Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Toxicol Lett ; 331: 33-41, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32445661

ABSTRACT

This study was intended to demonstrate that prenatal dexamethasone exposure (PDE) can induce low basal activity of the hypothalamic-pituitary-adrenal axis (HPAA) in male offspring rats and explore the underlying mechanism. Pregnant rats were subcutaneously administered 0.2 mg/kg/d dexamethasone from gestational day (GD) 9 to GD20. Male GD20 fetuses and postnatal day 85 adult male offspring rats were sacrificed under anesthesia. Hypothalamic cells were from GD20∼postnatal day (PD) 7 fetal male rats, treated with different concentrations of dexamethasone and the glucocorticoid receptor (GR) antagonist mifepristone for 5 days. The results suggested that dexamethasone enhanced the expression of hypothalamic L-glutamic acid decarboxylase (GAD) 67 by activating GR, further stimulating the conversion of glutamate to gamma-aminobutyric acid (GABA) and inducing an imbalance in glutamatergic/GABAergic afferents in the hypothalamic paraventricular nucleus (PVN). This imbalance change was maintained postnatally, leading to the inhibition of parvocellular neurons, and mediating the low basal activity of the HPAA in PDE offspring rats, which was manifested by decreased levels of blood adrenocorticotropic hormone and corticosterone as well as reduced expression levels of corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP) in the hypothalamus. Programming of a developmental imbalance in glutamatergic/GABAergic afferents in the PVN is a potential mechanism responsible for low basal activity of the HPAA in male PDE rats.


Subject(s)
Dexamethasone/toxicity , Glutamic Acid/metabolism , Hypothalamo-Hypophyseal System/drug effects , Neurons, Afferent/drug effects , Paraventricular Hypothalamic Nucleus/drug effects , Pituitary-Adrenal System/drug effects , Prenatal Exposure Delayed Effects/metabolism , gamma-Aminobutyric Acid/metabolism , Adrenocorticotropic Hormone/blood , Animals , Animals, Newborn , Arginine Vasopressin/metabolism , Corticosterone/blood , Female , Fetal Development/drug effects , Fetal Growth Retardation/chemically induced , Fetal Growth Retardation/metabolism , Glutamate Decarboxylase/metabolism , Hypothalamo-Hypophyseal System/embryology , Hypothalamo-Hypophyseal System/metabolism , Male , Neurons, Afferent/metabolism , Paraventricular Hypothalamic Nucleus/embryology , Paraventricular Hypothalamic Nucleus/metabolism , Pituitary-Adrenal System/embryology , Pituitary-Adrenal System/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Rats
2.
Endocrinology ; 159(9): 3458-3472, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30052854

ABSTRACT

The paraventricular nucleus of the hypothalamus (PVH), located in the ventral diencephalon adjacent to the third ventricle, is a highly conserved brain region present in species from zebrafish to humans. The PVH is composed of three main types of neurons, magnocellular, parvocellular, and long-projecting neurons, which play imperative roles in the regulation of energy balance and various endocrinological activities. In this review, we focus mainly on recent findings about the early development of the hypothalamus and the PVH, the functions of the PVH in the modulation of energy homeostasis and in the hypothalamus-pituitary system, and human diseases associated with the PVH, such as obesity, short stature, hypertension, and diabetes insipidus. Thus, the investigations of the PVH will benefit not only understanding of the development of the central nervous system but also the etiology of and therapy for human diseases.


Subject(s)
Eating/physiology , Energy Metabolism/physiology , Paraventricular Hypothalamic Nucleus/physiology , Animals , Diabetes Insipidus/metabolism , Diabetes Insipidus/physiopathology , Growth Disorders/metabolism , Growth Disorders/physiopathology , Humans , Hypertension/metabolism , Hypertension/physiopathology , Hypothalamo-Hypophyseal System/physiology , Obesity/metabolism , Obesity/physiopathology , Paraventricular Hypothalamic Nucleus/embryology , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/physiopathology , Pituitary-Adrenal System/physiology , Thyroid Gland/physiology
3.
Endocrinology ; 157(3): 1211-21, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26779746

ABSTRACT

The hypothalamic-pituitary-thyroid axis is governed by hypophysiotropic TRH-synthesizing neurons located in the hypothalamic paraventricular nucleus under control of the negative feedback of thyroid hormones. The mechanisms underlying the ontogeny of this phenomenon are poorly understood. We aimed to determine the onset of thyroid hormone-mediated hypothalamic-negative feedback and studied how local hypothalamic metabolism of thyroid hormones could contribute to this process in developing chicken. In situ hybridization revealed that whereas exogenous T4 did not induce a statistically significant inhibition of TRH expression in the paraventricular nucleus at embryonic day (E)19, T4 treatment was effective at 2 days after hatching (P2). In contrast, TRH expression responded to T3 treatment in both age groups. TSHß mRNA expression in the pituitary responded to T4 in a similar age-dependent manner. Type 2 deiodinase (D2) was expressed from E13 in tanycytes of the mediobasal hypothalamus, and its activity increased between E15 and P2 both in the mediobasal hypothalamus and in tanycyte-lacking hypothalamic regions. Nkx2.1 was coexpressed with D2 in E13 and P2 tanycytes and transcription of the cdio2 gene responded to Nkx2.1 in U87 glioma cells, indicating its potential role in the developmental regulation of D2 activity. The T3-degrading D3 enzyme was also detected in tanycytes, but its level was not markedly changed before and after the period of negative feedback acquisition. These findings suggest that increasing the D2-mediated T3 generation during E18-P2 could provide the sufficient local T3 concentration required for the onset of T3-dependent negative feedback in the developing chicken hypothalamus.


