Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.346
Filter
1.
Stress ; 27(1): 2357330, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38775373

ABSTRACT

Why individuals suffer negative consequences following stress is a complex phenomenon that is dictated by individual factors, the timing of stress within the lifespan, and when in the lifespan the consequences are measured. Women who undergo adverse childhood experiences are at risk for lasting biological consequences, including affective and stress dysregulation. We have shown that pubertal adversity is associated with a blunted hypothalamic-pituitary-adrenal axis glucocorticoid response in peripartum humans and mice. In mice, our prior examination of the paraventricular nucleus (PVN) of the hypothalamus showed that pubertal stress led to an upregulation of baseline mRNA expression of six immediate early genes (IEGs) in the PVN of adult, pregnant mice. Separately, we showed that the pregnancy-associated hormone allopregnanolone is necessary and sufficient to produce the blunted stress response phenotype in pubertally stressed mice. In the current study, we further examined a potential mechanistic role for the IEGs in the PVN. We found that in pubertally stressed adult female, but not male, mice, intra-PVN allopregnanolone was sufficient to recapitulate the baseline IEG mRNA expression profile previously observed in pubertally stressed, pregnant mice. We also examined baseline IEG mRNA expression during adolescence, where we found that IEGs have developmental trajectories that showed sex-specific disruption by pubertal stress. Altogether, these data establish that IEGs may act as a key molecular switch involved in increased vulnerability to negative outcomes in adult, pubertally stressed animals. How the factors that produce vulnerability combine throughout the lifespan is key to our understanding of the etiology of stress-related disorders.


Subject(s)
Paraventricular Hypothalamic Nucleus , Stress, Psychological , Transcriptome , Animals , Female , Male , Mice , Stress, Psychological/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Pregnanolone , Hypothalamus/metabolism , Hypothalamus/drug effects , Pregnancy , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/drug effects , Sexual Maturation , Genes, Immediate-Early
2.
Proc Natl Acad Sci U S A ; 121(21): e2313207121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38753512

ABSTRACT

Arginine vasopressin (AVP) neurons of the hypothalamic paraventricular region (AVPPVN) mediate sex-biased social behaviors across most species, including mammals. In mice, neural sex differences are thought to be established during a critical window around birth ( embryonic (E) day 18 to postnatal (P) day 2) whereby circulating testosterone from the fetal testis is converted to estrogen in sex-dimorphic brain regions. Here, we found that AVPPVN neurons are sexually dimorphic by E15.5, prior to this critical window, and that gestational bisphenol A (BPA) exposure permanently masculinized female AVPPVN neuronal numbers, projections, and electrophysiological properties, causing them to display male-like phenotypes into adulthood. Moreover, we showed that nearly twice as many neurons that became AVP+ by P0 were born at E11 in males and BPA-exposed females compared to control females, suggesting that AVPPVN neuronal masculinization occurs between E11 and P0. We further narrowed this sensitive period to around the timing of neurogenesis by demonstrating that exogenous estrogen exposure from E14.5 to E15.5 masculinized female AVPPVN neuronal numbers, whereas a pan-estrogen receptor antagonist exposed from E13.5 to E15.5 blocked masculinization of males. Finally, we showed that restricting BPA exposure to E7.5-E15.5 caused adult females to display increased social dominance over control females, consistent with an acquisition of male-like behaviors. Our study reveals an E11.5 to E15.5 window of estrogen sensitivity impacting AVPPVN sex differentiation, which is impacted by prenatal BPA exposure.


Subject(s)
Benzhydryl Compounds , Neurons , Phenols , Sex Differentiation , Animals , Benzhydryl Compounds/toxicity , Phenols/toxicity , Female , Male , Mice , Sex Differentiation/drug effects , Neurons/drug effects , Neurons/metabolism , Pregnancy , Hypothalamus/metabolism , Hypothalamus/drug effects , Neurogenesis/drug effects , Arginine Vasopressin/metabolism , Vasopressins/metabolism , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Mice, Inbred C57BL , Estrogens/metabolism , Estrogens/pharmacology
3.
J Psychiatry Neurosci ; 49(3): E192-E207, 2024.
Article in English | MEDLINE | ID: mdl-38816029

ABSTRACT

BACKGROUND: Recent studies have identified empathy deficit as a core impairment and diagnostic criterion for people with autism spectrum disorders; however, the improvement of empathy focuses primarily on behavioural interventions without the target regulation. We sought to compare brain regions associated with empathy-like behaviours of fear and pain, and to explore the role of the oxytocin-oxytocin receptor system in fear empathy. METHODS: We used C57BL mice to establish 2 models of fear empathy and pain empathy. We employed immunofluorescence histochemical techniques to observe the expression of c-Fos throughout the entire brain and subsequently quantified the number of c-Fos-positive cells in different brain regions. Furthermore, we employed chemogenetic technology to selectively manipulate these neurons in Oxt-Cre-/+ mice to identify the role of oxytocin in this process. RESULTS: The regions activated by fear empathy were the anterior cingulate cortex, basolateral amygdala, nucleus accumbens, paraventricular nucleus (PVN), lateral habenula, and ventral and dorsal hippocampus. The regions activated by pain empathy were the anterior cingulate cortex, basolateral amygdala, nucleus accumbens, and lateral habenula. We found that increasing the activity of oxytocin neurons in the PVN region enhanced the response to fear empathy. This enhancement may be mediated through oxytocin receptors. LIMITATIONS: This study included only male animals, which restricts the broader interpretation of the findings. Further investigations on circuit function need to be conducted. CONCLUSION: The brain regions implicated in the regulation of fear and pain empathy exhibit distinctions; the activity of PVN neurons was positively correlated with empathic behaviour in mice. These findings highlight the role of the PVN oxytocin pathway in regulating fear empathy and suggest the importance of oxytocin signalling in mediating empathetic responses.


