Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.821
Filter
1.
Alzheimers Res Ther ; 16(1): 119, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822365

ABSTRACT

BACKGROUND: Autopsy work reported that neuronal density in the locus coeruleus (LC) provides neural reserve against cognitive decline in dementia. Recent neuroimaging and pharmacological studies reported that left frontoparietal network functional connectivity (LFPN-FC) confers resilience against beta-amyloid (Aß)-related cognitive decline in preclinical sporadic and autosomal dominant Alzheimer's disease (AD), as well as against LC-related cognitive changes. Given that the LFPN and the LC play important roles in attention, and attention deficits have been observed early in the disease process, we examined whether LFPN-FC and LC structural health attenuate attentional decline in the context of AD pathology. METHODS: 142 participants from the Harvard Aging Brain Study who underwent resting-state functional MRI, LC structural imaging, PiB(Aß)-PET, and up to 5 years of cognitive follow-ups were included (mean age = 74.5 ± 9.9 years, 89 women). Cross-sectional robust linear regression associated LC integrity (measured as the average of five continuous voxels with the highest intensities in the structural LC images) or LFPN-FC with Digit Symbol Substitution Test (DSST) performance at baseline. Longitudinal robust mixed effect analyses examined associations between DSST decline and (i) two-way interactions of baseline LC integrity (or LFPN-FC) and PiB or (ii) the three-way interaction of baseline LC integrity, LFPN-FC, and PiB. Baseline age, sex, and years of education were included as covariates. RESULTS: At baseline, lower LFPN-FC, but not LC integrity, was related to worse DSST performance. Longitudinally, lower baseline LC integrity was associated with a faster DSST decline, especially at PiB > 10.38 CL. Lower baseline LFPN-FC was associated with a steeper decline on the DSST but independent of PiB. At elevated PiB levels (> 46 CL), higher baseline LFPN-FC was associated with an attenuated decline on the DSST, despite the presence of lower LC integrity. CONCLUSIONS: Our findings demonstrate that the LC can provide resilience against Aß-related attention decline. However, when Aß accumulates and the LC's resources may be depleted, the functioning of cortical target regions of the LC, such as the LFPN-FC, can provide additional resilience to sustain attentional performance in preclinical AD. These results provide critical insights into the neural correlates contributing to individual variability at risk versus resilience against Aß-related cognitive decline.


Subject(s)
Alzheimer Disease , Locus Coeruleus , Magnetic Resonance Imaging , Parietal Lobe , Humans , Female , Male , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/psychology , Alzheimer Disease/physiopathology , Aged , Locus Coeruleus/diagnostic imaging , Locus Coeruleus/pathology , Magnetic Resonance Imaging/methods , Parietal Lobe/diagnostic imaging , Aged, 80 and over , Attention/physiology , Frontal Lobe/diagnostic imaging , Frontal Lobe/physiopathology , Positron-Emission Tomography , Cross-Sectional Studies , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/psychology , Neuropsychological Tests
2.
Addict Biol ; 29(6): e13405, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837586

ABSTRACT

AIMS: Abuse of methamphetamine has aroused concern worldwide. Stimulant use and sexual behaviours have been linked in behavioural and epidemiological studies. Although methamphetamine-related neurofunctional differences are reported in previous studies, only few studies have examined neurofunctional changes related to methamphetamine and sexual cues in methamphetamine dependence from short- to long-term abstinence. METHODS: Neurofunctional changes were measured using a cue-reactivity task involving methamphetamine, sexual, and neutral cues in 20 methamphetamine abusers who were evaluated after a short- (1 week to 3 months) and long-term (10-15 months) abstinence. RESULTS: Five brain regions mainly involved in the occipital lobe and the parietal lobe were found with the group-by-condition interaction. Region-of-interest analyses found higher sexual-cue-related activation than other two activations in all five brain regions in the long-term methamphetamine abstinence group while no group differences were found. Negative relationships between motor impulsivity and methamphetamine- or sexual-cue-related activations in the left middle occipital gyrus, the superior parietal gyrus and the right angular gyrus were found. CONCLUSIONS: The findings suggested that methamphetamine abstinence may change the neural response of methamphetamine abusers to methamphetamine and sexual cues, and the neurofunction of the five brain regions reported in this study may partly recover with long-term methamphetamine abstinence. Given the use and relapse of methamphetamine for sexual purposes, the findings of this study may have particular clinical relevance.