Subject(s)
Feedback, Physiological/physiology , Gene Expression Regulation, Developmental/genetics , Hypothalamo-Hypophyseal System/metabolism , Iodide Peroxidase/metabolism , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , RNA, Messenger/metabolism , Thyroid Gland/metabolism , Thyrotropin-Releasing Hormone/metabolism , Thyroxine/metabolism , Animals , Brain/drug effects , Brain/embryology , Brain/metabolism , Cell Line, Tumor , Chick Embryo , Ependymoglial Cells/drug effects , Ependymoglial Cells/metabolism , Feedback, Physiological/drug effects , Gene Expression Regulation, Developmental/drug effects , Humans , Hypothalamo-Hypophyseal System/embryology , Hypothalamus/drug effects , Hypothalamus/embryology , Hypothalamus/metabolism , Immunohistochemistry , In Situ Hybridization , Iodide Peroxidase/drug effects , Neurons/drug effects , Nuclear Proteins/drug effects , Nuclear Proteins/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/embryology , Pituitary Gland/drug effects , Pituitary Gland/metabolism , RNA, Messenger/drug effects , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Thyroid Nuclear Factor 1 , Thyrotropin, beta Subunit/genetics , Thyroxine/pharmacology , Transcription Factors/drug effects , Transcription Factors/metabolism , Triiodothyronine/drug effects , Triiodothyronine/metabolism , Iodothyronine Deiodinase Type II
4.
PLoS One ; 9(8): e106015, 2014.
Article in English | MEDLINE | ID: mdl-25162235

ABSTRACT

Neurons of the paraventricular nucleus of the hypothalamus (PVN) regulate the hypothalamic- pituitary-adrenal (HPA) axis and the autonomic nervous system. Females lacking functional GABA(B) receptors because of a genetic disruption of the R1 subunit have altered cellular characteristics in and around the PVN at birth. The genetic disruption precluded appropriate assessments of physiology or behavior in adulthood. The current study was conducted to test the long term impact of a temporally restricting pharmacological blockade of the GABA(B) receptor to a 7-day critical period (E11-E17) during embryonic development. Experiments tested the role of GABA(B) receptor signaling in fetal development of the PVN and later adult capacities for adult stress related behaviors and physiology. In organotypic slices containing fetal PVN, there was a female specific, 52% increase in cell movement speeds with GABA(B) receptor antagonist treatment that was consistent with a sex-dependent lateral displacement of cells in vivo following 7 days of fetal exposure to GABA(B) receptor antagonist. Anxiety-like and depression-like behaviors, open-field activity, and HPA mediated responses to restraint stress were measured in adult offspring of mothers treated with GABA(B) receptor antagonist. Embryonic exposure to GABA(B) receptor antagonist resulted in reduced HPA axis activation following restraint stress and reduced depression-like behaviors. There was also increased anxiety-like behavior selectively in females and hyperactivity in males. A sex dependent response to disruptions of GABA(B) receptor signaling was identified for PVN formation and key aspects of physiology and behavior. These changes correspond to sex specific prevalence in similar human disorders, namely anxiety disorders and hyperactivity.


Subject(s)
Anxiety/chemically induced , Depression/chemically induced , GABA-B Receptor Antagonists/pharmacology , Protein Subunits/genetics , Receptors, GABA-B/genetics , gamma-Aminobutyric Acid/metabolism , Animals , Anxiety/genetics , Anxiety/metabolism , Anxiety/physiopathology , Baclofen/analogs & derivatives , Baclofen/pharmacology , Cell Movement/drug effects , Depression/genetics , Depression/metabolism , Depression/physiopathology , Embryo, Mammalian , Female , Gene Expression , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/embryology , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiopathology , Immobilization , Male , Maze Learning/drug effects , Mice , Mice, Transgenic , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/embryology , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/pathology , Phosphinic Acids/pharmacology , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/embryology , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiopathology , Pregnancy , Propanolamines/pharmacology , Protein Subunits/deficiency , Psychomotor Agitation/genetics , Psychomotor Agitation/metabolism , Psychomotor Agitation/physiopathology , Receptors, GABA-B/deficiency , Sex Factors , Stress, Psychological/physiopathology , Tissue Culture Techniques
5.
Endocrinology ; 155(7): 2566-77, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24773340

ABSTRACT

Maternal obesity during pregnancy increases the risk of obesity in the offspring. Several observations have pointed to a causative role for the proinflammatory cytokine IL-6, but whether it is present in the fetal circulation and how it acts on the developing fetus are unclear. We first observed that postnatal day 0 offspring from obese mothers had significantly reduced neuropeptide Y (NPY) innervation of the paraventricular nucleus (PVN) compared with that for offspring of normal-weight controls. Thus, the growth of NPY neurites from the arcuate nucleus (ARC) was impaired in the fetal brain by maternal obesity. The neurite growth regulator, Netrin-1, was expressed in the ARC and PVN and along the pathway between the two at gestational day (GD) 17.5 in normal animals, making it likely to be involved in the development of NPY ARC-PVN projections. In addition, the expression of Dcc and Unc5d, receptors for Netrin-1, were altered in the GD17.5 ARC in obese but not normal weight pregnancies. Thus, this important developmental pathway is perturbed by maternal obesity and may explain the defect in NPY innervation of the PVN that occurs in fetuses developing in obese mothers. To investigate whether IL-6 may play a role in these developmental changes, we found first that IL-6 was significantly elevated in the fetal and maternal circulation in pregnancies of obese mice compared with those of normal-weight mice. In addition, treatment of GD17.5 ARC tissue with IL-6 in vitro significantly reduced ARC neurite outgrowth and altered developmental gene expression similar to maternal obesity in vivo. These findings demonstrate that maternal obesity may alter the way in which fetal ARC NPY neurons respond to key developmental signals that regulate normal prenatal neural connectivity and suggest a causative role for elevated IL-6 in these changes.