Subject(s)
Empathy , Fear , Mice, Inbred C57BL , Neurons , Oxytocin , Paraventricular Hypothalamic Nucleus , Animals , Oxytocin/metabolism , Male , Paraventricular Hypothalamic Nucleus/metabolism , Fear/physiology , Empathy/physiology , Neurons/metabolism , Mice , Receptors, Oxytocin/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Pain/physiopathology , Pain/psychology , Mice, Transgenic
4.
J Neurosci ; 44(21)2024 May 22.
Article in English | MEDLINE | ID: mdl-38565292

ABSTRACT

Glucagon-like peptide-1 (GLP-1) and its analogs are widely used for diabetes treatment. The paraventricular nucleus (PVN) is crucial for regulating cardiovascular activity. This study aims to determine the roles of GLP-1 and its receptors (GLP-1R) in the PVN in regulating sympathetic outflow and blood pressure. Experiments were carried out in male normotensive rats and spontaneously hypertensive rats (SHR). Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded. GLP-1 and GLP-1R expressions were present in the PVN. PVN microinjection of GLP-1R agonist recombinant human GLP-1 (rhGLP-1) or EX-4 increased RSNA and MAP, which were prevented by GLP-1R antagonist exendin 9-39 (EX9-39) or GLP-1R antagonist 1, superoxide scavenger tempol, antioxidant N-acetylcysteine, NADPH oxidase (NOX) inhibitor apocynin, adenylyl cyclase (AC) inhibitor SQ22536 or protein kinase A (PKA) inhibitor H89. PVN microinjection of rhGLP-1 increased superoxide production, NADPH oxidase activity, cAMP level, AC, and PKA activity, which were prevented by SQ22536 or H89. GLP-1 and GLP-1R were upregulated in the PVN of SHR. PVN microinjection of GLP-1 agonist increased RSNA and MAP in both WKY and SHR, but GLP-1 antagonists caused greater effects in reducing RSNA and MAP in SHR than in WKY. The increased superoxide production and NADPH oxidase activity in the PVN of SHR were augmented by GLP-1R agonists but attenuated by GLP-1R antagonists. These results indicate that activation of GLP-1R in the PVN increased sympathetic outflow and blood pressure via cAMP-PKA-mediated NADPH oxidase activation and subsequent superoxide production. GLP-1 and GLP-1R upregulation in the PVN partially contributes to sympathetic overactivity and hypertension.


Subject(s)
Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Hypertension , Paraventricular Hypothalamic Nucleus , Rats, Inbred SHR , Sympathetic Nervous System , Animals , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Male , Hypertension/physiopathology , Hypertension/metabolism , Rats , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiology , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/antagonists & inhibitors , Blood Pressure/drug effects , Blood Pressure/physiology , Rats, Inbred WKY , Rats, Sprague-Dawley
5.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G643-G658, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38564323

ABSTRACT

Unacylated ghrelin (UAG), the unacylated form of ghrelin, accounts for 80%-90% of its circulation. Accumulated studies have pointed out that UAG may be used to treat metabolic disorders. This study aimed to investigate the effect of intestinal perfusion of UAG on metabolically associated fatty liver disease (MAFLD) induced by a high-fat diet and its possible mechanisms. Neuronal retrograde tracking combined with immunofluorescence, central administration of a glucagon-like peptide-1 receptor (GLP-1R) antagonist, and hepatic vagotomy was performed to reveal its possible mechanism involving a central glucagon-like peptide-1 (GLP-1) pathway. The results showed that intestinal perfusion of UAG significantly reduced serum lipids, aminotransferases, and food intake in MAFLD rats. Steatosis and lipid accumulation in the liver were significantly alleviated, and lipid metabolism-related enzymes in the liver were regulated. UAG upregulated the expression of GLP-1 receptor (GLP-1R) in the paraventricular nucleus (PVN) and GLP-1 in the nucleus tractus solitarii (NTS), as well as activated GLP-1 neurons in the NTS. Furthermore, GLP-1 fibers projected from NTS to PVN were activated by the intestinal perfusion of UAG. However, hepatic vagotomy and GLP-1R antagonists delivered into PVN before intestinal perfusion of UAG partially attenuated its alleviation of MAFLD. In conclusion, intestinal perfusion of UAG showed a therapeutic effect on MAFLD, which might be related to its activation of the GLP-1 neuronal pathway from NTS to PVN. The present results provide a new strategy for the treatment of MAFLD.NEW & NOTEWORTHY Intestinal perfusion of UAG, the unacylated form of ghrelin, has shown promising potential for treating MAFLD. This study unveils a potential mechanism involving the central GLP-1 pathway, with UAG upregulating GLP-1R expression and activating GLP-1 neurons in specific brain regions. These findings propose a novel therapeutic strategy for MAFLD treatment through UAG and its modulation of the GLP-1 neuronal pathway.