Subject(s)
Amphetamine-Related Disorders , Cues , Methamphetamine , Sexual Behavior , Humans , Amphetamine-Related Disorders/physiopathology , Male , Adult , Sexual Behavior/drug effects , Magnetic Resonance Imaging , Parietal Lobe/physiopathology , Parietal Lobe/drug effects , Female , Occipital Lobe/physiopathology , Brain/physiopathology , Brain/drug effects , Central Nervous System Stimulants/pharmacology , Young Adult , Impulsive Behavior/drug effects , Brain Mapping/methods , Time Factors
3.
Behav Brain Funct ; 20(1): 11, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724963

ABSTRACT

Procrastination is universally acknowledged as a problematic behavior with wide-ranging consequences impacting various facets of individuals' lives, including academic achievement, social accomplishments, and mental health. Although previous research has indicated that future self-continuity is robustly negatively correlated with procrastination, it remains unknown about the neural mechanisms underlying the impact of future self-continuity on procrastination. To address this issue, we employed a free construction approach to collect individuals' episodic future thinking (EFT) thoughts regarding specific procrastination tasks. Next, we conducted voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) analysis to explore the neural substrates underlying future self-continuity. Behavior results revealed that future self-continuity was significantly negatively correlated with procrastination, and positively correlated with anticipated positive outcome. The VBM analysis showed a positive association between future self-continuity and gray matter volumes in the right ventromedial prefrontal cortex (vmPFC). Furthermore, the RSFC results indicated that the functional connectivity between the right vmPFC and the left inferior parietal lobule (IPL) was positively correlated with future self-continuity. More importantly, the mediation analysis demonstrated that anticipated positive outcome can completely mediate the relationship between the vmPFC-IPL functional connectivity and procrastination. These findings suggested that vmPFC-IPL functional connectivity might prompt anticipated positive outcome about the task and thereby reduce procrastination, which provides a new perspective to understand the relationship between future self-continuity and procrastination.


Subject(s)
Magnetic Resonance Imaging , Parietal Lobe , Prefrontal Cortex , Procrastination , Humans , Procrastination/physiology , Male , Female , Magnetic Resonance Imaging/methods , Young Adult , Adult , Prefrontal Cortex/physiology , Prefrontal Cortex/diagnostic imaging , Parietal Lobe/physiology , Parietal Lobe/diagnostic imaging , Brain Mapping/methods , Neural Pathways/physiology , Adolescent , Nerve Net/diagnostic imaging , Nerve Net/physiology , Thinking/physiology
4.
Commun Biol ; 7(1): 520, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698168

ABSTRACT

The sulco-gyral pattern is a qualitative feature of the cortical anatomy that is determined in utero, stable throughout lifespan and linked to brain function. The intraparietal sulcus (IPS) is a nodal associative brain area, but the relation between its morphology and cognition is largely unknown. By labelling the left and right IPS of 390 healthy participants into two patterns, according to the presence or absence of a sulcus interruption, here we demonstrate a strong association between the morphology of the right IPS and performance on memory and language tasks. We interpret the results as a morphological advantage of a sulcus interruption, probably due to the underlying white matter organization. The right-hemisphere specificity of this effect emphasizes the neurodevelopmental and plastic role of sulcus morphology in cognition prior to lateralisation processes. The results highlight a promising area of investigation on the relationship between cognitive performance, sulco-gyral pattern and white matter bundles.


Subject(s)
Language , Magnetic Resonance Imaging , Memory , Parietal Lobe , Humans , Parietal Lobe/physiology , Parietal Lobe/anatomy & histology , Female , Male , Adult , Memory/physiology , Young Adult , Individuality , Cognition/physiology , Adolescent , Middle Aged , White Matter/physiology , White Matter/anatomy & histology , White Matter/diagnostic imaging
5.
Hum Brain Mapp ; 45(7): e26690, 2024 May.
Article in English | MEDLINE | ID: mdl-38703117

