Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Genome Biol Evol ; 13(2)2021 02 03.
Article in English | MEDLINE | ID: mdl-33313646

ABSTRACT

The Paramecium aurelia complex, a group of morphologically similar but sexually incompatible sibling species, is a unique example of the evolutionary plasticity of mating-type systems. Each species has two mating types, O (Odd) and E (Even). Although O and E types are homologous in all species, three different modes of determination and inheritance have been described: genetic determination by Mendelian alleles, stochastic developmental determination, and maternally inherited developmental determination. Previous work in three species of the latter kind has revealed the key roles of the E-specific transmembrane protein mtA and its highly specific transcription factor mtB: type O clones are produced by maternally inherited genome rearrangements that inactivate either mtA or mtB during development. Here we show, through transcriptome analyses in five additional species representing the three determination systems, that mtA expression specifies type E in all cases. We further show that the Mendelian system depends on functional and nonfunctional mtA alleles, and identify novel developmental rearrangements in mtA and mtB which now explain all cases of maternally inherited mating-type determination. Epistasis between these genes likely evolved from less specific interactions between paralogs in the P. aurelia common ancestor, after a whole-genome duplication, but the mtB gene was subsequently lost in three P. aurelia species which appear to have returned to an ancestral regulation mechanism. These results suggest a model accounting for evolutionary transitions between determination systems, and highlight the diversity of molecular solutions explored among sibling species to maintain an essential mating-type polymorphism in cell populations.


Subject(s)
Evolution, Molecular , Paramecium aurelia/genetics , Paramecium/genetics , Alleles , Gene Expression , Membrane Proteins/genetics , Membrane Proteins/metabolism , Paramecium/metabolism , Paramecium aurelia/classification , Paramecium aurelia/metabolism , Phylogeny
2.
Small GTPases ; 11(6): 421-429, 2020 11.
Article in English | MEDLINE | ID: mdl-30156960

ABSTRACT

We examined sequence conservation and signatures of selection in Rab7 proteins across 11 Paramecium aurelia species, and determined the localization patterns of two P. tetraurelia Rab7 paralogs when expressed as GFP fusions in live cells. We found that, while there is a variable number of Rab7 paralogs per genome, Rab7 genes are highly conserved in sequence and appear to be under strong purifying selection across aurelias. Additionally, and surprisingly based on earlier studies, we found that two P. tetraurelia Rab7 proteins have virtually identical localization patterns. Consistent with this, when we examined the gene family of a highly conserved Rab binding partner across aurelias (Rab-Interacting Lysosomal Protein, or RILP), we found that residues in key binding sites in RILPs were absolutely conserved in 13 of 21 proteins, representing genes from 9 of the 11 species examined. Of note, RILP gene number appears to be even more constrained than Rab7 gene number per genome. Abbreviation: WGD: Whole genome duplication.


Subject(s)
Paramecium aurelia/metabolism , rab GTP-Binding Proteins/metabolism , Phylogeny , Species Specificity , rab7 GTP-Binding Proteins
3.
ACS Sens ; 4(12): 3275-3282, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31762257

ABSTRACT

This paper reports micropipette resonators, mechanical resonator-integrated micropipettes, which enable selective aspiration and mass measurement of particles or cells suspended in liquids with two orthogonal vibration modes. A custom pipette pulling system is built to provide power-modulated linear heating on a rotating glass capillary to make an asymmetric cross section with extended uniformity.A glass capillary is stretched with the custom puller, cut within the pulled region, polished, mounted on a machined metallic jig, and then coated with a metal. As a result, a doubly clamped tube resonator-integrated micropipette is made. For simultaneous frequency readouts of two orthogonal modes, an optical pickup, originally developed for optical data storage, is configured closely above and properly aligned to the micropipette resonator and two digital phase-locked loops are employed. For mass responsivity calibration, frequency shifts of the micropipette resonator are measured with various liquids and glass microparticles. Buoyant masses of unicellular organisms, Paramecium aurelia, freely swimming in a culture dish are successfully measured with two orthogonal modes.