Subject(s)
Ghrelin , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Animals , Ghrelin/metabolism , Ghrelin/pharmacology , Male , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Liver/metabolism , Liver/drug effects , Diet, High-Fat , Lipid Metabolism/drug effects , Non-alcoholic Fatty Liver Disease/metabolism , Perfusion/methods , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Vagotomy
6.
Horm Behav ; 162: 105537, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582062

ABSTRACT

Despite how widespread female aggression is across the animal kingdom, there remains much unknown about its neuroendocrine mechanisms, especially in females that engage in aggression outside the peripartum period. Although the impact of aggressive experience on steroid hormone responses have been described, little is known about the impact of these experiences on female behavior or the subsequent neuropeptide responses to performing aggression. In this study, we compared behavioral responses in both male and female adult California mice based on if they had 0, 1, or 3 aggressive encounters using a resident intruder paradigm. We measured how arginine vasopressin and oxytocin cells in the paraventricular nucleus responded to aggression using c-fos immunohistochemistry. We saw that both sexes disengaged from intruders with repeated aggressive encounters, but that on the final day of testing females were more likely to freeze when they encountered intruders compared to no aggression controls - which was not significant in males. Finally, we saw that percent of arginine vasopressin and c-fos co-localizations in the posterior region of the paraventricular nucleus increased in males who fought compared to no aggression controls. No difference was observed in females. Overall, there is evidence that engaging in aggression induces stress responses in both sexes, and that females may be more sensitive to the effects of fighting.


Subject(s)
Aggression , Arginine Vasopressin , Oxytocin , Paraventricular Hypothalamic Nucleus , Proto-Oncogene Proteins c-fos , Sex Characteristics , Animals , Female , Male , Aggression/physiology , Arginine Vasopressin/metabolism , Mice , Proto-Oncogene Proteins c-fos/metabolism , Oxytocin/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Behavior, Animal/physiology
7.
Biomed Pharmacother ; 174: 116549, 2024 May.
Article in English | MEDLINE | ID: mdl-38593701

ABSTRACT

This study aimed to determine whether trimethylamine N-oxide (TMAO) was involved in sympathetic activation in aging and the underlying mechanisms. Our hypothesis is TMAO reduces P2Y12 receptor (P2Y12R) and induces microglia-mediated inflammation in the paraventricular nucleus (PVN), then leading to sympathetic activation in aging. This study involved 18 young adults and 16 old adults. Aging rats were established by injecting D-galactose (D-gal, 200 mg/kg/d) subcutaneously for 12 weeks. TMAO (120 mg/kg/d) or 1% 3, 3-dimethyl-l-butanol (DMB) was administrated via drinking water for 12 weeks to investigate their effects on neuroinflammation and sympathetic activation in aging rats. Plasma TMAO, NE and IL-1ß levels were higher in old adults than in young adults. In addition, standard deviation of all normal to normal intervals (SDNN) and standard deviation of the average of normal to normal intervals (SDANN) were lower in old adults and negatively correlated with TMAO, indicating sympathetic activation in old adults, which is associated with an increase in TMAO levels. Treatment of rats with D-gal showed increased senescence-associated protein levels and microglia-mediated inflammation, as well as decreased P2Y12R protein levels in PVN. Plasma TMAO, NE and IL-1ß levels were increased, accompanied by enhanced renal sympathetic nerve activity (RSNA). While TMAO treatment exacerbated the above phenomenon, DMB mitigated it. These findings suggest that TMAO contributes to sympathetic hyperactivity in aging by downregulating P2Y12R in microglia and increasing inflammation in the PVN. These results may provide promising new target for the prevention and treatment of aging and aging-related diseases.


Subject(s)
Down-Regulation , Galactose , Methylamines , Microglia , Receptors, Purinergic P2Y12 , Animals , Rats , Aging/metabolism , Down-Regulation/drug effects , Galactose/pharmacology , Inflammation/chemically induced , Inflammation/metabolism , Interleukin-1beta/metabolism , Methylamines/pharmacology , Microglia/drug effects , Microglia/metabolism , Norepinephrine/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Rats, Sprague-Dawley , Receptors, Purinergic P2Y12/metabolism , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/metabolism
8.
J Physiol ; 602(10): 2179-2197, 2024 May.
Article in English | MEDLINE | ID: mdl-38630836