ABSTRACT

One potential application of forensic "brain reading" is to test whether a suspect has previously experienced a crime scene. Here, we investigated whether it is possible to decode real life autobiographic exposure to spatial locations using fMRI. In the first session, participants visited four out of eight possible rooms on a university campus. During a subsequent scanning session, subjects passively viewed pictures and videos from these eight possible rooms (four old, four novel) without giving any responses. A multivariate searchlight analysis was employed that trained a classifier to distinguish between "seen" versus "unseen" stimuli from a subset of six rooms. We found that bilateral precuneus encoded information that can be used to distinguish between previously seen and unseen rooms and that also generalized to the two stimuli left out from training. We conclude that activity in bilateral precuneus is associated with the memory of previously visited rooms, irrespective of the identity of the room, thus supporting a parietal contribution to episodic memory for spatial locations. Importantly, we could decode whether a room was visited in real life without the need of explicit judgments about the rooms. This suggests that recognition is an automatic response that can be decoded from fMRI data, thus potentially supporting forensic applications of concealed information tests for crime scene recognition.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Parietal Lobe , Recognition, Psychology , Humans , Male , Female , Parietal Lobe/physiology , Parietal Lobe/diagnostic imaging , Young Adult , Recognition, Psychology/physiology , Brain Mapping/methods , Adult , Photic Stimulation/methods , Pattern Recognition, Visual/physiology , Space Perception/physiology , Memory, Episodic
6.
Sci Rep ; 14(1): 10304, 2024 05 05.
Article in English | MEDLINE | ID: mdl-38705917

ABSTRACT

Understanding neurogenetic mechanisms underlying neuropsychiatric disorders such as schizophrenia and autism is complicated by their inherent clinical and genetic heterogeneity. Williams syndrome (WS), a rare neurodevelopmental condition in which both the genetic alteration (hemideletion of ~ twenty-six 7q11.23 genes) and the cognitive/behavioral profile are well-defined, offers an invaluable opportunity to delineate gene-brain-behavior relationships. People with WS are characterized by increased social drive, including particular interest in faces, together with hallmark difficulty in visuospatial processing. Prior work, primarily in adults with WS, has searched for neural correlates of these characteristics, with reports of altered fusiform gyrus function while viewing socioemotional stimuli such as faces, along with hypoactivation of the intraparietal sulcus during visuospatial processing. Here, we investigated neural function in children and adolescents with WS by using four separate fMRI paradigms, two that probe each of these two cognitive/behavioral domains. During the two visuospatial tasks, but not during the two face processing tasks, we found bilateral intraparietal sulcus hypoactivation in WS. In contrast, during both face processing tasks, but not during the visuospatial tasks, we found fusiform hyperactivation. These data not only demonstrate that previous findings in adults with WS are also present in childhood and adolescence, but also provide a clear example that genetic mechanisms can bias neural circuit function, thereby affecting behavioral traits.


Subject(s)
Magnetic Resonance Imaging , Williams Syndrome , Humans , Williams Syndrome/physiopathology , Williams Syndrome/genetics , Williams Syndrome/diagnostic imaging , Magnetic Resonance Imaging/methods , Adolescent , Child , Female , Male , Brain Mapping/methods , Brain/diagnostic imaging , Brain/physiopathology , Face , Facial Recognition/physiology , Parietal Lobe/physiopathology , Parietal Lobe/diagnostic imaging , Space Perception/physiology
7.
PLoS One ; 19(5): e0302660, 2024.
Article in English | MEDLINE | ID: mdl-38709724

ABSTRACT

The Stroop task is a well-established tool to investigate the influence of competing visual categories on decision making. Neuroimaging as well as rTMS studies have demonstrated the involvement of parietal structures, particularly the intraparietal sulcus (IPS), in this task. Given its reliability, the numerical Stroop task was used to compare the effects of different TMS targeting approaches by Sack and colleagues (Sack AT 2009), who elegantly demonstrated the superiority of individualized fMRI targeting. We performed the present study to test whether fMRI-guided rTMS effects on numerical Stroop task performance could still be observed while using more advanced techniques that have emerged in the last decade (e.g., electrical sham, robotic coil holder system, etc.). To do so we used a traditional reaction time analysis and we performed, post-hoc, a more advanced comprehensive drift diffusion modeling approach. Fifteen participants performed the numerical Stroop task while active or sham 10 Hz rTMS was applied over the region of the right intraparietal sulcus (IPS) showing the strongest functional activation in the Incongruent > Congruent contrast. This target was determined based on individualized fMRI data collected during a separate session. Contrary to our assumption, the classical reaction time analysis did not show any superiority of active rTMS over sham, probably due to confounds such as potential cumulative rTMS effects, and the effect of practice. However, the modeling approach revealed a robust effect of rTMS on the drift rate variable, suggesting differential processing of congruent and incongruent properties in perceptual decision-making, and more generally, illustrating that more advanced computational analysis of performance can elucidate the effects of rTMS on the brain where simpler methods may not.