Subject(s)
Calcium Compounds/chemistry , Equipment and Supplies , Oxides/chemistry , Paramecium aurelia/chemistry , Sodium Hydroxide/chemistry , Weights and Measures/instrumentation , Equipment Design , Paramecium aurelia/isolation & purification
4.
G3 (Bethesda) ; 8(7): 2523-2526, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29794165

ABSTRACT

Mutation is one of the most fundamental evolutionary forces. Studying variation in the mutation rate within and among closely-related species can help reveal mechanisms of genome divergence, but such variation is unstudied in the vast majority of organisms. Previous studies on ciliated protozoa have found extremely low mutation rates. In this study, using mutation-accumulation techniques combined with deep whole-genome sequencing, we explore the germline base-substitution mutation-rate variation of three cryptic species in the Paramecium aurelia species complex-P. biaurelia, P. sexaurelia, and P. tetraurelia We find that there is extremely limited variation of the mutation rate and spectrum in the three species and confirm the extremely low mutation rate of ciliates.


Subject(s)
Mutation Rate , Mutation , Paramecium aurelia/classification , Paramecium aurelia/genetics , DNA Mutational Analysis , Evolution, Molecular , Genome, Protozoan , Genomics/methods , High-Throughput Nucleotide Sequencing
5.
Nanotoxicology ; 11(5): 625-636, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28594294

ABSTRACT

Despite considerable research on the environmental impacts of nanomaterials, we know little about how they influence interactions between species. Here, we investigated the acute (12 d) and chronic (64 d) toxicities of cerium oxide nanoparticles (CeO2 NPs) and bulk particles (0-200 mg/L) to three ciliated protist species (Loxocephalus sp., Paramecium aurelia, and Tetrahymena pyriformis) in single-, bi-, and multispecies microcosms. The results show that CeO2 NPs strongly affected the interactions between ciliated protozoan species. When exposed to the highest CeO2 NPs (200 mg/L), the intrinsic growth rates of Loxocephalus and Paramecium were significantly decreased by 18.87% and 88.27%, respectively, while their carrying capacities declined by more than 90%. However, CeO2 NP exposure made it difficult to predict outcomes of interspecific competition between species. At higher NP exposure (100 and 200 mg/L), competition led to the extinction of both species in the Loxocephalus and Paramecium microcosms that survived in the absence of competitors or CeO2 NPs. Further, the presence of potential competitors improved the survival of Loxocephalus to hundreds of individuals per milliliter in microcosms with Tetrahymena where Loxocephalus would otherwise not be able to tolerate high levels of NP exposure. This result could be attributed to weakened NP adsorption on the cell surface due to competitor-caused reduction of NP surface charge (from -18.52 to -25.17 mV) and intensified NP aggregation via phagocytosis of NPs by ciliate cells. Our results emphasize the need to explicitly consider species interactions for a more comprehensive understanding of the ecological consequences of NP exposure.


Subject(s)
Cerium/toxicity , Metal Nanoparticles/toxicity , Paramecium aurelia , Tetrahymena pyriformis , Paramecium aurelia/drug effects , Paramecium aurelia/physiology , Species Specificity , Tetrahymena pyriformis/drug effects , Tetrahymena pyriformis/physiology , Toxicity Tests, Acute , Toxicity Tests, Chronic
6.
Am Nat ; 189(5): 592-597, 2017 05.
Article in English | MEDLINE | ID: mdl-28410029

ABSTRACT

Population dynamics may carry a signature of an ecology-evolution-ecology feedback, known as eco-evolutionary dynamics, when functionally important traits change. Given current theory, the absence of a feedback from a trait with strong links to species interactions should not occur. In a previous study with the Didinium-Paramecium predator-prey system, however, rapid and large-magnitude changes in predator cell volume occurred without any noticeable effect on the population dynamics. Here I resolve this theory-data conflict by showing that ecological pleiotropy-when a trait has more than one functional effect on an ecological process-suppresses shifts in dynamics that would arise, given the links between cell volume and the species interaction. Whether eco-evolutionary dynamics arise, therefore, depends not just on the ecology-evolution feedback but on the net effect that a trait has on different parts of the underlying interaction.


Subject(s)
Ciliophora/physiology , Food Chain , Paramecium aurelia/physiology , Phenotype , Biological Evolution , Body Size , Population Dynamics
7.
Folia Biol (Krakow) ; 64(4): 253-265, 2016.
Article in English | MEDLINE | ID: mdl-29809364

