Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.737
Filter
1.
BMC Med Genomics ; 17(1): 133, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760670

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative disease with increasing prevalence. Effective diagnostic markers and therapeutic methods are still lacking. Exploring key molecular markers and mechanisms for PD can help with early diagnosis and treatment improvement. METHODS: Three datasets GSE174052, GSE77668, and GSE168496 were obtained from the GEO database to search differentially expressed circRNA (DECs), miRNAs (DEMis), and mRNAs (DEMs). GO and KEGG enrichment analyses, and protein-protein interaction (PPI) network construction were implemented to explore possible actions of DEMs. Hub genes were selected to establish circRNA-related competing endogenous RNA (ceRNA) networks. RESULTS: There were 1005 downregulated DECs, 21 upregulated and 21 downregulated DEMis, and 266 upregulated and 234 downregulated DEMs identified. The DEMs were significantly enriched in various PD-associated functions and pathways such as extracellular matrix organization, dopamine synthesis, PI3K-Akt, and calcium signaling pathways. Twenty-one hub genes were screened out, and a PD-related ceRNA regulatory network was constructed containing 31 circRNAs, one miRNA (miR-371a-3p), and one hub gene (KCNJ6). CONCLUSION: We identified PD-related molecular markers and ceRNA regulatory networks, providing new directions for PD diagnosis and treatment.


Subject(s)
Biomarkers , Computational Biology , Disease Progression , Gene Regulatory Networks , Parkinson Disease , Parkinson Disease/genetics , Humans , Computational Biology/methods , Biomarkers/metabolism , MicroRNAs/genetics , Protein Interaction Maps , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Profiling , RNA, Circular/genetics
2.
Front Immunol ; 15: 1370831, 2024.
Article in English | MEDLINE | ID: mdl-38774879

ABSTRACT

Background: To date, an increasing number of epidemiological evidence has pointed to potential relationships between Parkinson's disease (PD) and various autoimmune diseases (AIDs), however, no definitive conclusions has been drawn about whether PD is causally related to AIDs risk. Methods: By employing summary statistics from the latest and most extensive genome-wide association studies (GWAS), we performed a bidirectional two-sample Mendelian randomization (MR) analysis to investigate the causal associations between PD and a variety of 17 AIDs, encompassing multiple sclerosis, neuromyelitis optica spectrum disorder, myasthenia gravis, asthma, inflammatory bowel disease, Crohn's disease, ulcerative colitis, irritable bowel syndrome, celiac disease, primary biliary cirrhosis, primary sclerosing cholangitis, type 1 diabetes, ankylosing spondylitis, rheumatoid arthritis, systemic lupus erythematosus, psoriasis and vitiligo. Inverse-variance weighted (IVW) was adopted as the main statistical approach to obtain the causal estimates of PD on different AIDs, supplemented by a series of complementary analyses (weighted median, MR Egger regression, and MR-PRESSO) for further strengthening the robustness of results. Results: Our MR findings suggested that genetically predicted higher liability to PD was causally associated with a decreased risk of irritable bowel syndrome (OR = 0.98; 95% CI: 0.96-0.99; P = 0.032). On the contrary, IVW analysis showed a potential positive correlation between genetically determined PD and the incidence of type 1 diabetes (OR = 1.10; 95%CI: 1.02-1.19; P = 0.010). Subsequent MR tests ended up in similar results, confirming our findings were reliable. Additionally, in the reverse MR analyses, we did not identify any evidence to support the causal relationship of genetic predisposition to AIDs with PD susceptibility. Conclusion: In general, a bifunctional role that PD exerted on the risk of developing AIDs was detected in our studies, both protecting against irritable bowel syndrome occurrence and raising the incidence of type 1 diabetes. Future studies, including population-based observational studies and molecular experiments in vitro and in vivo, are warranted to validate the results of our MR analyses and refine the underlying pathological mechanisms involved in PD-AIDs associations.


Subject(s)
Autoimmune Diseases , Genetic Predisposition to Disease , Genome-Wide Association Study , Mendelian Randomization Analysis , Parkinson Disease , Humans , Parkinson Disease/genetics , Parkinson Disease/epidemiology , Autoimmune Diseases/genetics , Autoimmune Diseases/epidemiology , Polymorphism, Single Nucleotide
3.
Neurol India ; 72(2): 319-325, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38691476