ABSTRACT

Hypertension is a major adverse effect of calcineurin inhibitors, such as tacrolimus (FK506) and cyclosporine, used clinically as immunosuppressants. Calcineurin inhibitor-induced hypertension (CIH) is linked to augmented sympathetic output from the hypothalamic paraventricular nucleus (PVN). GluA2-lacking, Ca2+-permeable AMPA receptors (CP-AMPARs) are a key feature of glutamatergic synaptic plasticity, yet their role in CIH remains elusive. Here, we found that systemic administration of FK506 in rats significantly increased serine phosphorylation of GluA1 and GluA2 in PVN synaptosomes. Strikingly, FK506 treatment reduced GluA1/GluA2 heteromers in both synaptosomes and endoplasmic reticulum-enriched fractions from the PVN. Blocking CP-AMPARs with IEM-1460 induced a larger reduction of AMPAR-mediated excitatory postsynaptic current (AMPAR-EPSC) amplitudes in retrogradely labelled, spinally projecting PVN neurons in FK506-treated rats than in vehicle-treated rats. Furthermore, FK506 treatment shifted the current-voltage relationship of AMPAR-EPSCs from linear to inward rectification in labelled PVN neurons. FK506 treatment profoundly enhanced physical interactions of α2δ-1 with GluA1 and GluA2 in the PVN. Inhibiting α2δ-1 with gabapentin, α2δ-1 genetic knockout, or disrupting α2δ-1-AMPAR interactions with an α2δ-1 C terminus peptide restored GluA1/GluA2 heteromers in the PVN and diminished inward rectification of AMPAR-EPSCs in labelled PVN neurons induced by FK506 treatment. Additionally, microinjection of IEM-1460 or α2δ-1 C terminus peptide into the PVN reduced renal sympathetic nerve discharges and arterial blood pressure elevated in FK506-treated rats but not in vehicle-treated rats. Thus, calcineurin in the hypothalamus constitutively regulates AMPAR subunit composition and phenotypes by controlling GluA1/GluA2 interactions with α2δ-1. Synaptic CP-AMPARs in PVN presympathetic neurons contribute to augmented sympathetic outflow in CIH. KEY POINTS: Systemic treatment with the calcineurin inhibitor increases serine phosphorylation of synaptic GluA1 and GluA2 in the PVN. Calcineurin inhibition enhances the prevalence of postsynaptic Ca2+-permeable AMPARs in PVN presympathetic neurons. Calcineurin inhibition potentiates α2δ-1 interactions with GluA1 and GluA2, disrupting intracellular assembly of GluA1/GluA2 heterotetramers in the PVN. Blocking Ca2+-permeable AMPARs or α2δ-1-AMPAR interactions in the PVN attenuates sympathetic outflow augmented by the calcineurin inhibitor.


Subject(s)
Calcineurin , Neurons , Paraventricular Hypothalamic Nucleus , Rats, Sprague-Dawley , Receptors, AMPA , Tacrolimus , Animals , Receptors, AMPA/metabolism , Receptors, AMPA/physiology , Calcineurin/metabolism , Male , Tacrolimus/pharmacology , Rats , Neurons/physiology , Neurons/drug effects , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/physiology , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Calcium/metabolism , Excitatory Postsynaptic Potentials/physiology , Excitatory Postsynaptic Potentials/drug effects , Calcineurin Inhibitors/pharmacology , Synapses/physiology , Synapses/drug effects , Synapses/metabolism
9.
Food Funct ; 15(9): 5088-5102, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38666497

ABSTRACT

Diets rich in taurine can increase the production of taurine-conjugated bile acids, which are known to exert antihypertensive effects. Despite their benefits to the heart, kidney and arteries, their role in the central nervous system during the antihypertensive process remains unclear. Since hypothalamic paraventricular nucleus (PVN) plays a key role in blood pressure regulation, we aimed to investigate the function of bile acids in the PVN. The concentration of bile acids in the PVN of spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto rats (WKY) fed with normal chow was measured using LC-MS/MS, which identified taurocholic acid (TCA) as the most down-regulated bile acid. To fully understand the mechanism of TCA's functions in the PVN, bi-lateral PVN micro-infusion of TCA was carried out. TCA treatment in the PVN led to a significant reduction in the blood pressure of SHRs, with decreased plasma levels of norepinephrine and improved morphology of cardiomyocytes. It also decreased the number of c-fos+ neurons, reduced the inflammatory response, and suppressed oxidative stress in the PVN of the SHRs. Most importantly, the TGR5 receptors in neurons and microglia were activated. PVN infusion of SBI-115, a TGR5 specific antagonist, was able to counteract with TCA in the blood pressure regulation of SHRs. In conclusion, TCA supplementation in the PVN of SHRs can activate TGR5 in neurons and microglia, reduce the inflammatory response and oxidative stress, suppress activated neurons, and attenuate hypertension.


