Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.534
Filter
1.
Prim Care ; 51(2): 253-267, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692773

ABSTRACT

Tremor is a commonly encountered condition in the primary care setting and can manifest at rest, with action, or both. Common causes include Parkinson disease, essential tremor, and drug-induced tremor. In this article, the authors discuss how to examine a patient with tremor and which features of the history and examination can help clue the provider in to the appropriate diagnosis. They also review treatments for varying types of tremor and when referral to a neurologist may be necessary.


Subject(s)
Primary Health Care , Tremor , Humans , Tremor/diagnosis , Tremor/therapy , Parkinson Disease/diagnosis , Parkinson Disease/therapy , Diagnosis, Differential , Essential Tremor/diagnosis , Essential Tremor/therapy
2.
BMJ Open ; 14(5): e081317, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38692728

ABSTRACT

INTRODUCTION: Gait and mobility impairment are pivotal signs of parkinsonism, and they are particularly severe in atypical parkinsonian disorders including multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). A pilot study demonstrated a significant improvement of gait in patients with MSA of parkinsonian type (MSA-P) after physiotherapy and matching home-based exercise, as reflected by sensor-based gait parameters. In this study, we aim to investigate whether a gait-focused physiotherapy (GPT) and matching home-based exercise lead to a greater improvement of gait performance compared with a standard physiotherapy/home-based exercise programme (standard physiotherapy, SPT). METHODS AND ANALYSIS: This protocol was deployed to evaluate the effects of a GPT versus an active control undergoing SPT and matching home-based exercise with regard to laboratory gait parameters, physical activity measures and clinical scales in patients with Parkinson's disease (PD), MSA-P and PSP. The primary outcomes of the trial are sensor-based laboratory gait parameters, while the secondary outcome measures comprise real-world derived parameters, clinical rating scales and patient questionnaires. We aim to enrol 48 patients per disease group into this double-blind, randomised-controlled trial. The study starts with a 1 week wearable sensor-based monitoring of physical activity. After randomisation, patients undergo a 2 week daily inpatient physiotherapy, followed by 5 week matching unsupervised home-based training. A 1 week physical activity monitoring is repeated during the last week of intervention. ETHICS AND DISSEMINATION: This study, registered as 'Mobility in Atypical Parkinsonism: a Trial of Physiotherapy (Mobility_APP)' at clinicaltrials.gov (NCT04608604), received ethics approval by local committees of the involved centres. The patient's recruitment takes place at the Movement Disorders Units of Innsbruck (Austria), Erlangen (Germany), Lausanne (Switzerland), Luxembourg (Luxembourg) and Bolzano (Italy). The data resulting from this project will be submitted to peer-reviewed journals, presented at international congresses and made publicly available at the end of the trial. TRIAL REGISTRATION NUMBER: NCT04608604.


Subject(s)
Exercise Therapy , Parkinsonian Disorders , Physical Therapy Modalities , Humans , Exercise Therapy/methods , Parkinsonian Disorders/rehabilitation , Parkinsonian Disorders/therapy , Double-Blind Method , Randomized Controlled Trials as Topic , Gait , Parkinson Disease/rehabilitation , Parkinson Disease/therapy , Multiple System Atrophy/rehabilitation , Multiple System Atrophy/therapy , Supranuclear Palsy, Progressive/therapy , Supranuclear Palsy, Progressive/rehabilitation , Home Care Services , Aged , Male , Female , Gait Disorders, Neurologic/rehabilitation , Gait Disorders, Neurologic/etiology
3.
PLoS One ; 19(5): e0303156, 2024.
Article in English | MEDLINE | ID: mdl-38709746