ABSTRACT

BACKGROUND: A central role for apolipoprotein E (APOE) has been suggested in modulating processes of neurodegeneration. OBJECTIVE: To study the association between serum APOE levels, APOE gene polymorphisms, and Parkinson's disease (PD). MATERIAL AND METHODS: Fifty-five patients with PD and 30 healthy subjects were enrolled. PD patients were assessed using the Unified Parkinson's Disease Rating Scale (UPDRS), Modified Hoehn and Yahr scale, and Schwab-England Activities of Daily Living scale. Serum APOE level and genotyping for APOE polymorphisms were done for PD patients and controls using enzyme-linked immunosorbent assay and polymerase chain reaction, respectively. RESULTS: Mean serum APOE level was significantly higher in PD patients compared with healthy controls. APOE ε2/4 genotype was present in a significantly higher proportion of patients compared with controls. APOE ε4 allele was significantly associated with a higher score on the "mentation, behavior, and mood section" of UPDRS compared with ε2 allele. APOE ε2 allele was significantly associated with a shorter disease duration compared with ε3 and ε4 alleles. Mean serum APOE level was significantly higher in patients presenting predominantly by rigidity and bradykinesia compared with those presenting predominantly by tremors. Serum APOE level was positively correlated with mean scores of "mentation, behavior, and mood section" of UPDRS and disease duration. Serum APOE level was a significant predictor for the scores of "mentation, behavior, and mood section" of UPDRS. CONCLUSION: APOE ε2/4 genotype might be a susceptibility variant for PD. There may be a possible role for APOE in modulating the process of neurodegeneration in PD.


Subject(s)
Apolipoproteins E , Parkinson Disease , Polymorphism, Genetic , Adult , Aged , Female , Humans , Male , Middle Aged , Apolipoproteins E/genetics , Apolipoproteins E/blood , Genetic Predisposition to Disease , Genotype , Parkinson Disease/genetics , Parkinson Disease/blood , Polymorphism, Genetic/genetics , Severity of Illness Index
4.
Neurol India ; 72(2): 364-367, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38691483

ABSTRACT

BACKGROUND AND OBJECTIVES: The role of various genetic markers including alpha synuclein, Parkin, etc., is known in the pathogenesis of Parkinson's disease (PD). Novel genetic markers including paraoxonase 1 (PON1) have also been linked to PD pathogenesis in recent studies. The PON1 L55M allele carriers may have defective clearance of environmental toxins and may result in increased susceptibility to PD. Hence, we studied the role of PON1 L55M polymorphism in PD among a North Indian population. MATERIALS AND METHOD: Seventy-four PD patients and 74 age- and sex-matched controls were recruited in this hospital-based case-control study. Baseline characteristics were recorded using structured questionnaire. DNA was extracted from 3-4 ml of venous blood, followed by PCR and restriction digestion. PON1 L55M genotypes were visualized as bands: LL (177 bp), LM (177, 140 bp) and MM (140,44 bp) on 3% agarose gel. Mann-Whitney U test and Chi-squared test were used for comparing two groups of skewed and categorical variables, respectively. Measures of strength of association were calculated by binary regression analysis. P value < 0.05 was considered as significant. RESULTS: Parkinson's disease patients had significantly higher exposure to pesticides (12.2%; P (organophosphate exposure) < 0.001) and well water drinking (28.4%; P = 0.006) compared to controls. Frequency distribution of LL, LM, MM genotypes was 67.5% (50/74), 28.4% (21/74), and 4.1% (3/74), respectively, for cases and 72.6% (54/74), 26% (19/74) and 1.4% (1/74), respectively, for controls. PON1 L55M genotype distribution between Parkinson's disease cases and controls was not significant (P = 0.53). PON1 L55M polymorphism was not associated with PD after adjusting for confounders by binary regression analysis. CONCLUSION: There was no significant association between PON1 L55M polymorphism and PD. Larger population-based studies would be required from India before drawing any definite conclusions.


Subject(s)
Aryldialkylphosphatase , Genetic Predisposition to Disease , Parkinson Disease , Humans , Aryldialkylphosphatase/genetics , Parkinson Disease/genetics , Parkinson Disease/epidemiology , India/epidemiology , Female , Male , Case-Control Studies , Middle Aged , Genetic Predisposition to Disease/genetics , Aged , Polymorphism, Genetic/genetics , Genotype
5.
Sci Rep ; 14(1): 10932, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740892

ABSTRACT

SINE-VNTR-Alu (SVA) retrotransposons are transposable elements which represent a source of genetic variation. We previously demonstrated that the presence/absence of a human-specific SVA, termed SVA_67, correlated with the progression of Parkinson's disease (PD). In the present study, we demonstrate that SVA_67 acts as expression quantitative trait loci, thereby exhibiting a strong regulatory effect across the genome using whole genome and transcriptomic data from the Parkinson's progression markers initiative cohort. We further show that SVA_67 is polymorphic for its variable number tandem repeat domain which correlates with both regulatory properties in a luciferase reporter gene assay in vitro and differential expression of multiple genes in vivo. Additionally, this variation's utility as a biomarker is reflected in a correlation with a number of PD progression markers. These experiments highlight the plethora of transcriptomic and phenotypic changes associated with SVA_67 polymorphism which should be considered when investigating the missing heritability of neurodegenerative diseases.