ABSTRACT

The temporal occurrence of some Paramecium aurelia species is still an intriguing problem as cysts were never reported to exist in the Paramecium genus. A sequence of species occurrence was studied (by strain crosses and molecular identification) in five water-bodies of the Jagiellonian University Botanical Garden in Krak6w in different sampling sites and different seasons of the year. In the current study 20 P. aurelia strains were isolated from collected water samples and identified as P. biaurelia, P. tetraurelia, P. sexaurelia (the first record in Poland), P. novaurelia (the first record in the Botanical Garden). Generally only one species was found in the particular water body in a single sampling point in a given season - an exception was observed in the case of some strains of P. tetraurelia and P. sexaurelia. The latter species were mostly isolated from two water bodies situated in the Palm Houses (higher temperature preference) and P. biaurelia with P. novaurelia from water bodies located outside (lower temperature preference). Sequencing of the COImtDNA fragment revealed 9 haplotypes in the studied area which were characteristic for particular species. The most variable species was P. sexaurelia - 8 strains studied and 3 haplotypes identified. In contrast, P. novaurelia has only one haplotype for 6 strains collected in different seasons. The present study supports the hypothesis that botanical garden water bodies may be a hot-spot for microbial eukaryotic species-such as Paramecium.


Subject(s)
Cytochromes c/genetics , Genetic Variation , Haplotypes , Paramecium aurelia/genetics , Seasons , Animals , Paramecium aurelia/physiology , Poland , Species Specificity
8.
Biofizika ; 60(5): 1039-40, 2015.
Article in Russian | MEDLINE | ID: mdl-26591617

ABSTRACT

Analysis of deviations between trajectories of Lotka-Volterra model of competition between two species and G.F. Gause experimental time series on combined cultivation of Paramecium aurelia and Paramecium caudatum shows that with rather big probability there is no correspondence between model and experimental datasets. Testing of sets of deviations was provided on symmetry with. respect to origin (Kolmogorov-Smirnov, Lehmann-Rosenblatt, Wald-Wolfowitz, and Munn-Whitney criterions) and on existence/absence of serial correlation in sequences of residuals (Swed-Eisenhart and "jumps up-jumps down" tests).


Subject(s)
Competitive Behavior/physiology , Paramecium aurelia/physiology , Paramecium caudatum/physiology , Models, Biological
9.
Folia Biol (Krakow) ; 63(3): 215-20, 2015.
Article in English | MEDLINE | ID: mdl-26462333

ABSTRACT

The occurrence of ciliates, especially the Paramecium aurelia complex, has not yet been studied in many parts of the world, or sampling was done only occasionally. Generally, the southern hemisphere still awaits investigation. In North America only the USA was studied in greater detail; the majority of species of the complex were there recorded. In Asia, more frequent sampling was performed only in Japan and Asiatic Russia. Europe was studied more carefully, however, a different number of habitats was studied in particular zones of Europe, the least in the southern zone. New stands of P. tetraurelia , P. sexaurelia, P. octaurelia, and P. novaurelia were revealed as a result of the present investigations carried out in Africa (Mozambique--P. tetraurelia, P. sexaurelia), Asia (Indonesia--P. sexaurelia), borderland of Asia and Europe (Georgia--P. octaurelia), and Europe (Macedonia--P. tetraurelia and Romania--P. novaurelia). Are climatic zones the main factor limiting the occurrence of species of the P. aurelia complex? Analysis of data on the distribution of the P. aurelia species complex in warm "tropical" zones on different continents may suggest such preferences for some species, including P. sexaurelia, P. octaurelia, P. tredecaurelia, P. quadecaurelia. The first two of these species were recorded herein in warm or "tropical" zone.


Subject(s)
Paramecium aurelia/classification , Temperature , Animals
10.
Ecol Lett ; 18(9): 954-63, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26206470

ABSTRACT

Dispersal and the underlying movement behaviour are processes of pivotal importance for understanding and predicting metapopulation and metacommunity dynamics. Generally, dispersal decisions are condition-dependent and rely on information in the broad sense, like the presence of conspecifics. However, studies on metacommunities that include interspecific interactions generally disregard condition-dependence. Therefore, it remains unclear whether and how dispersal in metacommunities is condition-dependent and whether rules derived from single-species contexts can be scaled up to (meta)communities. Using experimental protist metacommunities, we show how dispersal and movement depend on and are adjusted by the strength of interspecific interactions. We found that the predicting movement and dispersal in metacommunities requires knowledge on behavioural responses to intra- and interspecific interaction strengths. Consequently, metacommunity dynamics inferred directly from single-species metapopulations without taking interspecific interactions into account are likely flawed. Our work identifies the significance of condition-dependence for understanding metacommunity dynamics, stability and the coexistence and distribution of species.