Subject(s)
Magnetic Resonance Imaging , Reaction Time , Stroop Test , Transcranial Magnetic Stimulation , Humans , Magnetic Resonance Imaging/methods , Transcranial Magnetic Stimulation/methods , Male , Female , Adult , Reaction Time/physiology , Young Adult , Parietal Lobe/physiology , Parietal Lobe/diagnostic imaging , Decision Making/physiology , Brain Mapping/methods
8.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38741267

ABSTRACT

The role of the left temporoparietal cortex in speech production has been extensively studied during native language processing, proving crucial in controlled lexico-semantic retrieval under varying cognitive demands. Yet, its role in bilinguals, fluent in both native and second languages, remains poorly understood. Here, we employed continuous theta burst stimulation to disrupt neural activity in the left posterior middle-temporal gyrus (pMTG) and angular gyrus (AG) while Italian-Friulian bilinguals performed a cued picture-naming task. The task involved between-language (naming objects in Italian or Friulian) and within-language blocks (naming objects ["knife"] or associated actions ["cut"] in a single language) in which participants could either maintain (non-switch) or change (switch) instructions based on cues. During within-language blocks, cTBS over the pMTG entailed faster naming for high-demanding switch trials, while cTBS to the AG elicited slower latencies in low-demanding non-switch trials. No cTBS effects were observed in the between-language block. Our findings suggest a causal involvement of the left pMTG and AG in lexico-semantic processing across languages, with distinct contributions to controlled vs. "automatic" retrieval, respectively. However, they do not support the existence of shared control mechanisms within and between language(s) production. Altogether, these results inform neurobiological models of semantic control in bilinguals.


Subject(s)
Multilingualism , Parietal Lobe , Speech , Temporal Lobe , Transcranial Magnetic Stimulation , Humans , Male , Temporal Lobe/physiology , Female , Young Adult , Adult , Parietal Lobe/physiology , Speech/physiology , Cues
9.
Hum Brain Mapp ; 45(7): e26709, 2024 May.
Article in English | MEDLINE | ID: mdl-38746977

ABSTRACT

The high prevalence of conversion from amnestic mild cognitive impairment (aMCI) to Alzheimer's disease (AD) makes early prevention of AD extremely critical. Neuroticism, a heritable personality trait associated with mental health, has been considered a risk factor for conversion from aMCI to AD. However, whether the neuroticism genetic risk could predict the conversion of aMCI and its underlying neural mechanisms is unclear. Neuroticism polygenic risk score (N-PRS) was calculated in 278 aMCI patients with qualified genomic and neuroimaging data from ADNI. After 1-year follow-up, N-PRS in patients of aMCI-converted group was significantly greater than those in aMCI-stable group. Logistic and Cox survival regression revealed that N-PRS could significantly predict the early-stage conversion risk from aMCI to AD. These results were well replicated in an internal dataset and an independent external dataset of 933 aMCI patients from the UK Biobank. One sample Mendelian randomization analyses confirmed a potentially causal association from higher N-PRS to lower inferior parietal surface area to higher conversion risk of aMCI patients. These analyses indicated that neuroticism genetic risk may increase the conversion risk from aMCI to AD by impairing the inferior parietal structure.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Disease Progression , Magnetic Resonance Imaging , Multifactorial Inheritance , Neuroticism , Parietal Lobe , Humans , Alzheimer Disease/genetics , Alzheimer Disease/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Male , Female , Aged , Parietal Lobe/diagnostic imaging , Parietal Lobe/pathology , Aged, 80 and over , Mendelian Randomization Analysis , Middle Aged , Genetic Predisposition to Disease
10.
J Neuroeng Rehabil ; 21(1): 78, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745322