Subject(s)
Hypertension , Paraventricular Hypothalamic Nucleus , Receptors, G-Protein-Coupled , Taurocholic Acid , Animals , Male , Rats , Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Hypertension/drug therapy , Hypertension/metabolism , Neurons/drug effects , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Rats, Inbred SHR , Rats, Inbred WKY , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics
10.
J Neurosci ; 44(17)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38438259

ABSTRACT

Oxytocinergic transmission blocks nociception at the peripheral, spinal, and supraspinal levels through the oxytocin receptor (OTR). Indeed, a neuronal pathway from the hypothalamic paraventricular nucleus (PVN) to the spinal cord and trigeminal nucleus caudalis (Sp5c) has been described. Hence, although the trigeminocervical complex (TCC), an anatomical area spanning the Sp5c, C1, and C2 regions, plays a role in some pain disorders associated with craniofacial structures (e.g., migraine), the role of oxytocinergic transmission in modulating nociception at this level has been poorly explored. Hence, in vivo electrophysiological recordings of TCC wide dynamic range (WDR) cells sensitive to stimulation of the periorbital or meningeal region were performed in male Wistar rats. PVN electrical stimulation diminished the neuronal firing evoked by periorbital or meningeal electrical stimulation; this inhibition was reversed by OTR antagonists administered locally. Accordingly, neuronal projections (using Fluoro-Ruby) from the PVN to the WDR cells filled with Neurobiotin were observed. Moreover, colocalization between OTR and calcitonin gene-related peptide (CGRP) or OTR and GABA was found near Neurobiotin-filled WDR cells. Retrograde neuronal tracers deposited at the meningeal (True-Blue, TB) and infraorbital nerves (Fluoro-Gold, FG) showed that at the trigeminal ganglion (TG), some cells were immunopositive to both fluorophores, suggesting that some TG cells send projections via the V1 and V2 trigeminal branches. Together, these data may imply that endogenous oxytocinergic transmission inhibits the nociceptive activity of second-order neurons via OTR activation in CGRPergic (primary afferent fibers) and GABAergic cells.


Subject(s)
Electric Stimulation , Oxytocin , Paraventricular Hypothalamic Nucleus , Rats, Wistar , Receptors, Oxytocin , Synaptic Transmission , Animals , Male , Paraventricular Hypothalamic Nucleus/physiology , Paraventricular Hypothalamic Nucleus/metabolism , Oxytocin/metabolism , Oxytocin/analogs & derivatives , Rats , Receptors, Oxytocin/metabolism , Receptors, Oxytocin/antagonists & inhibitors , Synaptic Transmission/physiology , Nociceptors/physiology , Nociceptors/metabolism , Nociception/physiology , Action Potentials/physiology , Action Potentials/drug effects , Meninges/physiology , Neural Inhibition/physiology
11.
Horm Behav ; 162: 105536, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522143

ABSTRACT

Paternal deprivation (PD) impairs social cognition and sociality and increases levels of anxiety-like behavior. However, whether PD affects the levels of empathy in offspring and its underlying mechanisms remain unknown. The present study found that PD increased anxiety-like behavior in mandarin voles (Microtus mandarinus), impaired sociality, reduced the ability of emotional contagion, and the level of consolation behavior. Meanwhile, PD reduced OT neurons in the paraventricular nucleus (PVN) in both male and female mandarin voles. PD decreased the level of OT receptor (OTR) mRNA in the anterior cingulate cortex (ACC) of male and female mandarin voles. Besides, OTR overexpression in the ACC reversed the PD-induced changes in anxiety-like behavior, social preference, emotional contagion, and consolation behavior. Interference of OTR expression in the ACC increased levels of anxiety-like behaviors, while it reduced levels of sociality, emotional contagion, and consolation. These results revealed that the OTR in the ACC is involved in the effects of PD on empathetic behaviors, and provide mechanistic insight into how social experiences affect empathetic behaviors.


Subject(s)
Anxiety , Arvicolinae , Empathy , Gyrus Cinguli , Paternal Deprivation , Receptors, Oxytocin , Social Behavior , Animals , Male , Gyrus Cinguli/metabolism , Arvicolinae/physiology , Receptors, Oxytocin/metabolism , Receptors, Oxytocin/genetics , Female , Empathy/physiology , Anxiety/metabolism , Behavior, Animal/physiology , Paraventricular Hypothalamic Nucleus/metabolism
12.
Hypertens Res ; 47(5): 1323-1337, 2024 May.
Article in English | MEDLINE | ID: mdl-38491106

ABSTRACT

Paroxysmal sympathetic hyperactivity (PSH) is a common clinical feature secondary to ischemic stroke (IS), but its mechanism is poorly understood. We aimed to investigate the role of H2S in the pathogenesis of PSH. IS patients were divided into malignant (MCI) and non-malignant cerebral infarction (NMCI) group. IS in rats was induced by the right middle cerebral artery occlusion (MCAO). H2S donor (NaHS) or inhibitor (aminooxy-acetic acid, AOAA) were microinjected into the hypothalamic paraventricular nucleus (PVN). Compared with the NMCI group, patients in the MCI group showed PSH, including tachycardia, hypertension, and more plasma norepinephrine (NE) that was positively correlated with levels of creatine kinase, glutamate transaminase, and creatinine respectively. The 1-year survival rate of patients with high plasma NE levels was lower. The hypothalamus of rats with MCAO showed increased activity, especially in the PVN region. The levels of H2S in PVN of the rats with MCAO were reduced, while the blood pressure and renal sympathetic discharge were increased, which could be ameliorated by NaHS and exacerbated by AOAA. NaHS completely reduced the disulfide bond of NMDAR1 in PC12 cells. The inhibition of NMDAR by MK-801 microinjected in PVN of rats with MCAO also could lower blood pressure and renal sympathetic discharge. In conclusion, PSH may be associated with disease progression and survival in patients with IS. Decreased levels of H2S in PVN were involved in regulating sympathetic efferent activity after cerebral infarction. Our results might provide a new strategy and target for the prevention and treatment of PSH.