Subject(s)
Arcuate Nucleus of Hypothalamus/drug effects , Gene Expression Regulation, Developmental/drug effects , Interleukin-6/pharmacology , Neurites/drug effects , Obesity/metabolism , Animals , Arcuate Nucleus of Hypothalamus/embryology , Arcuate Nucleus of Hypothalamus/metabolism , Cells, Cultured , Diet, High-Fat/adverse effects , Dose-Response Relationship, Drug , Female , Immunohistochemistry , In Situ Hybridization , Interleukin-6/blood , Mice, Inbred C57BL , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Netrin-1 , Neurites/metabolism , Neurites/physiology , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , Obesity/etiology , Obesity/genetics , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/embryology , Paraventricular Hypothalamic Nucleus/metabolism , Pregnancy , Pregnancy Complications , Reverse Transcriptase Polymerase Chain Reaction , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
6.
Physiol Res ; 61(3): 277-86, 2012.
Article in English | MEDLINE | ID: mdl-22480425

ABSTRACT

The hypothalamic supraoptic and paraventricular nuclei consist of oxytocin and arginine vasopressin synthesizing neurons that send projections to the neurohypophysis. A growing body of evidence in adult animals and young animals at near term confirmed the structure and function in the vasopressinergic and oxytocinergic network. However, whether those distinctive neural networks are formed before near term is largely unknown. This study determined the special patterns in location and distribution of oxytocin- and vasopressin-neurons in the paraventricular and supraoptic nuclei from preterm to term in the ovine fetuses. The results showed that oxytocin- and vasopressin-neurons were present in both nuclei at the three gestational time periods (preterm, near term, and term). In the paraventricular nuclei, vasopressin-cells concentrated mainly in the core of the middle magnocellular paraventricular nuclei, and oxytocin-cells were scattered surrounding the core. In the supraoptic nuclei, vasopressin-cells mostly located in the ventral part, and oxytocin-cells in the dorsal part. The data demonstrated that the special distributed patterns of vasopressin- and oxytocin-neuron network have formed in those two nuclei at least from preterm. Intracerebroventricular injection of angiotensin II significantly increased fetal plasma oxytocin and vasopressin levels at preterm, which was associated with an increase of oxytocin- and vasopressin-neuron activity marked with c-fos expression. The data provided new evidence for the structural and functional development of the oxytocin- and vasopressin-network before birth.


Subject(s)
Arginine Vasopressin/metabolism , Neurons/metabolism , Oxytocin/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Supraoptic Nucleus/metabolism , Angiotensin II/administration & dosage , Animals , Arginine Vasopressin/blood , Female , Gestational Age , Injections, Intraventricular , Nerve Net/embryology , Nerve Net/metabolism , Neurons/drug effects , Oxytocin/blood , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/embryology , Pregnancy , Proto-Oncogene Proteins c-fos/metabolism , Sheep , Supraoptic Nucleus/drug effects , Supraoptic Nucleus/embryology , Time Factors
7.
J Neurosci Res ; 90(7): 1403-12, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22388926

ABSTRACT

Exposure to high levels of glucocorticoids (GCs) during development leads to long-term changes in hypothalamic-pituitary-adrenal (HPA) axis regulation, although little is known about the neural mechanisms that underlie these alterations. In this study, we investigated the effects of late gestational (days 18-22) or postnatal (days 4-6) administration of the GC receptor agonist dexamethasone (DEX) on an apoptosis marker in two brain regions critical to HPA axis regulation, the hippocampus and the hypothalamic paraventricular nucleus (PVN). One day after the final DEX injection, male and female rats were sacrificed, and brains were processed for immunohistochemical detection of cleaved caspase-3, an apoptotic cell death indicator. DEX increased cleaved caspase-3 immunoreactivity in the CA1 hippocampal region of both sexes following prenatal but not postnatal treatment. Prenatal DEX also increased caspase-3 immunoreactivity in the CA3 region, an elevation that tended to be greater in females. In contrast, postnatal DEX resulted in a much smaller, albeit significant, induction in CA3 caspase-3 compared with prenatal treatment. Quantitative real-time PCR analysis revealed that prenatal but not postnatal DEX-induced hippocampal cleaved caspase-3 correlated with elevated mRNA of the proapoptotic gene Bad. Few caspase-3-ir cells were identified within the PVN regardless of treatment age, although postnatal but not prenatal DEX increased this number. However, the region immediately surrounding the PVN (peri-PVN) showed significant increases in caspase-3-ir cells following pre- and postnatal DEX. Together these findings indicate that developmental GC exposure increases apoptosis in HPAaxis-associated brain regions in an age- and sex-dependent manner.