ABSTRACT

BACKGROUND: Parkinson's disease (PD) patients face a substantial unmet need for disease-modifying interventions. Potential approaches such as exercise and acupuncture have been investigated to slow PD progression. To address this unmet need, we developed a novel therapeutic approach that integrates acupuncture and exercise: the Meridian Activation Remedy System for PD patients (MARS-PD). Building upon promising outcomes observed in our preliminary pilot study, where MARS-PD exhibited a large clinically important difference on the Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III (MDS-UPDRS Part III), we embark on a randomized controlled trial with the primary objective of examining the efficacy, safety, and economic impact of MARS-PD. METHODS: In this single-center, assessor and statistician-blinded, parallel-group randomized controlled trial, we aim to investigate the clinical efficacy of MARS-PD through 16 interventions administered over 8 weeks in 88 PD patients. Participants will be randomly assigned to the experimental (n = 44) or control (n = 44) groups. The experimental group will receive MARS-PD intervention alongside standard care, while the control group will solely receive standard care. The intervention period spans 8 weeks, followed by a 12-week post-intervention follow-up. The primary endpoint is the change in MDS-UPDRS Part III score from baseline to the conclusion of the 8-week intervention. Secondary outcomes encompass various assessments, including MDS-UPDRS, International Physical Activity Questionnaire Short Form, Parkinson Self Questionnaire, Parkinson's Disease Sleep Scale, Timed Up and Go test, GAITRite metrics, Functional Near-Infrared Spectroscopy measurements, smart band outcomes, gut microbiome analysis results, and iris connective tissue texture. DISCUSSION: Previous studies by the authors have indicated MARS-PD's safety and benefits for PD patients. Building upon this foundation, our current study aims to provide a more comprehensive and detailed confirmation of the efficacy of MARS-PD. TRIAL REGISTRATION: cris.nih.go.kr KCT0006646 -First posted on 7 October 2021; ClinicalTrials.gov NCT05621772 -First posted on 11 November 2022.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/therapy , Male , Female , Meridians , Middle Aged , Acupuncture Therapy/methods , Acupuncture Therapy/adverse effects , Aged , Treatment Outcome , Adult , Single-Blind Method , Randomized Controlled Trials as Topic , Exercise Therapy/methods
5.
Stem Cell Res Ther ; 15(1): 138, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735991

ABSTRACT

BACKGROUND: Clinical trials have provided evidence that transplants of dopaminergic precursors, which may be replaced by new in vitro stem cell sources, can integrate into the host tissue, and alleviate motor symptoms in Parkinson´s disease (PD). In some patients, deterioration of graft function occurred several months after observing a graft-derived functional improvement. Rejection of peripheral organs was initially related to HLA-specific antibodies. However, the role of non-HLA antibodies is now considered also relevant for rejection. Angiotensin-II type-1 receptor autoantibodies (AT1-AA) act as agonists of the AT1 receptors. AT1-AA are the non-HLA antibodies most widely associated with graft dysfunction or rejection after transplantation of different solid organs and hematopoietic stem cells. However, it is not known about the presence and possible functional effects of AT1-AA in dopaminergic grafts, and the effects of treatment with AT1 receptor blockers (ARBs) such as candesartan on graft survival. METHODS: In a 6-hydroxydopamine PD rat model, we studied the short-term (10 days)- and long-term (3 months) effects of chronic treatment with the ARB candesartan on survival of grafted dopaminergic neurons and microglial graft infiltration, as well as the effects of dopaminergic denervation and grafting on serum and CSF AT1-AA levels. The expression of AT1 receptors in grafted neurons was determined by laser capture microdissection. RESULTS: At the early period post-grafting, the number of grafted dopaminergic neurons that survived was not significantly different between treated and untreated hosts (i.e., control rats and rats treated with candesartan), probably because, just after grafting, other deleterious factors are predominant for dopaminergic cell death, such as mechanical trauma, lack of growth factors/nutrients and ischemia. However, several months post-grafting, we observed a significantly higher number of surviving dopaminergic neurons and a higher density of striatal dopaminergic terminals in the candesartan-treated group. For several months, grafted rats showed blood and cerebrospinal fluid levels of AT1-AA higher than normal controls, and also higher AT1-AA levels than non-grafted parkinsonian rats. CONCLUSIONS: The results suggest the use of ARBs such as candesartan in PD patients, particularly before and after dopaminergic grafts, and the need to monitor AT1-AA levels in PD patients, particularly in those candidates for dopaminergic grafting.