ABSTRACT

BACKGROUND: Mirror therapy (MT) has been shown to be effective for motor recovery of the upper limb after a stroke. The cerebral mechanisms of mirror therapy involve the precuneus, premotor cortex and primary motor cortex. Activation of the precuneus could be a marker of this effectiveness. MT has some limitations and video therapy (VT) tools are being developed to optimise MT. While the clinical superiority of these new tools remains to be demonstrated, comparing the cerebral mechanisms of these different modalities will provide a better understanding of the related neuroplasticity mechanisms. METHODS: Thirty-three right-handed healthy individuals were included in this study. Participants were equipped with a near-infrared spectroscopy headset covering the precuneus, the premotor cortex and the primary motor cortex of each hemisphere. Each participant performed 3 tasks: a MT task (right hand movement and left visual feedback), a VT task (left visual feedback only) and a control task (right hand movement only). Perception of illusion was rated for MT and VT by asking participants to rate the intensity using a visual analogue scale. The aim of this study was to compare brain activation during MT and VT. We also evaluated the correlation between the precuneus activation and the illusion quality of the visual mirrored feedback. RESULTS: We found a greater activation of the precuneus contralateral to the visual feedback during VT than during MT. We also showed that activation of primary motor cortex and premotor cortex contralateral to visual feedback was more extensive in VT than in MT. Illusion perception was not correlated with precuneus activation. CONCLUSION: VT led to greater activation of a parieto-frontal network than MT. This could result from a greater focus on visual feedback and a reduction in interhemispheric inhibition in VT because of the absence of an associated motor task. These results suggest that VT could promote neuroplasticity mechanisms in people with brain lesions more efficiently than MT. CLINICAL TRIAL REGISTRATION: NCT04738851.


Subject(s)
Feedback, Sensory , Motor Cortex , Spectroscopy, Near-Infrared , Adult , Female , Humans , Male , Young Adult , Brain/physiology , Brain/diagnostic imaging , Feedback, Sensory/physiology , Motor Cortex/physiology , Motor Cortex/diagnostic imaging , Parietal Lobe/physiology , Parietal Lobe/diagnostic imaging , Psychomotor Performance/physiology , Spectroscopy, Near-Infrared/methods
11.
Nat Commun ; 15(1): 4308, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773117

ABSTRACT

Decision-makers objectively commit to a definitive choice, yet at the subjective level, human decisions appear to be associated with a degree of uncertainty. Whether decisions are definitive (i.e., concluding in all-or-none choices), or whether the underlying representations are graded, remains unclear. To answer this question, we recorded intracranial neural signals directly from the brain while human subjects made perceptual decisions. The recordings revealed that broadband gamma activity reflecting each individual's decision-making process, ramped up gradually while being graded by the accumulated decision evidence. Crucially, this grading effect persisted throughout the decision process without ever reaching a definite bound at the time of choice. This effect was most prominent in the parietal cortex, a brain region traditionally implicated in decision-making. These results provide neural evidence for a graded decision process in humans and an analog framework for flexible choice behavior.


Subject(s)
Brain , Decision Making , Parietal Lobe , Humans , Decision Making/physiology , Male , Female , Adult , Brain/physiology , Parietal Lobe/physiology , Choice Behavior/physiology , Young Adult , Uncertainty
13.
Neurology ; 102(12): e209322, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38815235

ABSTRACT

BACKGROUND AND OBJECTIVES: Parietal lobe epilepsy (PLE) surgery can be an effective treatment for selected patients with intractable epilepsy but can be associated with the risk of serious neurologic deficits. We performed a systematic review of the literature to obtain a comprehensive summary of the frequency and types of new postoperative neurologic deficits in patients undergoing PLE resective surgery. METHODS: We searched MEDLINE, Embase, and Cochrane Central Register of Controlled Trials for articles published between January 1, 1990, and April 28, 2022. We included studies that reported postoperative neurologic outcome following PLE resective surgery confined to the parietal lobe. We required that studies included ≥5 patients. The data collected included demographic information and specific details of postoperative neurologic deficits. When available, individual patient data were collected. We used the Risk of Bias in Nonrandomized Studies of Interventions tool to assess the risk of bias and Grading of Recommendations Assessment, Development, and Evaluation to assess the quality of the evidence. RESULTS: Of the 3,461 articles screened, 33 studies met the inclusion criteria. A total of 370 patients were included. One hundred patients (27.0%) had a new deficit noted postoperatively. Approximately half of the patients with deficits experienced only transient deficits. Motor deficits were the most commonly identified deficit. The rates of motor deficits noted after PLE surgery were 5.7%, 3.2%, and 2.2% for transient, long-term, and duration not specified, respectively. Sensory and visual field deficits were also commonly reported. Gerstmann syndrome was noted postoperatively in 4.9% of patients and was almost always transient. Individual patient data added information on parietal lobe subregion postoperative neurologic outcome. DISCUSSION: Our systematic review provides a comprehensive summary of the frequency and types of neurologic deficits associated with PLE surgery. A significant percentage of postoperative deficits are transient. In addition to the expected sensory and visual deficits, PLE surgery is associated with a notable risk of motor deficits. The available literature has important deficiencies. Our study highlights gaps in the literature and provides recommendations for future directions. TRIAL REGISTRATION INFORMATION: This systematic review was registered on PROSPERO (CRD42022313108, May 26, 2022).


