Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Plant Biol (Stuttg) ; 21(2): 267-277, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30382601

ABSTRACT

Paspalum is a noteworthy grass genus due to the forage quality of most species, with approximately 330 species, and the high proportion of those that reproduce via apomixis. Harnessing apomictic reproduction and widening knowledge about the cytogenetic relationships among species are essential tools for plant breeding. We conducted cytogenetic analyses of inter- and intraspecific hybridisations involving a sexual, colchicine-induced autotetraploid plant of P. plicatulum Michx. and five indigenous apomictic tetraploid (2n = 40) species: P. compressifolium Swallen, P. lenticulare Kunth, two accessions of P. nicorae Parodi, P. rojasii Hack. and two accessions of P. plicatulum. Fertility of the hybrids was investigated and their reproductive system was analysed considering the relative embryo:endosperm DNA content from flow cytometry. Morphological, nomenclatural and taxonomic issues were also analysed. Cytogenetic analysis suggested that all indigenous tetraploid accessions of five apomictic species are autotetraploid or segmental allotetraploid. If segmental allotetraploids, they probably originated through autoploidy followed by diploidisation processes. Autosyndetic male chromosome pairing observed in all hybrid families supported this assertion. Allosyndetic chromosome associations were also observed in all hybrid families. In the hybrids, the proportion of male parent chromosomes involved in allosyndesis per pollen mother cell varied from 5.5% to 35.0% and the maximum was between 25% and 60%. The apomictic condition of the indigenous male parents segregated in the hybrids. These results confirm a strong association between autoploidy and apomixis in Paspalum, and the existence of cytogenetic relationships between different species of the Plicatula group. Allosyndetic chromosome pairing and seed fertility of the hybrids suggest the feasibility of gene transfer among species.


Subject(s)
Hybridization, Genetic/genetics , Paspalum/genetics , Polyploidy , Tetraploidy , Chromosomes, Plant/genetics , Cytogenetics , Meiosis , Paspalum/anatomy & histology , Paspalum/classification , Phylogeography , Plant Breeding
2.
An. acad. bras. ciênc ; 89(3): 1753-1760, July-Sept. 2017. tab
Article in English | LILACS | ID: biblio-886753

ABSTRACT

ABSTRACT The Paspalum genus includes several species that are important for livestock in Rio Grande do Sul, such as P. notatum and P. guenoarum, typical of native pastures of the Pampa biome. The aim of this study was to investigate forage production and chemical composition of four ecotypes of these species in relation to the cv. 'Pensacola' (P. notatum). Ecotypes of P. guenoarum (Azulão and Baio) and P. notatum (André da Rocha and Bagual) and the cv. 'Pensacola' were evaluated for two years, during which four cuts/year were made. The work was carried out under field conditions at the Agronomic Experimental Station of the Federal University of Rio Grande do Sul (30°05'S; 51°39'W), in a completely randomized design. P. guenoarum stood out for higher productivity and greater tolerance to cold; the Azulão ecotype showed more autumn production in relation to the other ecotypes. Crude protein content ranged from 14 (Baio) to 15% ('Pensacola'); for neutral detergent fiber, the variation was 68 (Azulão) to 71% ('Pensacola') and for acid detergent fiber there was a variation of 38 ('Pensacola') to 43% (Baio). The data demonstrates the potential of native genotypes for use as cattle feeding in southern Brazil.