Subject(s)
Ecosystem , Locomotion , Models, Biological , Paramecium aurelia/physiology , Tetrahymena/physiology , Biota , Population Dynamics
11.
Oecologia ; 178(4): 1149-58, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25820788

ABSTRACT

Dispersal decisions underlie the spatial dynamics of metacommunities. Prey individuals may disperse to reduce the risk of either predation or starvation, and both of these risks may depend on conspecific density. Surprisingly, there is little theory examining how dispersal rates should change in response to the combined effects of predation and changes in conspecific density. We develop such a model and show that, under certain conditions, predators may induce dispersal at low prey densities but not high prey densities. We then experimentally manipulate the density of the ciliate Paramecium aurelia and the perceived presence of its predator, the flatworm Stenostomum virginiamum, in a two-patch metacommunity to parameterise the model. Paramecium dispersed in response to Stenostomum at low densities, but they reduced their dispersal in response to predation risk at high predator densities. By applying our model to the empirical data, we show that this switch in dispersal strategy, linked to increases in prey density, occurred because predators increased the difficulty or risk of dispersal. Together, the model and experiment reveal that the effects of predators on dispersal are contingent on prey density. Previous studies have sometimes reported an increase in dispersal rate when predation risk is elevated, and other times a decrease in dispersal rate. Our demonstration of a switch point, with predation risk increasing dispersal at low prey densities but reducing dispersal above a threshold of prey density, may reconcile the diversity of prey dispersal behaviours reported in these previous investigations and observed in nature.


Subject(s)
Animal Distribution , Models, Biological , Predatory Behavior , Animals , Ciliophora , Models, Theoretical , Paramecium aurelia , Population Density , Population Dynamics , Turbellaria
12.
Folia Biol (Krakow) ; 63(4): 289-93, 2015.
Article in English | MEDLINE | ID: mdl-26975144

ABSTRACT

Paramecium is one of the most studied genera among ciliates. In particular, it is a model organism for investigation of the sibling species problem (also known as the cryptic species problem), spatial distribution, and its role in speciation. The global distribution of Paramecium species and of sibling species belonging to the P. aurelia species complex (Ciliophora, Protista) still need study, e.g. sampling in some territories has been quite limited, while Europe has been investigated for years with the majority of the P. aurelia species isolated from here. The large territory of Yakutia (republic Sakha in the Russian Federation), known for its climate extremes and continuous permafrost that extended over several glacial and interglacial cycles of the Pleistocene, has not been studied before. In the present study we collected paramecia in the central part of Yakutia. Newly established strains were identified to species according to morphology and, in case of the P. aurelia complex, by crossing with the test strains (the reference strains for the particular species). New stands of P. primaurelia, P. biaurelia and P. novaurelia were described from the territory of Yakutia.


Subject(s)
Paramecium aurelia/classification , Phylogeography , Russia , Species Specificity
13.
Genome Res ; 24(10): 1665-75, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25085612

ABSTRACT

The Paramecium aurelia complex is a group of 15 species that share at least three past whole-genome duplications (WGDs). The macronuclear genome sequences of P. biaurelia and P. sexaurelia are presented and compared to the published sequence of P. tetraurelia. Levels of duplicate-gene retention from the recent WGD differ by > 10% across species, with P. sexaurelia losing significantly more genes than P. biaurelia or P. tetraurelia. In addition, historically high rates of gene conversion have homogenized WGD paralogs, probably extending the paralogs' lifetimes. The probability of duplicate retention is positively correlated with GC content and expression level; ribosomal proteins, transcription factors, and intracellular signaling proteins are overrepresented among maintained duplicates. Finally, multiple sources of evidence indicate that P. sexaurelia diverged from the two other lineages immediately following, or perhaps concurrent with, the recent WGD, with approximately half of gene losses between P. tetraurelia and P. sexaurelia representing divergent gene resolutions (i.e., silencing of alternative paralogs), as expected for random duplicate loss between these species. Additionally, though P. biaurelia and P. tetraurelia diverged from each other much later, there are still more than 100 cases of divergent resolution between these two species. Taken together, these results indicate that divergent resolution of duplicate genes between lineages acts to reinforce reproductive isolation between species in the Paramecium aurelia complex.