Subject(s)
Apoptosis/drug effects , Dexamethasone/toxicity , Hippocampus/drug effects , Nervous System Malformations/pathology , Nervous System Malformations/physiopathology , Paraventricular Hypothalamic Nucleus/drug effects , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/physiopathology , Aging/pathology , Animals , Apoptosis/physiology , Disease Models, Animal , Female , Glucocorticoids/toxicity , Hippocampus/embryology , Hippocampus/pathology , Nervous System Malformations/chemically induced , Paraventricular Hypothalamic Nucleus/embryology , Paraventricular Hypothalamic Nucleus/pathology , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Rats , Rats, Sprague-Dawley , Sex Characteristics , Sex Factors
8.
Dev Biol ; 353(1): 61-71, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21354131

ABSTRACT

Proper development of the hypothalamic-pituitary axis requires precise neuronal signaling to establish a network that regulates homeostasis. The developing hypothalamus and pituitary utilize similar signaling pathways for differentiation in embryonic development. The Notch signaling effector gene Hes1 is present in the developing hypothalamus and pituitary and is required for proper formation of the pituitary, which contains axons of arginine vasopressin (AVP) neurons from the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON). We hypothesized that Hes1 is necessary for the generation, placement and projection of AVP neurons. We found that Hes1 null mice show no significant difference in cell proliferation or death in the developing diencephalon at embryonic day 10.5 (e10.5) or e11.5. By e16.5, AVP cell bodies are formed in the SON and PVN, but are abnormally placed, suggesting that Hes1 may be necessary for the migration of AVP neurons. GAD67 immunoreactivity is ectopically expressed in Hes1 null mice, which may contribute to cell body misplacement. Additionally, at e18.5 Hes1 null mice show continued misplacement of AVP cell bodies in the PVN and SON and additionally exhibit abnormal axonal projection. Using mass spectrometry to characterize peptide content, we found that Hes1 null pituitaries have aberrant somatostatin (SS) peptide, which correlates with abnormal SS cells in the pituitary and misplaced SS axon tracts at e18.5. Our results indicate that Notch signaling facilitates the migration and guidance of hypothalamic neurons, as well as neuropeptide content.


Subject(s)
Arginine Vasopressin/analysis , Axons/physiology , Basic Helix-Loop-Helix Transcription Factors/physiology , Homeodomain Proteins/physiology , Neurons/physiology , Paraventricular Hypothalamic Nucleus/embryology , Pituitary Gland/embryology , Supraoptic Nucleus/embryology , Amino Acid Sequence , Animals , Cell Movement , Female , In Situ Nick-End Labeling , Male , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Stem Cells/physiology , Transcription Factor HES-1
9.
Physiol Behav ; 104(2): 327-33, 2011 Aug 03.
Article in English | MEDLINE | ID: mdl-21236282

ABSTRACT

The paraventricular nucleus of the hypothalamus (PVN) is a major regulator of stress responses via release of corticotropin releasing hormone (CRH) to the pituitary gland. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is characteristic of individuals with major depressive disorder (MDD). Postmortem data from individuals diagnosed with MDD show increased levels of CRH mRNA and CRH immunoreactive neurons in the PVN. In the current study, an immunohistochemical (IHC) analysis revealed increased levels of CRH in the PVN of newborn mice lacking functional GABA(B) receptors. There was no difference in the total number of CRH immunoreactive cells. By contrast, there was a significant increase in the amount of CRH immunoreactivity per cell. Interestingly, this increase in CRH levels in the GABA(B) receptor R1 subunit knockout was limited to the rostral PVN. While GABAergic regulation of the HPA axis has been previously reported in adult animals, this study provides evidence of region-specific GABA modulation of immunoreactive CRH in newborns.


Subject(s)
Corticotropin-Releasing Hormone/metabolism , Gene Expression Regulation, Developmental/physiology , Paraventricular Hypothalamic Nucleus/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Animals, Newborn , Embryo, Mammalian , Female , Gene Expression Regulation, Developmental/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/cytology , Paraventricular Hypothalamic Nucleus/embryology , Paraventricular Hypothalamic Nucleus/growth & development , Receptors, GABA-B/deficiency , Sex Factors
10.
Brain Struct Funct ; 215(3-4): 237-53, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20953626

ABSTRACT

Periventricular pathway (PVP) system of the developing human cerebrum is situated medial to the intermediate zone in the close proximity to proliferative cell compartments. In order to elucidate chemical properties and developing trajectories of the PVP we used DTI in combination with acetylcholinesterase histochemistry, SNAP-25 immunocytochemistry and axonal cytoskeletal markers (SMI312, MAP1b) immunocytochemistry on postmortem paraformaldehyde-fixed brains of 30 human fetuses ranging in age from 10 to 38 postconceptional weeks (PCW), 2 infants (age 1-3 months) and 1 adult brain. The PVP appears in the early fetal period (10-13 PCW) as two defined fibre bundles: the corpus callosum (CC) and the fetal fronto-occipital fascicle (FOF). In the midfetal period (15-18 PCW), all four components of the PVP can be identified: (1) the CC, which at rostral levels forms a voluminous callosal plate; (2) the FOF, with SNAP-25-positive fibers; (3) the fronto-pontine pathway (FPP) which for a short distance runs within the PVP; and (4) the subcallosal fascicle of Muratoff (SFM) which contains cortico-caudate projections. The PVPs are situated medial to the internal capsule at the level of the cortico-striatal junction; they remain prominent during the late fetal and early preterm period (19-28 PCW) and represent a portion of the wider periventricular crossroad of growing associative, callosal and projection pathways. In the perinatal period, the PVPs change their topographical relationships, decrease in size and the FOF looses its SNAP-25-reactivity. In conclusion, the hitherto undescribed PVP of the human fetal cerebrum contains forerunners of adult associative and projection pathways. Its transient chemical properties and relative exuberance suggest that the PVP may exert influence on the development of cortical connectivity (intermediate targeting) and other neurogenetic events such as neuronal proliferation. The PVP's topographical position also indicates that it is a major site of vulnerability in hypoxic-ischaemic perinatal brain injury.