Subject(s)
Autoantibodies , Dopaminergic Neurons , Parkinson Disease , Receptor, Angiotensin, Type 1 , Animals , Autoantibodies/immunology , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 1/immunology , Rats , Dopaminergic Neurons/metabolism , Parkinson Disease/therapy , Parkinson Disease/pathology , Disease Models, Animal , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Male , Biphenyl Compounds/pharmacology , Biphenyl Compounds/therapeutic use , Tetrazoles/pharmacology , Tetrazoles/therapeutic use , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Oxidopamine/pharmacology , Humans , Rats, Sprague-Dawley
6.
Medicine (Baltimore) ; 103(20): e38152, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758903

ABSTRACT

Parkinson disease (PD), a prevalent neurodegenerative ailment in the elderly, relies mainly on pharmacotherapy, yet deep brain stimulation (DBS) emerges as a vital remedy for refractory cases. This study performs a bibliometric analysis on DBS in PD, delving into research trends and study impact to offer comprehensive insights for researchers, clinicians, and policymakers, illuminating the current state and evolutionary trajectory of research in this domain. A systematic search on March 13, 2023, in the Scopus database utilized keywords like "Parkinson disease," "PD," "Parkinsonism," "Deep brain stimulation," and "DBS." The top 1000 highly cited publications on DBS in PD underwent scientometric analysis via VOS Viewer and R Studio's Bibliometrix package, covering publication characteristics, co-authorship, keyword co-occurrence, thematic clustering, and trend topics. The bibliometric analysis spanned 1984 to 2021, involving 1000 cited articles from 202 sources. The average number of citations per document were 140.9, with 31,854 references. "Movement Disorders" led in publications (n = 98), followed by "Brain" (n = 78) and "Neurology" (n = 65). The University of Oxford featured prominently. Thematic keyword clustering identified 9 core research areas, such as neuropsychological function and motor circuit electrophysiology. The shift from historical neurosurgical procedures to contemporary focuses like "beta oscillations" and "neuroethics" was evident. The bibliometric analysis emphasizes UK and US dominance, outlining 9 key research areas pivotal for reshaping Parkinson treatment. A discernible shift from invasive neurosurgery to DBS is observed. The call for personalized DBS, integration with NIBS, and exploration of innovative avenues marks the trajectory for future research.


Subject(s)
Bibliometrics , Deep Brain Stimulation , Parkinson Disease , Parkinson Disease/therapy , Humans , Deep Brain Stimulation/statistics & numerical data , Deep Brain Stimulation/trends , Biomedical Research/trends , Biomedical Research/statistics & numerical data
7.
Acta Neurochir (Wien) ; 166(1): 217, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748304

ABSTRACT

PURPOSE: To assess whether diffusion tensor imaging (DTI) and generalized q-sampling imaging (GQI) metrics could preoperatively predict the clinical outcome of deep brain stimulation (DBS) in patients with Parkinson's disease (PD). METHODS: In this single-center retrospective study, from September 2021 to March 2023, preoperative DTI and GQI examinations of 44 patients who underwent DBS surgery, were analyzed. To evaluate motor functions, the Unified Parkinson's Disease Rating Scale (UPDRS) during on- and off-medication and Parkinson's Disease Questionnaire-39 (PDQ-39) scales were used before and three months after DBS surgery. The study population was divided into two groups according to the improvement rate of scales: ≥ 50% and < 50%. Five target regions, reported to be affected in PD, were investigated. The parameters having statistically significant difference were subjected to a receiver operating characteristic (ROC) analysis. RESULTS: Quantitative anisotropy (qa) values from globus pallidus externus, globus pallidus internus (qa_Gpi), and substantia nigra exhibited significant distributional difference between groups in terms of the improvement rate of UPDRS-3 scale during on-medication (p = 0.003, p = 0.0003, and p = 0.0008, respectively). In ROC analysis, the best parameter in predicting DBS response included qa_Gpi with a cut-off value of 0.01370 achieved an area under the ROC curve, accuracy, sensitivity, and specificity of 0.810, 73%, 62.5%, and 85%, respectively. Optimal cut-off values of ≥ 0.01864 and ≤ 0.01162 yielded a sensitivity and specificity of 100%, respectively. CONCLUSION: The imaging parameters acquired from GQI, particularly qa_Gpi, may have the ability to non-invasively predict the clinical outcome of DBS surgery.