Subject(s)
Animals , Paspalum/classification , Animal Feed/analysis , Seasons , Brazil , Cattle
3.
An Acad Bras Cienc ; 89(3): 1753-1760, 2017.
Article in English | MEDLINE | ID: mdl-28813101

ABSTRACT

The Paspalum genus includes several species that are important for livestock in Rio Grande do Sul, such as P. notatum and P. guenoarum, typical of native pastures of the Pampa biome. The aim of this study was to investigate forage production and chemical composition of four ecotypes of these species in relation to the cv. 'Pensacola' (P. notatum). Ecotypes of P. guenoarum (Azulão and Baio) and P. notatum (André da Rocha and Bagual) and the cv. 'Pensacola' were evaluated for two years, during which four cuts/year were made. The work was carried out under field conditions at the Agronomic Experimental Station of the Federal University of Rio Grande do Sul (30°05'S; 51°39'W), in a completely randomized design. P. guenoarum stood out for higher productivity and greater tolerance to cold; the Azulão ecotype showed more autumn production in relation to the other ecotypes. Crude protein content ranged from 14 (Baio) to 15% ('Pensacola'); for neutral detergent fiber, the variation was 68 (Azulão) to 71% ('Pensacola') and for acid detergent fiber there was a variation of 38 ('Pensacola') to 43% (Baio). The data demonstrates the potential of native genotypes for use as cattle feeding in southern Brazil.


Subject(s)
Animal Feed/analysis , Paspalum/classification , Animals , Brazil , Cattle , Seasons
4.
J Plant Res ; 129(4): 697-710, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26965283

ABSTRACT

It is generally accepted that polyploids have downsized basic genomes rather than additive values with respect to their related diploids. Changes in genome size have been reported in correlation with several biological characteristics. About 75 % of around 350 species recognized for Paspalum (Poaceae) are polyploid and most polyploids are apomictic. Multiploid species are common with most of them bearing sexual diploid and apomictic tetraploid or other ploidy levels. DNA content in the embryo and the endosperm was measured by flow cytometry in a seed-by-seed analysis of 47 species including 77 different entities. The relative DNA content of the embryo informed the genome size of the accession while the embryo:endosperm ratio of DNA content revealed its reproductive mode. The genome sizes (2C-value) varied from 0.5 to 6.5 pg and for 29 species were measured for the first time. Flow cytometry provided new information on the reproductive mode for 12 species and one botanical variety and supplied new data for 10 species concerning cytotypes reported for the first time. There was no significant difference between the mean basic genome sizes (1Cx-values) of 32 sexual and 45 apomictic entities. Seventeen entities were diploid and 60 were polyploids with different degrees. There were no clear patterns of changes in 1Cx-values due to polyploidy or reproductive systems, and the existing variations are in concordance with subgeneric taxonomical grouping.


Subject(s)
DNA, Plant/genetics , Diploidy , Paspalum/classification , Paspalum/physiology , Polyploidy , Chromosomes, Plant/genetics , Flow Cytometry , Paspalum/genetics , Reproduction/genetics , Species Specificity
5.
Plant Mol Biol ; 84(4-5): 479-95, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24146222

ABSTRACT

The SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) gene plays a fundamental role in somatic embryogenesis of angiosperms, and is associated with apomixis in Poa pratensis. The objective of this work was to isolate, characterize and analyze the expression patterns of SERK genes in apomictic and sexual genotypes of Paspalum notatum. A conserved 200-bp gene fragment was amplified from genomic DNA with heterologous primers, and used to initiate a chromosomal walking strategy for cloning the complete sequence. This procedure allowed the isolation of two members of the P. notatum SERK family; PnSERK1, which is similar to PpSERK1, and PnSERK2, which is similar to ZmSERK2 and AtSERK1. Phylogenetic analyses indicated that PnSERK1 and PnSERK2 represent paralogous sequences. Southern-blot hybridization indicated the presence of at least three copies of SERK genes in the species. qRT-PCR analyses revealed that PnSERK2 was expressed at significantly higher levels than PnSERK1 in roots, leaves, reproductive tissues and embryogenic calli. Moreover, in situ hybridization experiments revealed that PnSERK2 displayed a spatially and chronologically altered expression pattern in reproductive organs of the apomictic genotype with respect to the sexual one. PnSERK2 is expressed in nucellar cells of the apomictic genotype at meiosis, but only in the megaspore mother cell in the sexual genotype. Therefore, apomixis onset in P. notatum seems to be correlated with the expression of PnSERK2 in nucellar tissue.