Subject(s)
Alu Elements , Disease Progression , Minisatellite Repeats , Parkinson Disease , Polymorphism, Genetic , Retroelements , Parkinson Disease/genetics , Humans , Minisatellite Repeats/genetics , Retroelements/genetics , Alu Elements/genetics , Quantitative Trait Loci , Biomarkers , Short Interspersed Nucleotide Elements/genetics
6.
Genome Med ; 16(1): 66, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38741190

ABSTRACT

BACKGROUND: Inflammatory bowel disease (IBD) and Parkinson's disease (PD) are chronic disorders that have been suggested to share common pathophysiological processes. LRRK2 has been implicated as playing a role in both diseases. Exploring the genetic basis of the IBD-PD comorbidity through studying high-impact rare genetic variants can facilitate the identification of the novel shared genetic factors underlying this comorbidity. METHODS: We analyzed whole exomes from the BioMe BioBank and UK Biobank, and whole genomes from a cohort of 67 European patients diagnosed with both IBD and PD to examine the effects of LRRK2 missense variants on IBD, PD and their co-occurrence (IBD-PD). We performed optimized sequence kernel association test (SKAT-O) and network-based heterogeneity clustering (NHC) analyses using high-impact rare variants in the IBD-PD cohort to identify novel candidate genes, which we further prioritized by biological relatedness approaches. We conducted phenome-wide association studies (PheWAS) employing BioMe BioBank and UK Biobank whole exomes to estimate the genetic relevance of the 14 prioritized genes to IBD-PD. RESULTS: The analysis of LRRK2 missense variants revealed significant associations of the G2019S and N2081D variants with IBD-PD in addition to several other variants as potential contributors to increased or decreased IBD-PD risk. SKAT-O identified two significant genes, LRRK2 and IL10RA, and NHC identified 6 significant gene clusters that are biologically relevant to IBD-PD. We observed prominent overlaps between the enriched pathways in the known IBD, PD, and candidate IBD-PD gene sets. Additionally, we detected significantly enriched pathways unique to the IBD-PD, including MAPK signaling, LPS/IL-1 mediated inhibition of RXR function, and NAD signaling. Fourteen final candidate IBD-PD genes were prioritized by biological relatedness methods. The biological importance scores estimated by protein-protein interaction networks and pathway and ontology enrichment analyses indicated the involvement of genes related to immunity, inflammation, and autophagy in IBD-PD. Additionally, PheWAS provided support for the associations of candidate genes with IBD and PD. CONCLUSIONS: Our study confirms and uncovers new LRRK2 associations in IBD-PD. The identification of novel inflammation and autophagy-related genes supports and expands previous findings related to IBD-PD pathogenesis, and underscores the significance of therapeutic interventions for reducing systemic inflammation.


Subject(s)
Comorbidity , Genetic Predisposition to Disease , Inflammatory Bowel Diseases , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , Humans , Parkinson Disease/genetics , Inflammatory Bowel Diseases/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Female , Male , Mutation, Missense , Genome-Wide Association Study , Genetic Variation , Middle Aged , Aged
7.
Neurobiol Dis ; 196: 106524, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38705490

ABSTRACT

αSynuclein (αSyn) misfolding and aggregation frequently precedes neuronal loss associated with Parkinson's Disease (PD) and other Synucleinopathies. The progressive buildup of pathological αSyn species results from alterations on αSyn gene and protein sequence, increased local concentrations, variations in αSyn interactome and protein network. Therefore, under physiological conditions, it is mandatory to regulate αSyn proteostasis as an equilibrium among synthesis, trafficking, degradation and extracellular release. In this frame, a crucial parameter is protein half-life. It provides indications of the turnover of a specific protein and depends on mRNA synthesis and translation regulation, subcellular localization, function and clearance by the designated degradative pathways. For αSyn, the molecular mechanisms regulating its proteostasis in neurons have been extensively investigated in various cellular models, either using biochemical or imaging approaches. Nevertheless, a converging estimate of αSyn half-life has not emerged yet. Here, we discuss the challenges in studying αSyn proteostasis under physiological and pathological conditions, the advantages and disadvantages of the experimental strategies proposed so far, and the relevance of determining αSyn half-life from a translational perspective.