Subject(s)
Cerebral Ventricles/embryology , Cerebrum/embryology , Fetal Development , Paraventricular Hypothalamic Nucleus/embryology , Acetylcholinesterase/metabolism , Biomarkers/metabolism , Cerebral Ventricles/cytology , Cerebral Ventricles/metabolism , Cerebrum/cytology , Cerebrum/metabolism , Corpus Striatum/cytology , Corpus Striatum/embryology , Corpus Striatum/metabolism , Gestational Age , Humans , Microtubule-Associated Proteins/metabolism , Nerve Fibers/metabolism , Neurofilament Proteins/metabolism , Paraventricular Hypothalamic Nucleus/cytology , Paraventricular Hypothalamic Nucleus/metabolism , Preoptic Area/cytology , Preoptic Area/embryology , Preoptic Area/metabolism , Synaptosomal-Associated Protein 25/metabolism
11.
Am J Physiol Regul Integr Comp Physiol ; 299(2): R452-8, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20554931

ABSTRACT

When released from dendrites within the supraoptic (SON) and paraventricular (PVN) nuclei (intranuclear release) during suckling, oxytocin exerts autocrine and paracrine effects on oxytocin neurons that are necessary for the unique timing and episodic pattern of oxytocin release into the systemic circulation that is characteristic of lactation. Recent reports have shown that stimulation of central noradrenergic and histaminergic receptors are both necessary for intranuclear release of oxytocin in response to suckling. In addition, in vitro studies indicate that excitatory amino acids may also be critical for central oxytocin secretion, although in vivo experiments have not provided direct support for this hypothesis. In addition to a critical role in intranuclear oxytocin release during lactation, norepinephrine has also been shown to stimulate central oxytocin during gestation. Stimulation of central oxytocin receptors during gestation appears critical for normal systemic oxytocin secretion in responses to suckling during the subsequent period of lactation. Oxytocin receptor blockade during pregnancy alters normal timing of systemic oxytocin release during suckling and reduces milk delivery. Several adaptations occur in the central oxytocin system that are necessary for determining the unique response characteristic observed during parturition and gestation. Central oxytocin receptor stimulation during gestation has been implicated in pregnancy-related morphological changes in magnocellular oxytocin neurons, disinhibition of oxytocin neurons to GABA, and adaptations in membrane response characteristics of oxytocin neurons. In conclusion, intranuclear oxytocin release during gestation and lactation are critical for establishing, and then evoking the unique pattern of systemic oxytocin secretion in response to the suckling offspring necessary for adequate milk delivery. Furthermore, activation of central noradrenergic receptors appears to be critical for release of central oxytocin in both of these reproductive states.


Subject(s)
Neurons/metabolism , Neurotransmitter Agents/metabolism , Oxytocin/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Signal Transduction , Action Potentials , Animals , Animals, Suckling , Breast Feeding , Excitatory Amino Acids/metabolism , Female , Gene Expression Regulation, Developmental , Gestational Age , Histamine/metabolism , Humans , Lactation , Norepinephrine/metabolism , Opioid Peptides/metabolism , Oxytocin/genetics , Paraventricular Hypothalamic Nucleus/embryology , Pregnancy
12.
Gene Expr Patterns ; 8(7-8): 502-7, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18617019

ABSTRACT

The hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON) contain neuroendocrine cells that modulate pituitary secretion to maintain homeostasis. These two nuclei have a common developmental origin but they eventually form at locations distant from each other. Little is known about the molecular cues that direct the segregation of PVN and SON. As a means to identify potential factors, we have documented expression patterns of genes with known guidance roles in neural migration. Here, we focus on two groups of ligand/receptor families classified to mediate chemo-repulsion of neurons and their axons: the Slit/Robo and the Semaphorin/Plexin/Neuropilin families. Their dynamic expression patterns within and around the common PVN/SON progenitor as well as the mature PVN and SON may provide a framework for understanding the formation of these two important nuclei.