Subject(s)
Hydrogen Sulfide , Paraventricular Hypothalamic Nucleus , Animals , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/blood , Male , Rats , Humans , Aged , Cerebral Infarction , Middle Aged , Rats, Sprague-Dawley , Female , Norepinephrine/blood , Autonomic Nervous System Diseases , Aminooxyacetic Acid/pharmacology , Sympathetic Nervous System/physiopathology , Sympathetic Nervous System/drug effects , Infarction, Middle Cerebral Artery/complications , Blood Pressure/drug effects
13.
Cell Metab ; 36(2): 438-453.e6, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38325338

ABSTRACT

The hypothalamus plays a crucial role in the progression of obesity and diabetes; however, its structural complexity and cellular heterogeneity impede targeted treatments. Here, we profiled the single-cell and spatial transcriptome of the hypothalamus in obese and sporadic type 2 diabetic macaques, revealing primate-specific distributions of clusters and genes as well as spatial region, cell-type-, and gene-feature-specific changes. The infundibular (INF) and paraventricular nuclei (PVN) are most susceptible to metabolic disruption, with the PVN being more sensitive to diabetes. In the INF, obesity results in reduced synaptic plasticity and energy sensing capability, whereas diabetes involves molecular reprogramming associated with impaired tanycytic barriers, activated microglia, and neuronal inflammatory response. In the PVN, cellular metabolism and neural activity are suppressed in diabetic macaques. Spatial transcriptomic data reveal microglia's preference for the parenchyma over the third ventricle in diabetes. Our findings provide a comprehensive view of molecular changes associated with obesity and diabetes.


Subject(s)
Diabetes Mellitus , Paraventricular Hypothalamic Nucleus , Animals , Paraventricular Hypothalamic Nucleus/metabolism , Transcriptome/genetics , Hypothalamus/metabolism , Obesity/metabolism , Diabetes Mellitus/metabolism , Gene Expression Profiling
14.
Eur J Pharmacol ; 974: 176373, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38341079

ABSTRACT

BACKGROUND: Oxidative stress and inflammatory cytokines in the hypothalamus paraventricular nucleus (PVN) have been implicated in sympathetic nerve activity and the development of hypertension, but the specific mechanisms underlying their production in the PVN remains to be elucidated. Previous studies have demonstrated that activation of nuclear transcription related factor-2 (Nrf2) in the PVN reduced the production of reactive oxygen species (ROS) and inflammatory mediators. Moreover, AMP-activated protein kinase (AMPK), has been observed to decrease ROS and inflammatory cytokine production when activated in the periphery. 5-amino-1-ß-D-ribofuranosyl-imidazole-4-carboxamide (AICAR) is an AMPK agonist. However, little research has been conducted on the role of AMPK in the PVN during hypertension. Therefore, we hypothesized that AICAR in the PVN is involved in regulating AMPK/Nrf2 pathway, affecting ROS and inflammatory cytokine expression, influencing sympathetic nerve activity. METHODS: Adult male Sprague-Dawley rats were utilized to induce two-kidney, one-clip (2K1C) hypertension via constriction of the right renal artery. Bilateral PVN was microinjected with either artificial cerebrospinal fluid or AICAR once a day for 4 weeks. RESULTS: Compared to the SHAM group, the PVN of 2K1C hypertensive rats decreased p-AMPK and p-Nrf2 expression, increased Fra-Like, NAD(P)H oxidase (NOX)2, NOX4, tumor necrosis factor-α and interleukin (IL)-1ß expression, elevated ROS levels, decreased superoxide dismutase 1 and IL-10 expression, and elevated plasma norepinephrine levels. Bilateral PVN microinjection of AICAR significantly ameliorated these changes. CONCLUSION: These findings suggest that repeated injection of AICAR in the PVN suppresses ROS and inflammatory cytokine production through the AMPK/Nrf2 pathway, reducing sympathetic nerve activity and improving hypertension.


