parabens/toxicity , Preservatives, Pharmaceutical/toxicity , Administration, Cutaneous , Animals , Endocrine Disruptors/classification , Endocrine Disruptors/pharmacokinetics , Environmental Pollutants/classification , Environmental Pollutants/pharmacokinetics , Estradiol/physiology , Humans , Mice , No-Observed-Adverse-Effect Level , Parabens/classification , Parabens/pharmacokinetics , Preservatives, Pharmaceutical/classification , Preservatives, Pharmaceutical/pharmacokinetics , Rats , Risk Assessment
3.
J Appl Toxicol ; 24(1): 5-13, 2004.
Article in English | MEDLINE | ID: mdl-14745841

ABSTRACT

Parabens are used as preservatives in many thousands of cosmetic, food and pharmaceutical products to which the human population is exposed. Although recent reports of the oestrogenic properties of parabens have challenged current concepts of their toxicity in these consumer products, the question remains as to whether any of the parabens can accumulate intact in the body from the long-term, low-dose levels to which humans are exposed. Initial studies reported here show that parabens can be extracted from human breast tissue and detected by thin-layer chromatography. More detailed studies enabled identification and measurement of mean concentrations of individual parabens in samples of 20 human breast tumours by high-pressure liquid chromatography followed by tandem mass spectrometry. The mean concentration of parabens in these 20 human breast tumours was found to be 20.6 +/- 4.2 ng x g(-1) tissue. Comparison of individual parabens showed that methylparaben was present at the highest level (with a mean value of 12.8 +/- 2.2 ng x g(-1) tissue) and represents 62% of the total paraben recovered in the extractions. These studies demonstrate that parabens can be found intact in the human breast and this should open the way technically for more detailed information to be obtained on body burdens of parabens and in particular whether body burdens are different in cancer from those in normal tissues.


Subject(s)
Breast Neoplasms/metabolism , Food Preservatives/metabolism , Parabens/metabolism , Preservatives, Pharmaceutical/metabolism , Breast Neoplasms/chemistry , Breast Neoplasms/etiology , Chromatography, Thin Layer , Environmental Exposure/adverse effects , Estrogens, Non-Steroidal/adverse effects , Female , Food Preservatives/analysis , Humans , Parabens/analysis , Parabens/classification , Preservatives, Pharmaceutical/analysis , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...