Subject(s)
alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Half-Life , Animals , Synucleinopathies/metabolism , Synucleinopathies/pathology , Parkinson Disease/metabolism , Parkinson Disease/genetics , Proteostasis/physiology , Neurons/metabolism
8.
Commun Biol ; 7(1): 570, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750146

ABSTRACT

Gastrointestinal (GI) disruptions and inflammatory bowel disease (IBD) are commonly associated with Parkinson's disease (PD), but how they may impact risk for PD remains poorly understood. Herein, we provide evidence that prodromal intestinal inflammation expedites and exacerbates PD endophenotypes in rodent carriers of the human PD risk allele LRRK2 G2019S in a sex-dependent manner. Chronic intestinal damage in genetically predisposed male mice promotes α-synuclein aggregation in the substantia nigra, loss of dopaminergic neurons and motor impairment. This male bias is preserved in gonadectomized males, and similarly conferred by sex chromosomal complement in gonadal females expressing human LRRK2 G2019S. The early onset and heightened severity of neuropathological and behavioral outcomes in male LRRK2 G2019S mice is preceded by increases in α-synuclein in the colon, α-synuclein-positive macrophages in the colonic lamina propria, and loads of phosphorylated α-synuclein within microglia in the substantia nigra. Taken together, these data reveal that prodromal intestinal inflammation promotes the pathogenesis of PD endophenotypes in male carriers of LRRK2 G2019S, through mechanisms that depend on genotypic sex and involve early accumulation of α-synuclein in myeloid cells within the gut.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , Animals , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Mice , Male , Female , Endophenotypes , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Prodromal Symptoms , Disease Models, Animal , Mice, Transgenic , Humans , Sex Factors , Inflammation/metabolism , Inflammation/genetics , Mice, Inbred C57BL , Sex Characteristics
9.
J Cell Mol Med ; 28(10): e18368, 2024 May.
Article in English | MEDLINE | ID: mdl-38752280

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder of the brain and is manifested by motor and non-motor symptoms because of degenerative changes in dopaminergic neurons of the substantia nigra. PD neuropathology is associated with mitochondrial dysfunction, oxidative damage and apoptosis. Thus, the modulation of mitochondrial dysfunction, oxidative damage and apoptosis by growth factors could be a novel boulevard in the management of PD. Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase type B (TrkB) are chiefly involved in PD neuropathology. BDNF promotes the survival of dopaminergic neurons in the substantia nigra and enhances the functional activity of striatal neurons. Deficiency of the TrkB receptor triggers degeneration of dopaminergic neurons and accumulation of α-Syn in the substantia nigra. As well, BDNF/TrkB signalling is reduced in the early phase of PD neuropathology. Targeting of BDNF/TrkB signalling by specific activators may attenuate PD neuropathology. Thus, this review aimed to discuss the potential role of BDNF/TrkB activators against PD. In conclusion, BDNF/TrkB signalling is decreased in PD and linked with disease severity and long-term complications. Activation of BDNF/TrkB by specific activators may attenuate PD neuropathology.


Subject(s)
Brain-Derived Neurotrophic Factor , Parkinson Disease , Receptor, trkB , Signal Transduction , Brain-Derived Neurotrophic Factor/metabolism , Humans , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Receptor, trkB/metabolism , Animals , Membrane Glycoproteins/metabolism , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology
10.
Sci Rep ; 14(1): 10621, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38729969

ABSTRACT

Asymptomatic Leucine-Rich Repeat Kinase 2 Gene (LRRK2) carriers are at risk for developing Parkinson's disease (PD). We studied presymptomatic substantia nigra pars compacta (SNc) regional neurodegeneration in asymptomatic LRRK2 carriers compared to idiopathic PD patients using neuromelanin-sensitive MRI technique (NM-MRI). Fifteen asymptomatic LRRK2 carriers, 22 idiopathic PD patients, and 30 healthy controls (HCs) were scanned using NM-MRI. We computed volume and contrast-to-noise ratio (CNR) derived from the whole SNc and the sensorimotor, associative, and limbic SNc regions. An analysis of covariance was performed to explore the differences of whole and regional NM-MRI values among the groups while controlling the effect of age and sex. In whole SNc, LRRK2 had significantly lower CNR than HCs but non-significantly higher volume and CNR than PD patients, and PD patients significantly lower volume and CNR compared to HCs. Inside SNc regions, there were significant group effects for CNR in all regions and for volumes in the associative region, with a trend in the sensorimotor region but no significant changes in the limbic region. PD had reduced volume and CNR in all regions compared to HCs. Asymptomatic LRRK2 carriers showed globally decreased SNc volume and CNR suggesting early nigral neurodegeneration in these subjects at risk of developing PD.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Magnetic Resonance Imaging , Melanins , Parkinson Disease , Substantia Nigra , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Male , Female , Middle Aged , Melanins/metabolism , Magnetic Resonance Imaging/methods , Parkinson Disease/genetics , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Parkinson Disease/metabolism , Substantia Nigra/diagnostic imaging , Substantia Nigra/pathology , Substantia Nigra/metabolism , Aged , Heterozygote , Adult , Case-Control Studies
11.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(2): 207-219, 2024 Feb 28.
Article in English, Chinese | MEDLINE | ID: mdl-38755717