Subject(s)
Gene Duplication , Paramecium aurelia/classification , Paramecium aurelia/genetics , Evolution, Molecular , Gene Conversion , Genome, Protozoan , Phylogeny , Sequence Alignment
14.
Eur J Protistol ; 50(3): 236-47, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24882685

ABSTRACT

P. aurelia is currently defined as a complex of 15 sibling species including 14 species designated by Sonneborn (1975) and one, P. sonneborni, by Aufderheide et al. (1983). The latter was known from only one stand (Texas, USA). The main reason for the present study was a new stand of Paramecium in Cyprus, with strains recognized as P. sonneborni based on the results of strain crosses, cytological slides, and molecular analyses of three loci (ITS1-5.8S-ITS2-5'LSU rDNA, COI, CytB). The new stand of P. sonneborni in Europe shows that the species, previously considered endemic, may have a wider range. This demonstrates the impact of under-sampling on the knowledge of the biogeography of microbial eukaryotes. Phylogenetic trees based on all the studied fragments revealed that P. sonneborni forms a separate cluster that is closer to P. jenningsi and P. schewiakoffi than to the other members of the P. aurelia complex.


Subject(s)
Paramecium/classification , Phylogeny , Cyprus , DNA, Mitochondrial/genetics , DNA, Protozoan/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/genetics , Paramecium/cytology , Paramecium/genetics , Paramecium aurelia/classification , Paramecium aurelia/cytology , Paramecium aurelia/genetics , Species Specificity , Texas
15.
Folia Biol (Krakow) ; 62(1): 13-6, 2014.
Article in English | MEDLINE | ID: mdl-24745144

ABSTRACT

The occurrence of species of the P. aurelia complex has been studied at a large scale in Europe and the majority of known species of the complex have been found there. However, a different number of habitats were studied in particular zones of Europe, the greatest number in the central zone. Herein new stands of several species of the Paramecium aurelia complex are presented from Europe including P. primaurelia, P. biaurelia, P. triaurelia, P. octaurelia, P. novaurelia, and P. dodecaurelia. In South America, studies concerning the distribution of the P. aurelia species complex were carried out only occasionally and the presence of some cosmopolitan species of the complex has been recorded, i.e. P. primaurelia, P. biaurelia, and P. tetraurelia. Recently, new stands of P. primaurelia and P. septaurelia were found in Ecuador. Ciliate biogeography and distribution is also discussed.


Subject(s)
Paramecium aurelia/classification , Animals , Demography , Europe , Paramecium aurelia/physiology , South America , Species Specificity
16.
Folia Biol (Krakow) ; 62(4): 361-6, 2014.
Article in English | MEDLINE | ID: mdl-25916164

ABSTRACT

The relevance of geographical distribution and the roles of dispersal and spatial isolation during the speciation of microorganisms are nowadays of great interest. The Paramecium aurelia species complex is a perfect model system to explore these questions given its long history as a study subject and broad distribution. However, the world-wide distribution of the Paramecium aurelia complex (Ciliophora, Protista) still needs study, e.g., sampling in the southern hemisphere has been quite limited, while Europe has been investigated for years, with the majority of aurelia species isolated from here. Recently, new stands of species of the P. aurelia complex were found in southern Europe (Malta, Bulgaria, Cyprus) and in the Czech Republic (P. primaurelia, P. triaurelia, P. octaurelia). In Africa (Republic of South Africa), new stands of P. primaurelia, P. triaurelia, and P. octaurelia were found. Interestingly, the rare species P. triaurelia, and P. octaurelia were found to co-occur both in South Africa (SA 13) and the Czech Republic (CKV 8). Newly established strains were identified to species by crossing with the test strains (the reference strains for the particular species).


Subject(s)
Paramecium aurelia/classification , Paramecium aurelia/genetics , Animal Distribution , Animals , Ecosystem , Europe , Fresh Water , Paramecium aurelia/physiology , South Africa
17.
Folia Biol (Krakow) ; 61(1-2): 41-5, 2013.
Article in English | MEDLINE | ID: mdl-23767291

ABSTRACT

New stands of P. primaurelia, P. biaurelia, and P. dodecaurelia were found in Russia. P. primaurelia was recorded in Tulun (Siberia, Irkutsk region) and in three stands situated on the Kamchatka peninsula: in Lake Chalaktyrskoye, in the Valley of Geysers, and Petropavlovsk Kamchatski. P. biaurelia was also found in Tulun and in two stands in the vicinity of Lake Baikal and the Buriatia region. P. dodecaurelia was recorded in Cheboksary in European Russia and in other stands situated in Asian Russia: Novosibirsk, the vicinity of Lake Baikal, Buriatia, Kamchatka (Petropavlovsk Kamchatski, Lake Chalaktyrskoye, and Nalychevo). These data extend the ranges of species of the P. aurelia complex in Russia, however, this large territory remains understudied.