Subject(s)
AMP-Activated Protein Kinases , Aminoimidazole Carboxamide , Hypertension , NF-E2-Related Factor 2 , Paraventricular Hypothalamic Nucleus , Rats, Sprague-Dawley , Reactive Oxygen Species , Ribonucleotides , Signal Transduction , Animals , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Male , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Aminoimidazole Carboxamide/administration & dosage , Ribonucleotides/pharmacology , Ribonucleotides/administration & dosage , AMP-Activated Protein Kinases/metabolism , Hypertension/drug therapy , Hypertension/metabolism , NF-E2-Related Factor 2/metabolism , Rats , Signal Transduction/drug effects , Reactive Oxygen Species/metabolism , Blood Pressure/drug effects , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/metabolism , Oxidative Stress/drug effects , Cytokines/metabolism
16.
Pflugers Arch ; 476(3): 365-377, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38308122

ABSTRACT

To assess the influence of physical training on neuronal activation and hypothalamic expression of vasopressin and oxytocin in spontaneously hypertensive rats (SHR), untrained and trained normotensive rats and SHR were submitted to running until fatigue while internal body and tail temperatures were recorded. Hypothalamic c-Fos expression was evaluated in thermoregulatory centers such as the median preoptic nucleus (MnPO), medial preoptic nucleus (mPOA), paraventricular nucleus of the hypothalamus (PVN), and supraoptic nucleus (SON). The PVN and the SON were also investigated for vasopressin and oxytocin expressions. Although exercise training improved the workload performed by the animals, it was reduced in SHR and followed by increased internal body temperature due to tail vasodilation deficit. Physical training enhanced c-Fos expression in the MnPO, mPOA, and PVN of both strains, and these responses were attenuated in SHR. Vasopressin immunoreactivity in the PVN was also increased by physical training to a lesser extent in SHR. The already-reduced oxytocin expression in the PVN of SHR was increased in response to physical training. Within the SON, neuronal activation and the expressions of vasopressin and oxytocin were reduced by hypertension and unaffected by physical training. The data indicate that physical training counterbalances in part the negative effect of hypertension on hypothalamic neuronal activation elicited by exercise, as well as on the expression of vasopressin and oxytocin. These hypertension features seem to negatively influence the workload performed by SHR due to the hyperthermia derived from the inability of physical training to improve heat dissipation through skin vasodilation.


Subject(s)
Hypertension , Running , Rats , Animals , Rats, Inbred SHR , Oxytocin/metabolism , Oxytocin/pharmacology , Hypothalamus/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Vasopressins/metabolism , Hypertension/metabolism , Fatigue
17.
Behav Brain Res ; 462: 114867, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38246394

ABSTRACT

Disruption of the brain serotoninergic (5-HT) system during development induces long-lasting changes in molecular profile, cytoarchitecture, and function of neurons, impacting behavioral regulation throughout life. In male and female rats, we investigate the effect of neonatal tryptophan hydroxylase (TPH) inhibition by using para-chlorophenylalanine (pCPA) on the expression of 5-HTergic system components and neuropeptides related to adolescent social play behavior regulation. We observed sex-dependent 5-HT levels decrease after pCPA-treatment in the dorsal raphe nucleus (DRN) at 17 and 35 days. Neonatal pCPA-treatment increased playing, social and locomotory behaviors assessed in adolescent rats of both sexes. The pCPA-treated rats demonstrated decreased Crh (17 days) and increased Trh (35 days) expression in the hypothalamic paraventricular nucleus (PVN). There was sex dimorphism in Htr2c (17 days) and VGF (35 days) in the prefrontal cortex, with the females expressing higher levels of it than males. Our results indicate that neonatal pCPA-treatment results in a long-lasting and sex-dependent DRN 5-HT synthesis changes, decreased Crh, and increased Trh expression in the PVN, resulting in a hyperactivity-like phenotype during adolescence. The present work demonstrates that the impairment of TPH function leads to neurobehavioral disorders related to hyperactivity and impulsivity, such as attention deficit hyperactivity disorder (ADHD).


Subject(s)
Paraventricular Hypothalamic Nucleus , Serotonin , Rats , Female , Male , Animals , Fenclonine/pharmacology , Paraventricular Hypothalamic Nucleus/metabolism , Serotonin/metabolism , Dorsal Raphe Nucleus/metabolism , Tryptophan Hydroxylase/metabolism
18.
J Am Heart Assoc ; 13(3): e032533, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38240234

ABSTRACT

BACKGROUND: Elevated inflammatory cytokines in the periphery have been identified as active contributors to neuroinflammation and sympathetic overactivity in heart failure (HF). Yet, the exact mechanisms by which these cytokines breach the blood-brain barrier (BBB) to exert their effects on the brain remain elusive. Interleukin 17A has been linked to BBB disruption in various neurologic disorders, and its levels were significantly augmented in circulation and the brain in HF. The present study aimed to determine whether the BBB integrity was compromised within the hypothalamic paraventricular nucleus (PVN), and if so, whether interleukin 17A contributes to BBB disruption in myocardial infarction-induced HF. METHODS AND RESULTS: Male Sprague-Dawley rats underwent coronary artery ligation to induce HF or sham surgery. Some HF rats received bilateral PVN microinjections of an interleukin 17 receptor A small interfering RNA or a scrambled small interfering RNA adeno-associated virus. Four weeks after coronary artery ligation, the permeability of the BBB was evaluated by intracarotid injection of fluorescent dyes (fluorescein isothiocyanate-dextran 10 kDa+rhodamine-dextran 70 kDa). Compared with sham-operated rats, HF rats exhibited an elevated extravasation of fluorescein isothiocyanate-dextran 10 kDa within the PVN but not in the brain cortex. The plasma interleukin 17A levels were positively correlated with fluorescein isothiocyanate 10 kDa extravasation in the PVN. The expression of caveolin-1, a transcytosis marker, was augmented, whereas the expression of tight junction proteins was diminished in HF rats. Interleukin 17 receptor A was identified within the endothelium of PVN microvessels. Treatment with interleukin 17 receptor A small interfering RNA led to a significant attenuation of fluorescein isothiocyanate 10 kDa extravasation in the PVN and reversed expression of caveolin-1 and tight junction-associated proteins in the PVN. CONCLUSIONS: Collectively, these data indicate that BBB permeability within the PVN is enhanced in HF and is likely attributable to increased interleukin 17A/interleukin 17 receptor A signaling in the BBB endothelium, by promoting caveolar transcytosis and degradation of tight junction complexes.