Subject(s)
Deep Brain Stimulation , Diffusion Tensor Imaging , Parkinson Disease , Humans , Deep Brain Stimulation/methods , Parkinson Disease/therapy , Parkinson Disease/diagnostic imaging , Diffusion Tensor Imaging/methods , Female , Male , Middle Aged , Retrospective Studies , Aged , Treatment Outcome , Globus Pallidus/diagnostic imaging , Predictive Value of Tests
8.
Sci Data ; 11(1): 500, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750096

ABSTRACT

Here we presented an electrophysiological dataset collected from layer V of the primary motor cortex (M1) and the corresponding behavior dataset from normal and hemi-parkinson rats over 5 consecutive weeks. The electrophysiological dataset was constituted by the raw wideband signal, neuronal spikes, and local field potential (LFP) signal. The open-field test was done and recorded to evaluate the behavior variation of rats among the entire experimental cycle. We conducted technical validation of this dataset through sorting the spike data to form action potential waveforms and analyzing the spectral power of LFP data, then based on these findings a closed-loop DBS protocol was developed by the oscillation activity response of M1 LFP signal. Additionally, this protocol was applied to the hemi-parkinson rat for five consecutive days while simultaneously recording the electrophysiological data. This dataset is currently the only publicly available dataset that includes longitudinal closed-loop DBS recordings, which can be utilized to investigate variations of neuronal activity within the M1 following long-term closed-loop DBS, and explore additional reliable biomarkers.


Subject(s)
Deep Brain Stimulation , Motor Cortex , Animals , Rats , Motor Cortex/physiology , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Action Potentials , Behavior, Animal , Electrophysiological Phenomena , Neurons/physiology
9.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1293-1308, 2024 May 25.
Article in Chinese | MEDLINE | ID: mdl-38783798

ABSTRACT

The intestinal microbiota exhibits a strong correlation with the function of the central nervous system, exerting influence on the host brain through neural pathways, immune pathways, and microbial metabolites along the gut-brain axis. Disorders in the composition of the intestinal microbial are closely associated with the onset and progression of neurological disorders, such as depression, Alzheimer's disease, and Parkinson's disease. It has been proven that fecal microbiota transplantation can improve symptoms in animal models of neurological diseases and clinical patients. This paper provides a comprehensive review of the composition and function of the human intestinal microbiota, as well as the intricate the relationship between the human intestinal microbiota and nervous system diseases through the gut-brain axis. Additionally, it delves into the research advancements and underlying mechanism of fecal microbiota transplantation in the treatment of nervous system diseases. These findings offer novel insights and potential avenues for clinical interventions targeting nervous system diseases.


Subject(s)
Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Nervous System Diseases , Humans , Animals , Nervous System Diseases/therapy , Nervous System Diseases/microbiology , Brain-Gut Axis , Parkinson Disease/therapy , Parkinson Disease/microbiology , Alzheimer Disease/therapy , Alzheimer Disease/microbiology , Depression/therapy , Depression/microbiology
10.
Sci Rep ; 14(1): 11386, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762573

ABSTRACT

Aspiration pneumonia is the leading cause of death in patients with Parkinson's disease. The incidence of silent aspiration is high in such patients owing to decreased pharyngeal and laryngeal sensation; thus, interventions for this condition may help prevent pneumonia. In this single-arm, open-label study, we used a cervical percutaneous interferential current stimulation device to activate pharyngeal and laryngeal sensory nerves. We evaluated its effectiveness in patients with Hoehn-Yahr stages 2-4 Parkinson's disease. The primary endpoint was the proportion of patients with a normal cough reflex after consuming 1% citric acid at the end of the intervention compared with baseline measurements. In total, 25 patients received neck percutaneous interferential current stimulation for 20 min twice weekly for 8 weeks. Afterward, the proportion of patients with a normal cough reflex after 1% citric acid consumption increased significantly (p = 0.001), whereas other indicators, such as tongue pressure, peak expiratory flow, and penetration or aspiration during videofluoroscopic examination, remained unchanged. A longer duration of illness, higher Unified Parkinson's Disease Rating Scale total scores, and higher levodopa equivalent daily doses were significantly associated with improved cough test outcomes. Hence, cervical percutaneous interferential current stimulation significantly improved cough reflexes and may improve silent aspiration. Trial Registration: Japan Registry of Clinical Trials, jRCTs062220013, first registered 09/05/2022.