ABSTRACT

OBJECTIVES: Abnormal immune system activation and inflammation are crucial in causing Parkinson's disease. However, we still don't fully understand how certain immune-related genes contribute to the disease's development and progression. This study aims to screen key immune-related gene in Parkinson's disease based on weighted gene co-expression network analysis (WGCNA) and machine learning. METHODS: This study downloaded the gene chip data from the Gene Expression Omnibus (GEO) database, and used WGCNA to screen out important gene modules related to Parkinson's disease. Genes from important modules were exported and a Venn diagram of important Parkinson's disease-related genes and immune-related genes was drawn to screen out immune related genes of Parkinson's disease. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the the functions of immune-related genes and signaling pathways involved. Immune cell infiltration analysis was performed using the CIBERSORT package of R language. Using bioinformatics method and 3 machine learning methods [least absolute shrinkage and selection operator (LASSO) regression, random forest (RF), and support vector machine (SVM)], the immune-related genes of Parkinson's disease were further screened. A Venn diagram of differentially expressed genes screened using the 4 methods was drawn with the intersection gene being hub nodes (hub) gene. The downstream proteins of the Parkinson's disease hub gene was identified through the STRING database and a protein-protein interaction network diagram was drawn. RESULTS: A total of 218 immune genes related to Parkinson's disease were identified, including 45 upregulated genes and 50 downregulated genes. Enrichment analysis showed that the 218 genes were mainly enriched in immune system response to foreign substances and viral infection pathways. The results of immune infiltration analysis showed that the infiltration percentages of CD4+ T cells, NK cells, CD8+ T cells, and B cells were higher in the samples of Parkinson's disease patients, while resting NK cells and resting CD4+ T cells were significantly infiltrated in the samples of Parkinson's disease patients. ANK1 was screened out as the hub gene. The analysis of the protein-protein interaction network showed that the ANK1 translated and expressed 11 proteins which mainly participated in functions such as signal transduction, iron homeostasis regulation, and immune system activation. CONCLUSIONS: This study identifies the Parkinson's disease immune-related key gene ANK1 via WGCNA and machine learning methods, suggesting its potential as a candidate therapeutic target for Parkinson's disease.


Subject(s)
Gene Regulatory Networks , Machine Learning , Parkinson Disease , Parkinson Disease/genetics , Parkinson Disease/immunology , Humans , Gene Expression Profiling , Computational Biology/methods , Gene Ontology , Databases, Genetic , Signal Transduction/genetics , Oligonucleotide Array Sequence Analysis
12.
Cell Mol Life Sci ; 81(1): 223, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767677

ABSTRACT

Parkinson's disease (PD) is a common and incurable neurodegenerative disorder that arises from the loss of dopaminergic neurons in the substantia nigra and is mainly characterized by progressive loss of motor function. Monogenic familial PD is associated with highly penetrant variants in specific genes, notably the PRKN gene, where homozygous or compound heterozygous loss-of-function variants predominate. PRKN encodes Parkin, an E3 ubiquitin-protein ligase important for protein ubiquitination and mitophagy of damaged mitochondria. Accordingly, Parkin plays a central role in mitochondrial quality control but is itself also subject to a strict protein quality control system that rapidly eliminates certain disease-linked Parkin variants. Here, we summarize the cellular and molecular functions of Parkin, highlighting the various mechanisms by which PRKN gene variants result in loss-of-function. We emphasize the importance of high-throughput assays and computational tools for the clinical classification of PRKN gene variants and how detailed insights into the pathogenic mechanisms of PRKN gene variants may impact the development of personalized therapeutics.


Subject(s)
Parkinson Disease , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , Parkinson Disease/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/pathology , Ubiquitination/genetics , Mitophagy/genetics , Animals
13.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732020

ABSTRACT

Parkinson's disease (PD) significantly impacts millions of individuals worldwide. Although our understanding of the genetic foundations of PD has advanced, a substantial portion of the genetic variation contributing to disease risk remains unknown. Current PD genetic studies have primarily focused on one form of genetic variation, single nucleotide variants (SNVs), while other important forms of genetic variation, such as structural variants (SVs), are mostly ignored due to the complexity of detecting these variants with traditional sequencing methods. Yet, these forms of genetic variation play crucial roles in gene expression and regulation in the human brain and are causative of numerous neurological disorders, including forms of PD. This review aims to provide a comprehensive overview of our current understanding of the involvement of coding and noncoding SVs in the genetic architecture of PD.