Subject(s)
Parietal Lobe , Postoperative Complications , Humans , Parietal Lobe/surgery , Postoperative Complications/etiology , Neurosurgical Procedures/adverse effects , Drug Resistant Epilepsy/surgery , Treatment Outcome , Epilepsies, Partial/surgery
14.
Brain Cogn ; 177: 106162, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703528

ABSTRACT

OBJECTIVE: Poorer performance on the Stroop task has been reported after prenatal famine exposure at age 58, potentially indicating cognitive decline. We investigated whether brain activation during Stroop task performance at age 74 differed between individuals exposed to famine prenatally, individuals born before and individuals conceived after the famine. METHOD: In the Dutch famine birth cohort, we performed a Stroop task fMRI study of individuals exposed (n = 22) or unexposed (born before (n = 18) or conceived after (n = 25)) to famine in early gestation. We studied group differences in task-related mean activation of the dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC) and posterior parietal cortex (PPC). Additionally, we explored potential disconnectivity of the DLPFC using psychophysiological interaction analysis. RESULTS: We observed similar activation patterns in the DLPFC, ACC and PPC in individuals born before and individuals exposed to famine, while individuals conceived after famine had generally higher activation patterns. However, activation patterns were not significantly different between groups. Task-related decreases in connectivity were observed between left DLPFC-left PPC and right DLPFC-right PPC, but were not significantly different between groups. CONCLUSIONS: Although not statistically significant, the observed patterns of activation may reflect a combined effect of general brain aging and prenatal famine exposure.


Subject(s)
Famine , Magnetic Resonance Imaging , Prenatal Exposure Delayed Effects , Stroop Test , Humans , Female , Male , Pregnancy , Prenatal Exposure Delayed Effects/physiopathology , Aged , Netherlands , Prefrontal Cortex/diagnostic imaging , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiology , Parietal Lobe/diagnostic imaging , Parietal Lobe/physiology , Brain
15.
J Psychiatry Neurosci ; 49(3): E172-E181, 2024.
Article in English | MEDLINE | ID: mdl-38729664

ABSTRACT

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for major depressive disorder (MDD), but substantial heterogeneity in outcomes remains. We examined a potential mechanism of action of rTMS to normalize individual variability in resting-state functional connectivity (rs-fc) before and after a course of treatment. METHODS: Variability in rs-fc was examined in healthy controls (baseline) and individuals with MDD (baseline and after 4-6 weeks of rTMS). Seed-based connectivity was calculated to 4 regions associated with MDD: left dorsolateral prefrontal cortex (DLPFC), right subgenual anterior cingulate cortex (sgACC), bilateral insula, and bilateral precuneus. Individual variability was quantified for each region by calculating the mean correlational distance of connectivity maps relative to the healthy controls; a higher variability score indicated a more atypical/idiosyncratic connectivity pattern. RESULTS: We included data from 66 healthy controls and 252 individuals with MDD in our analyses. Patients with MDD did not show significant differences in baseline variability of rs-fc compared with controls. Treatment with rTMS increased rs-fc variability from the right sgACC and precuneus, but the increased variability was not associated with clinical outcomes. Interestingly, higher baseline variability of the right sgACC was significantly associated with less clinical improvement (p = 0.037, uncorrected; did not survive false discovery rate correction).Limitations: The linear model was constructed separately for each region of interest. CONCLUSION: This was, to our knowledge, the first study to examine individual variability of rs-fc related to rTMS in individuals with MDD. In contrast to our hypotheses, we found that rTMS increased the individual variability of rs-fc. Our results suggest that individual variability of the right sgACC and bilateral precuneus connectivity may be a potential mechanism of rTMS.