Subject(s)
Gene Expression Regulation, Plant , Paspalum/genetics , Plant Proteins/genetics , Protein Kinases/genetics , Amino Acid Sequence , Apomixis/genetics , Gene Expression Profiling , Genotype , In Situ Hybridization , Isoenzymes/genetics , Molecular Sequence Data , Paspalum/classification , Phylogeny , Protein Kinases/classification , Reverse Transcriptase Polymerase Chain Reaction , Seeds/embryology , Seeds/genetics , Sequence Homology, Amino Acid
6.
Theor Appl Genet ; 123(6): 959-71, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21713535

ABSTRACT

Since apomixis was first mapped in Paspalum, the absence of recombination that characterizes the related locus appeared to be the most difficult bottleneck to overcome for the dissection of the genetic determinants that control this trait. An approach to break the block of recombination was developed in this genus through an among-species comparative mapping strategy. A new apomictic species, P. procurrens (Q4094) was crossed with a sexual plant of P. simplex and their progeny was classified for reproductive mode with the aid of morphological, embryological and genetic analyses. On this progeny, a set of heterologous rice RFLP markers strictly co-segregating in coupling phase with apomixis was identified. These markers were all located on the telomeric region of the long arm of the chromosome 12 of rice. In spite of the lack of recombination exhibited by the apomixis-linked markers in P. procurrens, a comparative mapping analysis among P. simplex, P. malacophyllum, P. notatum and P. procurrens, allowed us to identify a small group of markers co-segregating with apomixis in all these species. These markers bracketed a chromosome region that likely contains all the genetic determinants of apomictic reproduction in Paspalum. The implications of this new inter-specific approach for overcoming the block of recombination to isolate the genetic determinants of apomixis and gain a better comprehension of genome structure of apomictic chromosome region are discussed.


Subject(s)
Apomixis/genetics , Paspalum/genetics , Paspalum/physiology , Chromosome Mapping , Chromosomes, Plant/genetics , Genes, Plant , Genetic Markers , Genetic Variation , Paspalum/classification , Polymorphism, Restriction Fragment Length , Seeds/genetics
7.
Genet Mol Res ; 7(2): 399-406, 2008 Apr 29.
Article in English | MEDLINE | ID: mdl-18551406

ABSTRACT

Somatic chromosome numbers were determined for 20 new germplasm accessions of Paspalum, belonging to 17 species collected in Brazil. Chromosome number is reported for the first time for P. reduncum (2n = 18), P. cinerascens (2n = 20), P. cordatum (2n = 20), P. filgueirasii (2n = 24), P. ammodes (2n = 36), P. bicilium (2n = 40), P. heterotrichon (2n = 40), and P. burmanii (2n = 48). New cytotypes were confirmed for two germplasm accessions of P. carinatum (2n = 30) and P. trachycoleon (2n = 36), one of P. clavuliferum (2n = 40) and one of P. lanciflorum (2n = 40), indicating variability in these species. The remaining chromosome numbers reported here confirm previous counts. The unexpected chromosome numbers 2n = 18, 24, 36, and 48 in Paspalum species, which are usually shown to be multiples of 10, suggest that much more collection and cytogenetic characterization are necessary to assess the whole chromosomal and genomic multiplicity present in the genus, which seems to be much more diverse than currently thought to be.