Subject(s)
Genetic Predisposition to Disease , Parkinson Disease , Polymorphism, Single Nucleotide , Parkinson Disease/genetics , Humans , Genetic Variation , Genome-Wide Association Study
14.
Cell Mol Life Sci ; 81(1): 202, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691171

ABSTRACT

Glial cells constitute nearly half of the mammalian nervous system's cellular composition. The glia in C. elegans perform majority of tasks comparable to those conducted by their mammalian equivalents. The cephalic sheath (CEPsh) glia, which are known to be the counterparts of mammalian astrocytes, are enriched with two nuclear hormone receptors (NHRs)-NHR-210 and NHR-231. This unique enrichment makes the CEPsh glia and these NHRs intriguing subjects of study concerning neuronal health. We endeavored to assess the role of these NHRs in neurodegenerative diseases and related functional processes, using transgenic C. elegans expressing human alpha-synuclein. We employed RNAi-mediated silencing, followed by behavioural, functional, and metabolic profiling in relation to suppression of NHR-210 and 231. Our findings revealed that depleting nhr-210 changes dopamine-associated behaviour and mitochondrial function in human alpha synuclein-expressing strains NL5901 and UA44, through a putative target, pgp-9, a transmembrane transporter. Considering the alteration in mitochondrial function and the involvement of a transmembrane transporter, we performed metabolomics study via HR-MAS NMR spectroscopy. Remarkably, substantial modifications in ATP, betaine, lactate, and glycine levels were seen upon the absence of nhr-210. We also detected considerable changes in metabolic pathways such as phenylalanine, tyrosine, and tryptophan biosynthesis metabolism; glycine, serine, and threonine metabolism; as well as glyoxalate and dicarboxylate metabolism. In conclusion, the deficiency of the nuclear hormone receptor nhr-210 in alpha-synuclein expressing strain of C. elegans, results in altered mitochondrial function, coupled with alterations in vital metabolite levels. These findings underline the functional and physiological importance of nhr-210 enrichment in CEPsh glia.


Subject(s)
Caenorhabditis elegans , Disease Models, Animal , Mitochondria , Neuroglia , Parkinson Disease , alpha-Synuclein , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Mitochondria/metabolism , Neuroglia/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/genetics , Humans , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Animals, Genetically Modified , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Dopamine/metabolism , Metabolomics , RNA Interference
15.
Medicina (Kaunas) ; 60(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38792885

ABSTRACT

Background: Hearing loss has been recognized as a risk factor for dementia and non-motor features of Parkinson's disease (PD). The apolipoprotein E (APOE) protein contributes to maintenance and repair of neuronal cell membranes, causing age-related disorders. This study aimed to analyze the impact of hearing loss on cognitive impairment, PD severity, and APOE gene expression in these patients. Methods: A total of 72 out-patients diagnosed with either PD or hearing loss were enrolled in this study. The hearing assessment included pure-tone audiometry, speech reception thresholds, and speech discrimination ability. Dementia was assessed by filling out the Clinical Dementia Rating and Mini-Mental State Examination questionnaires. The severity of PD was assessed using the Modified Hoehn and Yahr scale. Blood samples were tested for the gene expression of APOE. Results: Out of the 72 cases, there were 44 males and 28 females, with an average age of 64.4 ± 9.1 years. A total of 41 out of 72 cases had dementia and had a worse hearing threshold than those without dementia (47.1 ± 24.4 vs. 31.7 ± 22.1 dB, p = 0.006). A total of 58 patients were diagnosed with PD, with 14 of them classified as having severe symptoms (Modified Hoehn and Yahr scale > 2). Patients with severe PD were found to have a worse hearing threshold (49.6 ± 28.3 vs. 30.3 ± 17.8 dB, p = 0.028) and higher prevalence of dementia (12/14 vs. 18/44, p = 0.006). Among 10 individuals with the APOE ε4 gene, the prevalence of dementia was higher than those without the ε4 allele (9/10 vs. 32/62, p = 0.036). Conclusions: Hearing loss is common in severe PD and in dementia patients. Severe PD has a negative impact on the hearing threshold and cognitive dysfunction. Patients with APOE ε4 have a higher prevalence of dementia.