Subject(s)
Depressive Disorder, Major , Magnetic Resonance Imaging , Transcranial Magnetic Stimulation , Humans , Depressive Disorder, Major/therapy , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/diagnostic imaging , Transcranial Magnetic Stimulation/methods , Female , Male , Adult , Middle Aged , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Parietal Lobe/physiopathology , Parietal Lobe/diagnostic imaging , Rest , Gyrus Cinguli/physiopathology , Gyrus Cinguli/diagnostic imaging , Connectome , Treatment Outcome , Brain/physiopathology , Brain/diagnostic imaging
16.
Cortex ; 175: 28-40, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691923

ABSTRACT

The angular gyrus (AG) and posterior cingulate cortex (PCC) demonstrate extensive structural and functional connectivity with the hippocampus and other core recollection network regions. Consequently, recent studies have explored neuromodulation targeting these and other regions as a potential strategy for restoring function in memory disorders such as Alzheimer's Disease. However, determining the optimal approach for neuromodulatory devices requires understanding how parameters like selected stimulation site, cognitive state during modulation, and stimulation duration influence the effects of deep brain stimulation (DBS) on electrophysiological features relevant to episodic memory. We report experimental data examining the effects of high-frequency stimulation delivered to the AG or PCC on hippocampal theta oscillations during the memory encoding (study) or retrieval (test) phases of an episodic memory task. Results showed selective enhancement of anterior hippocampal slow theta oscillations with stimulation of the AG preferentially during memory retrieval. Conversely, stimulation of the PCC attenuated slow theta oscillations. We did not observe significant behavioral effects in this (open-loop) stimulation experiment, suggesting that neuromodulation strategies targeting episodic memory performance may require more temporally precise stimulation approaches.


Subject(s)
Cognition , Deep Brain Stimulation , Hippocampus , Parietal Lobe , Theta Rhythm , Deep Brain Stimulation/methods , Theta Rhythm/physiology , Hippocampus/physiology , Male , Humans , Parietal Lobe/physiology , Cognition/physiology , Memory, Episodic , Female , Gyrus Cinguli/physiology , Adult
17.
Cortex ; 175: 54-65, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704919

ABSTRACT

The dorsal attention network (DAN) is a network of brain regions essential for attentional orienting, which includes the lateral intraparietal area (LIP) and frontal eye field (FEF). Recently, the putative human dorsal posterior infero-temporal area (phPITd) has been identified as a new node of the DAN. However, its functional relationship with other areas of the DAN and its specific role in visual attention remained unclear. In this study, we analyzed a large publicly available neuroimaging dataset to investigate the intrinsic functional connectivities (FCs) of the phPITd with other brain areas. The results showed that the intrinsic FCs of the phPITd with the areas of the visual network and the DAN were significantly stronger than those with the ventral attention network (VAN) areas and areas of other networks. We further conducted individual difference analyses with a sample size of 295 participants and a series of attentional tasks to investigate which attentional components each phPITd-based DAN edge predicts. Our findings revealed that the intrinsic FC of the left phPITd with the LIPv could predict individual ability in attentional orienting, but not in alerting, executive control, and distractor suppression. Our results not only provide direct evidence of the phPITd's functional relationship with the LIPv, but also offer a comprehensive understanding of its specific role in visual attention.


Subject(s)
Attention , Brain Mapping , Magnetic Resonance Imaging , Temporal Lobe , Visual Perception , Humans , Attention/physiology , Male , Female , Adult , Temporal Lobe/physiology , Temporal Lobe/diagnostic imaging , Young Adult , Magnetic Resonance Imaging/methods , Visual Perception/physiology , Orientation/physiology , Parietal Lobe/physiology , Parietal Lobe/diagnostic imaging , Nerve Net/physiology , Nerve Net/diagnostic imaging
18.
Neuroimage ; 294: 120649, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38759354