Subject(s)
Paramecium aurelia/classification , Paramecium aurelia/genetics , Animals , Demography , Russia , Species Specificity
18.
Mol Phylogenet Evol ; 67(1): 255-65, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23396203

ABSTRACT

The Paramecium aurelia complex (Ciliophora, Protozoa) Sonneborn (1975) is composed of 15 sibling species, which are morphologically indistinguishable but sexually isolated. Therefore, the P. aurelia complex seems to be an ideal model for testing hypotheses about recent speciation events. Here we present two-locus (ITS1-5.8S-ITS2-5'LSU rDNA and COI mtDNA) analyses using over 120 strains collected from around the world and representing all currently known species of the complex. According to our findings, the studied species show different levels of haplotype variability. Some of them appear on the obtained trees as polyphyletic (e.g., P. dodecaurelia), while others as monophyletic (e.g., P. quadecaurelia), clusters. The revealed discrepancies, which are manifested by different mating behavior and haplotypes not characteristic of particular species, may be explained by incomplete lineage sorting. Furthermore, the phenomena of hybridization and introgression are considered as another explanation for our results. Despite the above discrepancies, "polyphyletic taxa" should be considered true biological species based on the results of genetic crosses. Using a combination of both strain crosses (the biological species concept) and molecular methods (the phylogenetic species concept) seems to be the appropriate way of delimiting species in closely related eukaryotic microorganisms such as the P. aurelia complex.


Subject(s)
DNA, Mitochondrial/genetics , DNA, Ribosomal Spacer/genetics , Haplotypes , Paramecium aurelia/classification , Phylogeny , DNA, Protozoan/genetics , Evolution, Molecular , Models, Genetic , Paramecium aurelia/genetics , Sequence Analysis, DNA
19.
Eur J Protistol ; 49(3): 477-86, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23290864

ABSTRACT

Paramecium quadecaurelia is a rare species (previously known only from two locations) belonging to the P. aurelia species complex. In the present paper, fragments of an rDNA gene (ITS1-5.8S-ITS2-5' rDNA) and mtDNA genes (cytochrome oxidase subunit I and cytochrome b regions) were employed to assist in the identification and characterization of three new strains collected from Ecuador and Thailand. Molecular data were confirmed by mating reactions. In rDNA and mtDNA trees constructed for species of the P. aurelia complex, all P. quadecaurelia strains, including the three new strains discussed in this study and two known previously from Australia and Africa, form a monophyletic but differentiated clade. The present study shows that genetic differentiation among the strains of P. quadecaurelia is equal to or even greater than the distances between some other P. aurelia species, e.g., P. primaurelia and P. pentaurelia. Such great intra-specific differentiation may indicate a future splitting of the P. quadecaurelia species into reproductively isolated lines.


Subject(s)
DNA, Intergenic/genetics , DNA, Mitochondrial/genetics , DNA, Protozoan/genetics , DNA, Ribosomal/genetics , Paramecium aurelia/classification , Paramecium aurelia/genetics , Cluster Analysis , DNA, Intergenic/chemistry , DNA, Mitochondrial/chemistry , DNA, Protozoan/chemistry , DNA, Ribosomal/chemistry , Ecuador , Genetic Variation , Molecular Sequence Data , Paramecium aurelia/isolation & purification , Phylogeny , RNA, Ribosomal, 5.8S/genetics , Sequence Analysis, DNA , Thailand
20.
Zh Obshch Biol ; 73(2): 114-24, 2012.
Article in Russian | MEDLINE | ID: mdl-22590906

ABSTRACT

Four population dynamics models, namely Verhulst, Gompertz, Rosenzweig, and Svirezhev ones, have been used to approximate two well-known time-series of Paramecia aurelia and P. caudatum population size (Gause, 1934). The parameters are estimated for each of the models by the least-square method (with global fitting) in two different ways: with and without an additional upper bound for a parameter value. In the latter (traditional) case, when the deviations of theoretical (model) trajectories from experimental time-series have been tested for normality (Kolmogorov-Smirnov test, Shapiro-Wilk test) with zero average, and for the presence/absence of serial correlations (Durbin-Watson criteria), the best results are obtained for the Gompertz and Verhulst models. In the former, more realistic, case (when we impose an additional constraint that the parameter meaning the carrying capacity of the environment has to be greater than any element in the sample), the best results are observed for the Gompertz model. Under this constraint, the canonical technique for deviation analysis can be applied in a restricted version only.


Subject(s)
Models, Theoretical , Paramecium aurelia/genetics , Paramecium caudatum/genetics , Population Dynamics , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL
...