Subject(s)
Apolipoproteins E , Dementia , Genotype , Hearing Loss , Parkinson Disease , Humans , Female , Male , Parkinson Disease/genetics , Parkinson Disease/complications , Parkinson Disease/physiopathology , Dementia/genetics , Dementia/complications , Middle Aged , Aged , Hearing Loss/genetics , Hearing Loss/complications , Apolipoproteins E/genetics , Audiometry, Pure-Tone
16.
Cell Mol Life Sci ; 81(1): 232, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780644

ABSTRACT

Ubiquitin-proteasome system dysfunction triggers α-synuclein aggregation, a hallmark of neurodegenerative diseases, such as Parkinson's disease (PD). However, the crosstalk between deubiquitinating enzyme (DUBs) and α-synuclein pathology remains unclear. In this study, we observed a decrease in the level of ubiquitin-specific protease 14 (USP14), a DUB, in the cerebrospinal fluid (CSF) of PD patients, particularly females. Moreover, CSF USP14 exhibited a dual correlation with α-synuclein in male and female PD patients. To investigate the impact of USP14 deficiency, we crossed USP14 heterozygous mouse (USP14+/-) with transgenic A53T PD mouse (A53T-Tg) or injected adeno-associated virus (AAV) carrying human α-synuclein (AAV-hα-Syn) in USP14+/- mice. We found that Usp14 deficiency improved the behavioral abnormities and pathological α-synuclein deposition in female A53T-Tg or AAV-hα-Syn mice. Additionally, Usp14 inactivation attenuates the pro-inflammatory response in female AAV-hα-Syn mice, whereas Usp14 inactivation demonstrated opposite effects in male AAV-hα-Syn mice. Mechanistically, the heterodimeric protein S100A8/A9 may be the downstream target of Usp14 deficiency in female mouse models of α-synucleinopathies. Furthermore, upregulated S100A8/A9 was responsible for α-synuclein degradation by autophagy and the suppression of the pro-inflammatory response in microglia after Usp14 knockdown. Consequently, our study suggests that USP14 could serve as a novel therapeutic target in PD.


Subject(s)
Calgranulin A , Calgranulin B , Mice, Transgenic , Parkinson Disease , Ubiquitin Thiolesterase , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Animals , Parkinson Disease/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/deficiency , Humans , Mice , Female , Male , Calgranulin B/metabolism , Calgranulin B/genetics , Calgranulin A/metabolism , Calgranulin A/genetics , Disease Models, Animal , Mice, Inbred C57BL
17.
CNS Neurosci Ther ; 30(5): e14763, 2024 May.
Article in English | MEDLINE | ID: mdl-38790149

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a degenerative neurological condition marked by the gradual loss of dopaminergic neurons in the substantia nigra pars compacta. The precise etiology of PD remains unclear, but emerging evidence suggests a significant role for disrupted autophagy-a crucial cellular process for maintaining protein and organelle integrity. METHODS: This review focuses on the role of non-coding RNAs (ncRNAs) in modulating autophagy in PD. We conducted a comprehensive review of recent studies to explore how ncRNAs influence autophagy and contribute to PD pathophysiology. Special attention was given to the examination of ncRNAs' regulatory impacts in various PD models and patient samples. RESULTS: Findings reveal that ncRNAs are pivotal in regulating key processes associated with PD progression, including autophagy, α-synuclein aggregation, mitochondrial dysfunction, and neuroinflammation. Dysregulation of specific ncRNAs appears to be closely linked to these pathogenic processes. CONCLUSION: ncRNAs hold significant therapeutic potential for addressing autophagy-related mechanisms in PD. The review highlights innovative therapeutic strategies targeting autophagy-related ncRNAs and discusses the challenges and prospective directions for developing ncRNA-based therapies in clinical practice. The insights from this study underline the importance of ncRNAs in the molecular landscape of PD and their potential in novel treatment approaches.


Subject(s)
Autophagy , Parkinson Disease , RNA, Untranslated , Humans , Parkinson Disease/genetics , Parkinson Disease/pathology , Parkinson Disease/metabolism , Autophagy/physiology , Autophagy/genetics , RNA, Untranslated/genetics , Animals
18.
Genes (Basel) ; 15(5)2024 May 11.
Article in English | MEDLINE | ID: mdl-38790243