ABSTRACT

Neurobehavioral studies have provided evidence for the effectiveness of anodal tDCS on language production, by stimulation of the left Inferior Frontal Gyrus (IFG) or of left Temporo-Parietal Junction (TPJ). However, tDCS is currently not used in clinical practice outside of trials, because behavioral effects have been inconsistent and underlying neural effects unclear. Here, we propose to elucidate the neural correlates of verb and noun learning and to determine if they can be modulated with anodal high-definition (HD) tDCS stimulation. Thirty-six neurotypical participants were randomly allocated to anodal HD-tDCS over either the left IFG, the left TPJ, or sham stimulation. On day one, participants performed a naming task (pre-test). On day two, participants underwent a new-word learning task with rare nouns and verbs concurrently to HD-tDCS for 20 min. The third day consisted of a post-test of naming performance. EEG was recorded at rest and during naming on each day. Verb learning was significantly facilitated by left IFG stimulation. HD-tDCS over the left IFG enhanced functional connectivity between the left IFG and TPJ and this correlated with improved learning. HD-tDCS over the left TPJ enabled stronger local activation of the stimulated area (as indexed by greater alpha and beta-band power decrease) during naming, but this did not translate into better learning. Thus, tDCS can induce local activation or modulation of network interactions. Only the enhancement of network interactions, but not the increase in local activation, leads to robust improvement of word learning. This emphasizes the need to develop new neuromodulation methods influencing network interactions. Our study suggests that this may be achieved through behavioral activation of one area and concomitant activation of another area with HD-tDCS.


Subject(s)
Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Female , Male , Adult , Young Adult , Electroencephalography/methods , Prefrontal Cortex/physiology , Parietal Lobe/physiology , Verbal Learning/physiology , Temporal Lobe/physiology , Learning/physiology
19.
Brain Lang ; 253: 105416, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703524

ABSTRACT

Geometry has been identified as a cognitive domain where deaf individuals exhibit relative strength, yet the neural mechanisms underlying geometry processing in this population remain poorly understood. This fMRI study aimed to investigate the neural correlates of geometry processing in deaf and hearing individuals. Twenty-two adult deaf signers and 25 hearing non-signers completed a geometry decision task. We found no group differences in performance, while there were some differences in parietal activation. As expected, the posterior superior parietal lobule (SPL) was recruited for both groups. The anterior SPL was significantly more activated in the deaf group, and the inferior parietal lobule was significantly more deactivated in the hearing group. In conclusion, despite similar performance across groups, there were differences in the recruitment of parietal regions. These differences may reflect inherent differences in brain organization due to different early sensory and linguistic experiences.


Subject(s)
Brain Mapping , Deafness , Magnetic Resonance Imaging , Parietal Lobe , Sign Language , Humans , Parietal Lobe/diagnostic imaging , Parietal Lobe/physiology , Male , Adult , Female , Deafness/physiopathology , Deafness/diagnostic imaging , Young Adult , Middle Aged
20.
Sci Rep ; 14(1): 11380, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762635

ABSTRACT

Metacognitive systematic bias impairs human learning efficiency, which is characterized by the inconsistency between predicted and actual memory performance. However, the underlying mechanism of metacognitive systematic bias remains unclear in existing studies. In this study, we utilized judgments of learning task in human participants to compare the neural mechanism difference in metacognitive systematic bias. Participants encoded words in fMRI sessions that would be tested later. Immediately after encoding each item, participants predicted how likely they would remember it. Multivariate analyses on fMRI data demonstrated that working memory and uncertainty decisions are represented in patterns of neural activity in metacognitive systematic bias. The available information participants used led to overestimated bias and underestimated bias. Effective connectivity analyses further indicate that information about the metacognitive systematic bias is represented in the dorsolateral prefrontal cortex and inferior parietal cortex. Different neural patterns were found underlying overestimated bias and underestimated bias. Specifically, connectivity regions with the dorsolateral prefrontal cortex, anterior cingulate cortex, and supramarginal gyrus form overestimated bias, while less regional connectivity forms underestimated bias. These findings provide a mechanistic account for the construction of metacognitive systematic bias.


Subject(s)
Dorsolateral Prefrontal Cortex , Magnetic Resonance Imaging , Metacognition , Parietal Lobe , Humans , Parietal Lobe/physiology , Parietal Lobe/diagnostic imaging , Male , Dorsolateral Prefrontal Cortex/physiology , Dorsolateral Prefrontal Cortex/diagnostic imaging , Female , Metacognition/physiology , Young Adult , Adult , Brain Mapping , Memory, Short-Term/physiology , Learning/physiology , Prefrontal Cortex/physiology , Prefrontal Cortex/diagnostic imaging , Judgment/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...