Subject(s)
Citric Acid , Cough , Parkinson Disease , Humans , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Female , Male , Aged , Cough/drug therapy , Middle Aged , Pneumonia, Aspiration/etiology , Pneumonia, Aspiration/prevention & control , Electric Stimulation Therapy/methods
11.
BMC Neurol ; 24(1): 167, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773417

ABSTRACT

BACKGROUND: Postural abnormalities (PA) are common in the advanced stages of Parkinson's disease (PD), but effective therapies are lacking. A few studies suggested that spinal cord stimulation (SCS) could be a potential therapy whereas its effect is still uncertain. We aimed to investigate whether SCS had potential for benefiting PD patients with PA. METHODS: T8-12 SCS was operated on six PD patients with PA and all patients were followed for one year. Evaluations were made before and after SCS. Moreover, three patients were tested separately with SCS on-state and off-state to confirm the efficacy of SCS. RESULTS: Improvements in lateral trunk flexion degree, anterior thoracolumbar flexion degree and motor function were found after SCS. The improvements diminished while SCS was turned off. CONCLUSIONS: Lower thoracic SCS may be effective for improving PA in PD patients, but further studies are needed to confirm this conclusion. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR1900024326, Registered on 6th July 2019; https://www.chictr.org.cn/showproj.aspx?proj=40835 .


Subject(s)
Parkinson Disease , Postural Balance , Spinal Cord Stimulation , Humans , Spinal Cord Stimulation/methods , Parkinson Disease/therapy , Parkinson Disease/complications , Parkinson Disease/physiopathology , Pilot Projects , Male , Female , Middle Aged , Aged , Prospective Studies , Postural Balance/physiology , Treatment Outcome
12.
Cells ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38727306

ABSTRACT

Parkinson's disease (PD) is recognized as the second most prevalent primary chronic neurodegenerative disorder of the central nervous system. Clinically, PD is characterized as a movement disorder, exhibiting an incidence and mortality rate that is increasing faster than any other neurological condition. In recent years, there has been a growing interest concerning the role of the gut microbiota in the etiology and pathophysiology of PD. The establishment of a brain-gut microbiota axis is now real, with evidence denoting a bidirectional communication between the brain and the gut microbiota through metabolic, immune, neuronal, and endocrine mechanisms and pathways. Among these, the vagus nerve represents the most direct form of communication between the brain and the gut. Given the potential interactions between bacteria and drugs, it has been observed that the therapies for PD can have an impact on the composition of the microbiota. Therefore, in the scope of the present review, we will discuss the current understanding of gut microbiota on PD and whether this may be a new paradigm for treating this devastating disease.


Subject(s)
Brain-Gut Axis , Brain , Gastrointestinal Microbiome , Parkinson Disease , Humans , Parkinson Disease/microbiology , Parkinson Disease/therapy , Brain/microbiology , Brain/pathology , Brain-Gut Axis/physiology , Animals
13.
Complement Ther Med ; 82: 103045, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705493

ABSTRACT

OBJECTIVE: This study aimed to evaluate the clinical efficacy and safety of probiotics supplementation in the treatment of Parkinson's disease (PD). METHODS: We searched China National Knowledge Infrastructure (CNKI), Weipu (VIP) database, Wanfang Database, Sinomed (CBM), PubMed, Embase, Cochrane library and Web of Science databases for eligible studies from inception to January 4th, 2024. Randomized controlled trials (RCTS) comparing the effects of probiotic supplements and placebo in patients with PD. Meta-analysis was conducted with the software Review Manager 5.4. The quality assessment was performed according to Cochrane risk of bias tool. RESULTS: A total of 11 RCTs with 756 PD patients were included in this study. We found that probiotics could increase the number of complete bowel movements (CBMs) per week and improved the scores of Patient Assessment of Constipation Quality of Life Questionnaire (PAC-QOL) (SMD = 0.73, 95 % CI: 0.54 to 0.92, P < 0.00001, I2 = 45 %; SMD = - 0.79, 95 % CI: - 1.19 to - 0.39, P < 0.001, I2 = 55 %, respectively) compared with the placebo group. However, there was no significant difference between the two groups in improving fecal traits and defecation efforts in PD patients (SMD = 0.87, 95 % CI: 0.01 to 1.74, P = 0.05, I2 = 94 %; SMD = 1.24, 95 % CI: - 1.58 to 4.06, P > 0.05, I2 = 98 %, respectively). In terms of PD composite scale scores: after treatment, there was no significant difference in Movement Disorder Society-Unified-Parkinson Disease Rating Scale Ⅲ score (MDS-UPDRSⅢ) between the probiotic group and the placebo group (SMD = - 0.09, 95 % CI: - 0.35 to 0.16, P > 0.05, I2 = 0 %). CONCLUSIONS: In conclusion, based on the overall results of the available RCTs studies, our results suggested the potential value of probiotics in improving constipation symptoms in PD patients. Therefore, probiotics may be one of the adjuvant therapy for PD-related constipation patients. The findings of this study provide more proof supporting the effectiveness of probiotics, encouraging probiotics to be utilized alone or in combination with other therapies in clinical practice for PD patients. However, more well-designed RCTs with large sample sizes are required.