ABSTRACT

Alzheimer's disease (AD), a multifactorial neurodegenerative disorder, is prevalent among the elderly population. It is a complex trait with mutations in multiple genes. Although the US Food and Drug Administration (FDA) has approved a few drugs for AD treatment, a definitive cure remains elusive. Research efforts persist in seeking improved treatment options for AD. Here, a hybrid pipeline is proposed to apply text mining to identify comorbid diseases for AD and an omics approach to identify the common genes between AD and five comorbid diseases-dementia, type 2 diabetes, hypertension, Parkinson's disease, and Down syndrome. We further identified the pathways and drugs for common genes. The rationale behind this approach is rooted in the fact that elderly individuals often receive multiple medications for various comorbid diseases, and an insight into the genes that are common to comorbid diseases may enhance treatment strategies. We identified seven common genes-PSEN1, PSEN2, MAPT, APP, APOE, NOTCH, and HFE-for AD and five comorbid diseases. We investigated the drugs interacting with these common genes using LINCS gene-drug perturbation. Our analysis unveiled several promising candidates, including MG-132 and Masitinib, which exhibit potential efficacy for both AD and its comorbid diseases. The pipeline can be extended to other diseases.


Subject(s)
Alzheimer Disease , Comorbidity , Data Mining , Alzheimer Disease/genetics , Alzheimer Disease/drug therapy , Humans , Data Mining/methods , Parkinson Disease/genetics , Parkinson Disease/drug therapy , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/drug therapy , Down Syndrome/genetics , Down Syndrome/drug therapy , Hypertension/genetics , Hypertension/drug therapy
19.
Int J Mol Sci ; 25(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38791346

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. Given its prevalence, reliable biomarkers for early diagnosis are required. Exosomal proteins within extracellular nanovesicles are promising candidates for diagnostic, screening, prognostic, and disease monitoring purposes in neurological diseases such as PD. This review aims to evaluate the potential of extracellular vesicle proteins or miRNAs as biomarkers for PD. A comprehensive literature search until January 2024 was conducted across multiple databases, including PubMed, EMBASE, Web of Science, and Cochrane Library, to identify relevant studies reporting exosome biomarkers in blood samples from PD patients. Out of 417 articles screened, 47 studies were selected for analysis. Among exosomal protein biomarkers, α-synuclein, tau, Amyloid ß 1-42, and C-X-C motif chemokine ligand 12 (CXCL12) were identified as significant markers for PD. Concerning miRNA biomarkers, miRNA-24, miR-23b-3p, miR-195-3p, miR-29c, and mir-331-5p are promising across studies. α-synuclein exhibited increased levels in PD patients compared to control groups in twenty-one studies, while a decrease was observed in three studies. Our meta-analysis revealed a significant difference in total exosomal α-synuclein levels between PD patients and healthy controls (standardized mean difference [SMD] = 1.369, 95% confidence interval [CI] = 0.893 to 1.846, p < 0.001), although these results are limited by data availability. Furthermore, α-synuclein levels significantly differ between PD patients and healthy controls (SMD = 1.471, 95% CI = 0.941 to 2.002, p < 0.001). In conclusion, certain exosomal proteins and multiple miRNAs could serve as potential biomarkers for diagnosis, prognosis prediction, and assessment of disease progression in PD.


Subject(s)
Biomarkers , Exosomes , MicroRNAs , Parkinson Disease , Humans , Parkinson Disease/diagnosis , Parkinson Disease/blood , Parkinson Disease/genetics , Exosomes/metabolism , Exosomes/genetics , Biomarkers/blood , MicroRNAs/blood , MicroRNAs/genetics , alpha-Synuclein/blood , Amyloid beta-Peptides/blood
20.
Mech Ageing Dev ; 219: 111940, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750970

ABSTRACT

To clarify the genetic role of phospholipase A2 (PLA2) genes in Parkinson's disease (PD), we performed a genetic association study in large Chinese population cohorts using next-generation sequencing. In this study, we analyzed both rare and common variants of 38 phospholipase A2 genes in two large cohorts. We detected 1558 and 1115 rare variants in these two cohorts, respectively. In both cohorts, we observed suggestive associations between specific subgroups and the risk of PD. At the single-gene level, several genes (PLA2G2D, PLA2G12A, PLA2G12B, PLA2G4F, PNPLA1, PNPLA3, PNPLA7, PLA2G7, PLA2G15, PLAAT5, and ABHD12) are suggestively associated with PD. Meanwhile, 364 and 2261 common variants were identified in two cohorts, respectively. Our study has expanded the genetic spectrum of the PLA2 family genes and suggested potential pathogenetic roles of PLA2 superfamily in PD.


Subject(s)
Parkinson Disease , Phospholipases A2 , Humans , Parkinson Disease/genetics , Phospholipases A2/genetics , Female , Male , Asian People/genetics , Cohort Studies , Middle Aged , Aged , China/epidemiology , Genetic Predisposition to Disease , East Asian People
SELECTION OF CITATIONS
SEARCH DETAIL
...