Subject(s)
Blood-Brain Barrier , Fluorescein-5-isothiocyanate , Interleukin-17 , Myocardial Infarction , Paraventricular Hypothalamic Nucleus , Signal Transduction , Animals , Male , Rats , Blood-Brain Barrier/metabolism , Caveolin 1/metabolism , Cytokines/metabolism , Dextrans/metabolism , Dextrans/pharmacology , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluoresceins/metabolism , Fluoresceins/pharmacology , Heart Failure , Interleukin-17/metabolism , Isothiocyanates/metabolism , Isothiocyanates/pharmacology , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/pathology , Rats, Sprague-Dawley , Receptors, Interleukin-17/metabolism , RNA, Small Interfering/metabolism
19.
J Neuroendocrinol ; 36(2): e13363, 2024 02.
Article in English | MEDLINE | ID: mdl-38192267

ABSTRACT

The light-sensitive protein Opsin 3 (Opn3) is present throughout the mammalian brain; however, the role of Opn3 in this organ remains unknown. Since Opn3 encoded mRNA is modulated in the supraoptic and paraventricular nucleus of the hypothalamus in response to osmotic stimuli, we have explored by in situ hybridization the expression of Opn3 in these nuclei. We have demonstrated that Opn3 is present in the male rat magnocellular neurones expressing either the arginine vasopressin or oxytocin neuropeptides and that Opn3 increases in both neuronal types in response to osmotic stimuli, suggesting that Opn3 functions in both cell types and that it might be involved in regulating water balance. Using rat hypothalamic organotypic cultures, we have demonstrated that the hypothalamus is sensitive to light and that the observed light sensitivity is mediated, at least in part, by Opn3. The data suggests that hypothalamic Opn3 can mediate a light-sensitive role to regulate circadian homeostatic processes.


Subject(s)
Hypothalamus , Animals , Male , Rats , Arginine Vasopressin/metabolism , Hypothalamus/metabolism , In Situ Hybridization , Mammals , Oxytocin/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Vasopressins/metabolism
20.
J Neuroendocrinol ; 36(2): e13367, 2024 02.
Article in English | MEDLINE | ID: mdl-38281730

ABSTRACT

The hypothalamic paraventricular nucleus (PVN) is a highly complex brain region that is crucial for homeostatic regulation through neuroendocrine signaling, outflow of the autonomic nervous system, and projections to other brain areas. In the past years, single-cell datasets of the hypothalamus have contributed immensely to the current understanding of the diverse hypothalamic cellular composition. While the PVN has been adequately classified functionally, its molecular classification is currently still insufficient. To address this, we created a detailed atlas of PVN transcriptomic cell types by integrating various PVN single-cell datasets into a recently published hypothalamus single-cell transcriptome atlas. Furthermore, we functionally profiled transcriptomic cell types, based on relevant literature, existing retrograde tracing data, and existing single-cell data of a PVN-projection target region. Finally, we validated our findings with immunofluorescent stainings. In our PVN atlas dataset, we identify the well-known different neuropeptide types, each composed of multiple novel subtypes. We identify Avp-Tac1, Avp-Th, Oxt-Foxp1, Crh-Nr3c1, and Trh-Nfib as the most important neuroendocrine subtypes based on markers described in literature. To characterize the preautonomic functional population, we integrated a single-cell retrograde tracing study of spinally projecting preautonomic neurons into our PVN atlas. We identify these (presympathetic) neurons to cocluster with the Adarb2+ clusters in our dataset. Further, we identify the expression of receptors for Crh, Oxt, Penk, Sst, and Trh in the dorsal motor nucleus of the vagus, a key region that the pre-parasympathetic PVN neurons project to. Finally, we identify Trh-Ucn3 and Brs3-Adarb2 as some centrally projecting populations. In conclusion, our study presents a detailed overview of the transcriptomic cell types of the murine PVN and provides a first attempt to resolve functionality for the identified populations.


Subject(s)
Paraventricular Hypothalamic Nucleus , Transcriptome , Mice , Animals , Paraventricular Hypothalamic Nucleus/metabolism , Single-Cell Gene Expression Analysis , Hypothalamus/metabolism , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL
...