Subject(s)
Constipation , Parkinson Disease , Probiotics , Randomized Controlled Trials as Topic , Humans , Constipation/drug therapy , Constipation/therapy , Dietary Supplements , Parkinson Disease/drug therapy , Parkinson Disease/therapy , Probiotics/therapeutic use , Quality of Life
14.
BMJ Open ; 14(5): e081041, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806423

ABSTRACT

INTRODUCTION: Neuropsychiatric symptoms (NPS) are common non-motor symptoms among patients with Parkinson's disease (PD) and significantly impact their overall quality of life detrimentally. Several studies have reported the clinical effect of acupuncture therapy in treating NPS in PD. Therefore, the objective of this systematic review is to evaluate the potential inclusion of acupuncture therapy as an integral component of complementary treatment for PD with NPS. METHODS AND ANALYSIS: From their inception until 1 December 2023, we will search eight databases, including PubMed, Cochrane Library, Embase, Web of Science, China National Knowledge Infrastructure, China Science Periodical Database, Chinese Citation Database and China Biology Medicine disc for randomised controlled trials examining the effectiveness of acupuncture for PD with NPS. Literature screening and data extraction will be carried out independently by the authors. RevMan V.5.3 software will be used for meta-analysis, while the Cochrane risk-of-bias tool will assess the potential for bias. ETHICS AND DISSEMINATION: This systematic review protocol does not require ethical approval because it does not include private information or data of participants. This article will be published in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER: CRD42022324494.


Subject(s)
Acupuncture Therapy , Meta-Analysis as Topic , Parkinson Disease , Systematic Reviews as Topic , Humans , Acupuncture Therapy/methods , Parkinson Disease/therapy , Parkinson Disease/complications , Research Design , Quality of Life , Randomized Controlled Trials as Topic , Treatment Outcome
15.
J Neural Eng ; 21(3)2024 May 17.
Article in English | MEDLINE | ID: mdl-38701768

ABSTRACT

Deep brain stimulation (DBS) is a therapy for Parkinson's disease (PD) and essential tremor (ET). The mechanism of action of DBS is still incompletely understood. Retrospective group analysis of intra-operative data recorded from ET patients implanted in the ventral intermediate nucleus of the thalamus (Vim) is rare. Intra-operative stimulation tests generate rich data and their use in group analysis has not yet been explored.Objective.To implement, evaluate, and apply a group analysis workflow to generate probabilistic stimulation maps (PSMs) using intra-operative stimulation data from ET patients implanted in Vim.Approach.A group-specific anatomical template was constructed based on the magnetic resonance imaging scans of 6 ET patients and 13 PD patients. Intra-operative test data (total:n= 1821) from the 6 ET patients was analyzed: patient-specific electric field simulations together with tremor assessments obtained by a wrist-based acceleration sensor were transferred to this template. Occurrence and weighted mean maps were generated. Voxels associated with symptomatic response were identified through a linear mixed model approach to form a PSM. Improvements predicted by the PSM were compared to those clinically assessed. Finally, the PSM clusters were compared to those obtained in a multicenter study using data from chronic stimulation effects in ET.Main results.Regions responsible for improvement identified on the PSM were in the posterior sub-thalamic area (PSA) and at the border between the Vim and ventro-oral nucleus of the thalamus (VO). The comparison with literature revealed a center-to-center distance of less than 5 mm and an overlap score (Dice) of 0.4 between the significant clusters. Our workflow and intra-operative test data from 6 ET-Vim patients identified effective stimulation areas in PSA and around Vim and VO, affirming existing medical literature.Significance.This study supports the potential of probabilistic analysis of intra-operative stimulation test data to reveal DBS's action mechanisms and to assist surgical planning.