Subject(s)
Chromosomes, Plant/genetics , Paspalum/genetics , Brazil , Cytogenetic Analysis , Mitosis/genetics , Paspalum/classification , Phylogeny , Polyploidy
8.
Genet. mol. res. (Online) ; 7(2): 399-406, 2008. tab, ilus
Article in English | LILACS | ID: lil-640999

ABSTRACT

Somatic chromosome numbers were determined for 20 new germplasm accessions of Paspalum, belonging to 17 species collected in Brazil. Chromosome number is reported for the first time for P. reduncum (2n = 18), P. cinerascens (2n = 20), P. cordatum (2n = 20), P. filgueirasii (2n = 24), P. ammodes (2n = 36), P. bicilium (2n = 40), P. heterotrichon (2n = 40), and P. burmanii (2n = 48). New cytotypes were confirmed for two germplasm accessions of P. carinatum (2n = 30) and P. trachycoleon (2n = 36), one of P. clavuliferum (2n = 40) and one of P. lanciflorum (2n = 40), indicating variability in these species. The remaining chromosome numbers reported here confirm previous counts. The unexpected chromosome numbers 2n = 18, 24, 36, and 48 in Paspalum species, which are usually shown to be multiples of 10, suggest that much more collection and cytogenetic characterization are necessary to assess the whole chromosomal and genomic multiplicity present in the genus, which seems to be much more diverse than currently thought to be.


Subject(s)
Chromosomes, Plant/genetics , Paspalum/genetics , Brazil , Cytogenetic Analysis , Phylogeny , Polyploidy , Paspalum/classification
9.
Genetica ; 125(2-3): 133-40, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16247687

ABSTRACT

A taxonomic study of Paspalum L. was carried out using a genetic diversity approach. Thirty accessions representing twenty one different species from the Notata and Linearia groups of Paspalum were studied using restriction fragment length polymorphism analysis of the amplified ITS ribosomal DNA (rDNA) and from the psbA-trnH of the chloroplast genome (cpDNA). The combined analysis of the internal transcribed spacer (ITS) and the chloroplast spacer region between the psbA and trnH genes identified genetic polymorphisms. A distance analysis of the molecular data generated a dendrogram which showed the relationships of the two informal groups of Paspalum studied here. Although the distribution of species in the dendrogram was found to be roughly in agreement with previous works based on morphological and cytological data, the results obtained reveal the current artificiality in Paspalum taxonomy. Based on molecular data, a new circumscription of the Notata and Linearia groups is proposed here in order to provide a more accurate delimitation of these groups and contribute to the taxonomy of Paspalum. This study, although preliminary, reveals the potential utility of such a molecular approach for clarifying the taxonomy of closely related taxa.


Subject(s)
Paspalum/classification , Paspalum/genetics , DNA, Chloroplast/genetics , DNA, Plant/genetics , DNA, Ribosomal Spacer/genetics , Genetic Variation , Phylogeny , Polymorphism, Restriction Fragment Length , Species Specificity
10.
Mol Genet Genomics ; 270(6): 539-48, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14648202

ABSTRACT

In plants, gametophytic apomixis is a form of asexual reproduction that leads to the formation of seed-derived offspring that are genetically identical to the mother plant. A common set of RFLP markers, including five rice anchor markers previously shown to be linked to apomixis in Paspalum simplex, were used to detect linkage with apomixis in P. notatum and P. malacophyllum. A comparative map of the region around the apomixis locus was constructed for the three Paspalum species, and compared to the rice map. The locus that controls apomixis in P. simplex was almost completely conserved in the closely related species P. malacophyllum, whereas it was only partially represented in the distantly related species P. notatum. Although strong synteny of markers was noted between this locus and a portion of rice chromosome 12 in both P. simplex and P. malacophyllum, the same locus in P. notatum was localized to a hybrid chromosome which carries markers that map to rice chromosomes 2 and 12. All three Paspalum species showed recombination suppression at the apomixis locus; in the case of P. notatum, this might be due to a heterozygosity for a translocation that most probably negatively interferes with chromosomal pairing near the locus. A common set of markers that show linkage with apomixis in all three Paspalum species define a portion of the apomixis-controlling locus that is likely to contain genes critical for apomictic reproduction.


Subject(s)
Genes, Plant , Paspalum/genetics , Chromosome Mapping/methods , Conserved Sequence , DNA, Plant/genetics , Genetic Markers , Genome, Plant , Oryza/genetics , Paspalum/classification , Seeds/genetics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...