Subject(s)
Mice/genetics , Nerve Tissue Proteins/metabolism , Paraventricular Hypothalamic Nucleus/embryology , Paraventricular Hypothalamic Nucleus/metabolism , Receptors, Immunologic/metabolism , Supraoptic Nucleus/embryology , Supraoptic Nucleus/metabolism , Animals , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Nerve Tissue Proteins/genetics , Neuropilins/genetics , Neuropilins/metabolism , Receptors, Immunologic/genetics , Semaphorins/genetics , Semaphorins/metabolism , Roundabout Proteins
13.
Brain Res ; 1174: 28-38, 2007 Oct 12.
Article in English | MEDLINE | ID: mdl-17854778

ABSTRACT

Brain derived neurotrophic factor (BDNF) increases the levels of pre-pro-thyrotropin releasing hormone (TRH) mRNA in fetal rodent hypothalamic neurons that express TrkB receptors. The present studies aimed at better understanding the role of BDNF in establishing and maintaining the TRH phenotype in hypothalamic neurons during early development. To determine where BDNF regulates the expression of pre-pro-TRH mRNA in vivo, we compared the hypothalamic distribution of pre-pro-TRH mRNA to that of TrkB mRNA. Full-length TrkB (FL-TrkB) mRNA was detected earlier in development than pre-pro-TRH mRNA in the region that gives rise to the paraventricular nucleus of the hypothalamus (PVN). We also evaluated the effects of BDNF on the expression of pre-pro-TRH mRNA in vitro. BDNF up-regulated the levels of pre-pro-TRH mRNA in primary cell cultures obtained from the hypothalamus or the PVN of 17 days old fetuses or newborn rats. This effect was abolished by PD98059, an inhibitor of the mitogen-activated protein kinase kinase (MEK) 1/2 or 5. The effect of BDNF on pre-pro-TRH mRNA levels was reversible. The continuous application of BDNF led to a desensitization of the response at day 10 in vitro, an effect that correlated with a drop in the levels of FL-TrkB protein. In conclusion, BDNF enhances the expression of pre-pro-TRH mRNA in PVN neurons. This effect is reversible, decreases with time, and requires an active MEK. BDNF may contribute to the enhancement of pre-pro-TRH mRNA expression in the hypothalamic PVN during development.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Gene Expression Regulation, Developmental/physiology , Paraventricular Hypothalamic Nucleus/physiology , Protein Precursors/genetics , Signal Transduction/physiology , Thyrotropin-Releasing Hormone/genetics , Animals , Animals, Newborn , Carcinoma, Medullary , Female , Hypothalamus/cytology , Hypothalamus/embryology , Hypothalamus/physiology , Male , Neurons/cytology , Neurons/physiology , Paraventricular Hypothalamic Nucleus/cytology , Paraventricular Hypothalamic Nucleus/embryology , Pregnancy , RNA, Messenger/metabolism , Rats , Rats, Wistar , Receptor, trkB/genetics , Thyroid Neoplasms , Tumor Cells, Cultured
14.
Neuroscience ; 143(4): 975-86, 2006 Dec 28.
Article in English | MEDLINE | ID: mdl-17029798

ABSTRACT

In the rodent, arcuate nucleus of the hypothalamus (ARH)-derived neuropeptide Y (NPY) and proopiomelanocortin (POMC) neurons have efferent projections throughout the hypothalamus that do not fully mature until the second and third postnatal weeks. Since this process is likely completed by birth in primates we characterized the ontogeny of NPY and melanocortin systems in the fetal Japanese macaque during the late second (G100), early third (G130) and late third trimesters (G170). NPY mRNA was expressed in the ARH, paraventricular nucleus (PVH), and dorsomedial nucleus of the hypothalamus (DMH) as early as G100. ARH-derived NPY projections to the PVH were initiated at G100 but were limited and variable; however, there was a modest increase in density and number by G130. ARH-NPY/agouti-related peptide (AgRP) fiber projections to efferent target sites were completely developed by G170, but the density continued to increase in the postnatal period. In contrast to NPY/AgRP projections, alphaMSH fibers were minimal at G100 and G130 but were moderate at G170. This study also revealed several significant species differences between rodent and the nonhuman primate (NHP). There were few NPY/catecholamine projections to the PVH and ARH prior to birth, while projections were increased in the adult. A substantial proportion of the catecholamine fibers did not coexpress NPY. In addition, cocaine and amphetamine-related transcript (CART) and alpha-melanocyte stimulating hormone (alphaMSH) were not colocalized in fibers or cell bodies. As a consequence of the prenatal development of these neuropeptide systems in the NHP, the maternal environment may critically influence these circuits. Additionally, because differences exist in the neuroanatomy of NPY and melanocortin circuitry the regulation of these systems may be different in primates than in rodents.


Subject(s)
Hypothalamus/embryology , Hypothalamus/metabolism , Macaca/embryology , Macaca/metabolism , Neuropeptides/metabolism , Agouti-Related Protein , Animals , Arcuate Nucleus of Hypothalamus/embryology , Arcuate Nucleus of Hypothalamus/metabolism , Catecholamines/metabolism , Dorsomedial Hypothalamic Nucleus/embryology , Dorsomedial Hypothalamic Nucleus/metabolism , Female , Immunohistochemistry , Intercellular Signaling Peptides and Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neural Pathways/embryology , Neural Pathways/metabolism , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , Neuropeptides/genetics , Paraventricular Hypothalamic Nucleus/embryology , Paraventricular Hypothalamic Nucleus/metabolism , Pregnancy , RNA, Messenger/metabolism , Rodentia/embryology , Rodentia/metabolism , Species Specificity , alpha-MSH/metabolism
16.
Endocrinology ; 147(8): 3681-91, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16675520