Subject(s)
Deep Brain Stimulation , Essential Tremor , Thalamus , Humans , Essential Tremor/therapy , Essential Tremor/physiopathology , Essential Tremor/diagnostic imaging , Deep Brain Stimulation/methods , Female , Male , Aged , Middle Aged , Thalamus/diagnostic imaging , Thalamus/physiopathology , Brain Mapping/methods , Retrospective Studies , Magnetic Resonance Imaging/methods , Ventral Thalamic Nuclei/diagnostic imaging , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Parkinson Disease/diagnostic imaging , Intraoperative Neurophysiological Monitoring/methods
16.
Stereotact Funct Neurosurg ; 102(3): 179-194, 2024.
Article in English | MEDLINE | ID: mdl-38697047

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) is an effective therapy for Parkinson's disease (PD), but disparities exist in access to DBS along gender, racial, and socioeconomic lines. SUMMARY: Women are underrepresented in clinical trials and less likely to undergo DBS compared to their male counterparts. Racial and ethnic minorities are also less likely to undergo DBS procedures, even when controlling for disease severity and other demographic factors. These disparities can have significant impacts on patients' access to care, quality of life, and ability to manage their debilitating movement disorders. KEY MESSAGES: Addressing these disparities requires increasing patient awareness and education, minimizing barriers to equitable access, and implementing diversity and inclusion initiatives within the healthcare system. In this systematic review, we first review literature discussing gender, racial, and socioeconomic disparities in DBS access and then propose several patient, provider, community, and national-level interventions to improve DBS access for all populations.


Subject(s)
Deep Brain Stimulation , Health Services Accessibility , Healthcare Disparities , Parkinson Disease , Humans , Deep Brain Stimulation/methods , Parkinson Disease/therapy , Socioeconomic Factors , Female , Male
17.
Mov Disord Clin Pract ; 11(6): 698-703, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698586

ABSTRACT

BACKGROUND: Blood pressure control in Parkinson's disease (PD) under subthalamic deep brain stimulation (STN-DBS) is influenced by several intertwined aspects, including autonomic failure and levodopa treatment. OBJECTIVE: To evaluate the effect of chronic STN-DBS, levodopa, and their combination on cardiovascular autonomic functions in PD. METHODS: We performed cardiovascular reflex tests (CRTs) before and 6-months after STN-DBS surgery in 20 PD patients (pre-DBS vs. post-DBS). CRTs were executed without and with medication (med-OFF vs. med-ON). RESULTS: CRT results and occurrence of neurogenic orthostatic hypotension (OH) did not differ between pre- and post-DBS studies in med-OFF condition. After levodopa intake, the BP decrease during HUTT was significantly greater compared to med-OFF, both at pre-DBS and post-DBS evaluation. Levodopa-induced OH was documented in 25% and 5% of patients in pre-DBS/med-ON and post-DBS/med-ON study. CONCLUSION: Chronic stimulation did not influence cardiovascular responses, while levodopa exerts a relevant hypotensive effect. The proportion of patients presenting levodopa-induced OH decreases after STN-DBS surgery.


Subject(s)
Antiparkinson Agents , Autonomic Nervous System , Deep Brain Stimulation , Levodopa , Parkinson Disease , Humans , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Deep Brain Stimulation/methods , Male , Female , Middle Aged , Aged , Levodopa/therapeutic use , Levodopa/adverse effects , Levodopa/administration & dosage , Autonomic Nervous System/physiopathology , Autonomic Nervous System/drug effects , Antiparkinson Agents/therapeutic use , Antiparkinson Agents/adverse effects , Blood Pressure/physiology , Blood Pressure/drug effects , Subthalamic Nucleus/physiopathology , Hypotension, Orthostatic/therapy , Hypotension, Orthostatic/etiology , Hypotension, Orthostatic/physiopathology
18.
Neuroimage Clin ; 42: 103617, 2024.
Article in English | MEDLINE | ID: mdl-38749145

ABSTRACT

BACKGROUND AND OBJECTIVES: The intricate relationship between deep brain stimulation (DBS) in Parkinson's disease (PD) and cognitive impairment has lately garnered substantial attention. The presented study evaluated pre-DBS structural and microstructural cerebral patterns as possible predictors of future cognitive decline in PD DBS patients. METHODS: Pre-DBS MRI data in 72 PD patients were combined with neuropsychological examinations and follow-up for an average of 2.3 years after DBS implantation procedure using a screening cognitive test validated for diagnosis of mild cognitive impairment in PD in a Czech population - Dementia Rating Scale 2. RESULTS: PD patients who would exhibit post-DBS cognitive decline were found to have, already at the pre-DBS stage, significantly lower cortical thickness and lower microstructural complexity than cognitively stable PD patients. Differences in the regions directly related to cognition as bilateral parietal, insular and cingulate cortices, but also occipital and sensorimotor cortex were detected. Furthermore, hippocampi, putamina, cerebellum and upper brainstem were implicated as well, all despite the absence of pre-DBS differences in cognitive performance and in the position of DBS leads or stimulation parameters between the two groups. CONCLUSIONS: Our findings indicate that the cognitive decline in the presented PD cohort was not attributable primarily to DBS of the subthalamic nucleus but was associated with a clinically silent structural and microstructural predisposition to future cognitive deterioration present already before the DBS system implantation.