ABSTRACT

Humans are routinely exposed to bisphenol A (BPA), an estrogenic chemical present in food and beverage containers, dental composites, and many products in the home and workplace. BPA binds both classical nuclear estrogen receptors and facilitates membrane-initiated estrogenic effects. Here we explore the ability of environmentally relevant exposure to BPA to affect anatomical and functional measures of brain development and sexual differentiation. Anatomical evidence of alterations in brain sexual differentiation were examined in male and female offspring born to mouse dams exposed to 0, 25, or 250 ng BPA/kg body weight per day from the evening of d 8 of gestation through d 16 of lactation. These studies examined the sexually dimorphic population of tyrosine hydroxylase (TH) neurons in the rostral periventricular preoptic area, an important brain region for estrous cyclicity and estrogen-positive feedback. The significant sex differences in TH neuron number observed in control offspring were diminished or obliterated in offspring exposed to BPA primarily because of a decline in TH neuron number in BPA-exposed females. As a functional endpoint of BPA action on brain sexual differentiation, we examined the effects of perinatal BPA exposure on sexually dimorphic behaviors in the open field. Data from these studies revealed significant sex differences in the vehicle-exposed offspring that were not observed in the BPA-exposed offspring. These data indicate that BPA may be capable of altering important events during critical periods of brain development.


Subject(s)
Behavior, Animal/drug effects , Estrogens, Non-Steroidal/pharmacology , Hypothalamus, Anterior , Phenols/pharmacology , Sex Characteristics , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Arcuate Nucleus of Hypothalamus/embryology , Arcuate Nucleus of Hypothalamus/growth & development , Benzhydryl Compounds , Cell Count , Critical Period, Psychological , Estrous Cycle/physiology , Exploratory Behavior/physiology , Female , Hypothalamus, Anterior/drug effects , Hypothalamus, Anterior/embryology , Hypothalamus, Anterior/growth & development , Male , Mice , Mice, Inbred Strains , Neurons/cytology , Neurons/enzymology , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/embryology , Paraventricular Hypothalamic Nucleus/growth & development , Pregnancy , Prenatal Exposure Delayed Effects , Preoptic Area/drug effects , Preoptic Area/embryology , Preoptic Area/growth & development , Septal Nuclei/drug effects , Septal Nuclei/embryology , Septal Nuclei/growth & development , Sexual Behavior, Animal/drug effects , Sexual Maturation , Tyrosine 3-Monooxygenase/metabolism
17.
J Comp Neurol ; 495(1): 122-32, 2006 Mar 01.
Article in English | MEDLINE | ID: mdl-16432907

ABSTRACT

Neurons in the anteroventral periventricular nucleus of the hypothalamus (AVPV) mediate a variety of autonomic functions. In adults they primarily innervate neuroendocrine nuclei in the periventricular zone of the hypothalamus, including the paraventricular and arcuate nuclei (PVH, ARH). Ascending projections from the AVPV also provide inputs to the ventrolateral septum (LSv) and the principal division of the bed nuclei of the stria terminalis (BSTp). Consistent with a role in regulating preovulatory luteinizing hormone secretion, rostral projections from the AVPV contact gonadotropin-releasing hormone (GnRH) neurons surrounding the vascular organ of the lamina terminalis (OVLT). To study the development of these pathways, we placed implants of the lipophilic tracers DiI and CMDiI into the AVPV of female rats ranging in age from embryonic day 19 (E19) through adulthood. The earliest projections targeted a population of GnRH neurons, with apparent contacts from labeled fibers observed as early as E19. These connections appeared to be fully developed before birth, as similar numbers of appositions from AVPV projections onto the GnRH-immunoreactive cells were observed at all ages examined. Caudal projections were delayed relative to projections to the OVLT. Labeled AVPV fibers reached the PVH during the first postnatal week, and fibers targeting the BSTp and LSv were not observed until the second and third postnatal weeks, respectively. Labeled AVPV fibers were not seen in the ARH of animals at any age. Our results demonstrate that projections from the AVPV develop with both spatial and temporal specificity, innervating each target with a unique developmental profile.


Subject(s)
Efferent Pathways/embryology , Efferent Pathways/growth & development , Hypothalamus, Middle/embryology , Hypothalamus, Middle/growth & development , Aging/physiology , Animals , Animals, Newborn , Axons/physiology , Axons/ultrastructure , Carbocyanines , Cell Differentiation/physiology , Efferent Pathways/cytology , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus, Middle/cytology , Male , Paraventricular Hypothalamic Nucleus/cytology , Paraventricular Hypothalamic Nucleus/embryology , Paraventricular Hypothalamic Nucleus/growth & development , Rats , Rats, Sprague-Dawley , Septal Nuclei/cytology , Septal Nuclei/embryology , Septal Nuclei/growth & development
18.
Neuroscience ; 134(2): 387-95, 2005.
Article in English | MEDLINE | ID: mdl-15961245

ABSTRACT

The effects of repeated prenatal stress with different severity (restraint and immobilization) on Fos expression in the maternal and fetal hypothalamic paraventricular nucleus (PVN) were examined in rats. Acute stress treatment was performed for 30 min on gestational day 21, and repeated stress treatment for 30 min daily for 5 days from gestational days 17-21. In the parvocellular region of the maternal PVN, the stress-induced increases in the number of Fos-immunoreactive neurons were smaller in the repeated stress groups than the acute stress groups, indicating an adaptation of Fos expression to repeated stress. The attenuated Fos expression observed in the maternal PVN following repeated mild stress did not occur in the fetal PVN. In contrast, repeated immobilization stress caused a much smaller increase in Fos expression in the fetal PVN than did acute immobilization stress. The reduced Fos expression in the fetal PVN following repeated severe stress was thought to be due to cell death, since the fetal PVN in the chronic immobilization group revealed a reduction in the total number of cells and an increase in the number of apoptotic cells. In the female but not male fetuses, repeated restraint stress induced a significant increase in the number of apoptotic cells in the PVN. These findings suggest that the fetal PVN shows no adaptation of Fos expression to repeated maternal stress, but great vulnerability to cell death, including apoptosis. In addition, stress-induced apoptosis may more easily occur in the fetal PVN in females than males.


Subject(s)
Paraventricular Hypothalamic Nucleus/embryology , Pregnancy Complications/psychology , Prenatal Exposure Delayed Effects , Stress, Psychological , Acute Disease , Animals , Body Weight , Chronic Disease , Disease Models, Animal , Female , Fetus/physiology , Gestational Age , Male , Paraventricular Hypothalamic Nucleus/physiopathology , Pregnancy , Rats , Rats, Sprague-Dawley , Restraint, Physical , Sex Characteristics
19.
J Neuroendocrinol ; 17(4): 220-6, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15842233

ABSTRACT

We have previously shown that the foetal guinea-pig hypothalamic-pituitary-adrenal (HPA) axis is activated near the time of parturition and that this is associated with changes in limbic glucocorticoid receptors (GR) and mineralocorticoid receptors. In the present study, we hypothesized that the foetal hypothalamic paraventricular nucleus (PVN) and pituitary contribute significantly to foetal HPA drive but that these areas remain sensitive to negative feedback by circulating glucocorticoids in late gestation. However, we observed decreased corticotrophin-releasing hormone mRNA expression in the PVN and decreased pro-opiomelanocortin (POMC) mRNA levels in the anterior pituitary with advanced gestational age. The reduction in POMC mRNA expression was likely the result of negative feedback via circulating glucocorticoids because GR mRNA was unchanged during development in the foetal pituitary. Furthermore, we found that maternally administered glucocorticoids significantly decreased foetal pituitary POMC mRNA expression in a dose-dependent manner at gestational day (gd) 62 with male foetuses being more sensitive to these effects. These findings show that the foetal HPA axis remains highly sensitive to glucocorticoid feedback even as plasma adrenocorticotropic hormone and cortisol levels are elevated at the end of gestation.


Subject(s)
Corticotropin-Releasing Hormone/metabolism , Hypothalamo-Hypophyseal System/embryology , Paraventricular Hypothalamic Nucleus/metabolism , Pituitary Gland/metabolism , Pituitary-Adrenal System/embryology , Pro-Opiomelanocortin/metabolism , Receptors, Glucocorticoid/metabolism , Animals , Corticotropin-Releasing Hormone/genetics , Feedback, Physiological , Female , Gestational Age , Glucocorticoids/blood , Guinea Pigs , Hypothalamo-Hypophyseal System/growth & development , Hypothalamo-Hypophyseal System/metabolism , Male , Paraventricular Hypothalamic Nucleus/embryology , Parturition/physiology , Pituitary Gland/embryology , Pituitary-Adrenal System/growth & development , Pituitary-Adrenal System/metabolism , Pregnancy , Pro-Opiomelanocortin/genetics , RNA, Messenger/analysis , Receptors, Glucocorticoid/genetics , Sex Characteristics
20.
Endocrinology ; 146(6): 2665-73, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15718276

ABSTRACT

The hypothalamic-pituitary-adrenocortical axis plays an essential role in the maturation of fetal organs and, in sheep, birth. Lesioning the paraventricular nucleus (PVN) in fetal sheep prevents adrenocortical maturation and parturition without altering plasma immunoreactive ACTH concentrations. The purpose of this study was to determine the effect of PVN lesion on anterior pituitary processing of proopiomelanocortin (POMC) to ACTH, plasma concentrations of ACTH and ACTH precursors (POMC; 22-kDa proACTH), and expression of subtilisin-like prohormone convertase 3 (SPC3) in corticotropes in fetal sheep. PVN lesion did not affect anterior pituitary POMC and 22-kDa proACTH levels, whereas ACTH was significantly affected. The ACTH precursor (POMC plus 22-kDa proACTH) to ACTH ratio in the anterior pituitary was significantly increased after PVN lesion. Post-PVN lesion, fetal plasma ACTH(1-39), was below the limit of detection, whereas ACTH precursors (POMC plus 22-kDa proACTH) were not affected. In the inferior region of the anterior pituitary, 40-50% of corticotropes had detectable SPC3 hybridization signal, and PVN lesion did not change the extent of colocalization of POMC and SPC3, or SPC3 mRNA levels within corticotropes. Neither the percent of corticotropes in the superior region containing SPC3 hybridization (7-12%) or hybridization signal strength was altered in response to PVN lesion. In conclusion, the fetal PVN is necessary for sustaining adequate anterior pituitary processing of POMC to ACTH and ACTH release needed for maturing the adrenal cortex in the sheep fetus.


Subject(s)
Paraventricular Hypothalamic Nucleus/embryology , Paraventricular Hypothalamic Nucleus/pathology , Pituitary Gland, Anterior/embryology , Pituitary Gland, Anterior/metabolism , Pro-Opiomelanocortin/metabolism , Adrenocorticotropic Hormone/blood , Animals , Blotting, Western , Female , Gestational Age , Immunohistochemistry , In Situ Hybridization , Paraventricular Hypothalamic Nucleus/metabolism , Pregnancy , Proprotein Convertases/genetics , Proprotein Convertases/metabolism , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...