Subject(s)
Cognitive Dysfunction , Deep Brain Stimulation , Magnetic Resonance Imaging , Parkinson Disease , Subthalamic Nucleus , Humans , Deep Brain Stimulation/adverse effects , Parkinson Disease/therapy , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Male , Female , Subthalamic Nucleus/diagnostic imaging , Middle Aged , Cognitive Dysfunction/etiology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/pathology , Aged , Magnetic Resonance Imaging/methods , Neuropsychological Tests
19.
Neurochem Res ; 49(7): 1643-1654, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782838

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Ferroptosis, an iron-dependent form of regulated cell death, may contribute to the progression of PD owing to an unbalanced brain redox status. Physical exercise is a complementary therapy that can modulate ferroptosis in PD by regulating the redox system through the activation of nuclear factor (erythroid-derived 2)-like 2 (NRF2) and brain-derived neurotrophic factor (BDNF) signaling. However, the precise effects of physical exercise on ferroptosis in PD remain unclear. In this review, we explored how physical exercise influences NRF2 and BDNF signaling and affects ferroptosis in PD. We further investigated relevant publications over the past two decades by searching the PubMed, Web of Science, and Google Scholar databases using keywords related to physical exercise, PD, ferroptosis, and neurotrophic factor antioxidant signaling. This review provides insights into current research gaps and demonstrates the necessity for future research to elucidate the specific mechanisms by which exercise regulates ferroptosis in PD, including the assessment of different exercise protocols and their long-term effects. Ultimately, exploring these aspects may lead to the development of improved exercise interventions for the better management of patients with PD.


Subject(s)
Brain-Derived Neurotrophic Factor , Exercise , Ferroptosis , NF-E2-Related Factor 2 , Parkinson Disease , NF-E2-Related Factor 2/metabolism , Humans , Brain-Derived Neurotrophic Factor/metabolism , Ferroptosis/physiology , Parkinson Disease/metabolism , Parkinson Disease/therapy , Animals , Exercise/physiology , Signal Transduction/physiology
20.
Sci Rep ; 14(1): 12132, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802497

ABSTRACT

The striatum plays a crucial role in providing input to the basal ganglia circuit and is implicated in the pathological process of Parkinson's disease (PD). Disruption of the dynamic equilibrium in the basal ganglia loop can be attributed to the abnormal functioning of the medium spiny neurons (MSNs) within the striatum, potentially acting as a trigger for PD. Exercise has been shown to mitigate striatal neuronal dysfunction through neuroprotective and neurorestorative effects and to improve behavioral deficits in PD model mice. In addition, this effect is offset by the activation of MSNs expressing dopamine D2 receptors (D2-MSNs). In the current study, we investigated the underlying neurobiological mechanisms of this effect. Our findings indicated that exercise reduces the power spectral density of the beta-band in the striatum and decreases the overall firing frequency of MSNs, particularly in the case of striatal D2-MSNs. These observations were consistent with the results of molecular biology experiments, which revealed that aerobic training specifically enhanced the expression of striatal dopamine D2 receptors (D2R). Taken together, our results suggest that aerobic training aimed at upregulating striatal D2R expression to inhibit the functional activity of D2-MSNs represents a potential therapeutic strategy for the amelioration of motor dysfunction in PD.


Subject(s)
Corpus Striatum , Disease Models, Animal , Parkinson Disease , Physical Conditioning, Animal , Receptors, Dopamine D2 , Animals , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D2/genetics , Corpus Striatum/metabolism , Mice , Parkinson Disease/therapy , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , Male , Neurons/metabolism , Mice, Inbred C57BL , Motor Activity/physiology , Medium Spiny Neurons
SELECTION OF CITATIONS
SEARCH DETAIL
...