Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Protoplasma ; 256(4): 923-939, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30719577

ABSTRACT

Passifloraceae shows a huge variability of pollen wall characteristics, most still little described. Passiflora is the largest genus with about 580 species with tropical distribution. Few studies in palynological approaches have described the intine layer which can fill existent gaps. Passiflora L. present four subgenera, from which Passiflora, Astrophea, and Decaloba were described in this study. The pollen wall variations were poorly studied, with the objective of describing the morphological and histochemical structure of Passiflora sporoderm that occurs in South America, aims to supply more pollen wall characters in some contexts. Besides the inference of evolutive trends, we described the number of apertures, type, reticule, and variations of the morphology and sporoderm and we related them with possible evolutive trends for the group. As a result, the pollen grains were not far from the patterns found by the literature, with exceptions. The species of the subgenus Passiflora have fused colpi, varying from 6 to 12 colpi, with type 2-reticulate exine. The species of the subgenus Astrophea have colporus and the species of Decaloba varied as the type of aperture, in which a new type of exine to be considered was found: the type 3. The subgenus Passiflora showed the thickest intine, slim endexine, and absent foot layer. While the species that belong to the other subgenera present a slim intine, the endexine is thick and the foot layer is continuous, among other variable characteristics. The size of the pollen grain seems to be related to the thickness of the intine, and consequently, related to possible pollinators. Through the cluster analysis, we reinforce the affinity of the species to its respective subgenus. To conclude, the analysis of the ultrastructure of the sporoderm and external morphology would be useful for an almost complete interpretation of the variations occurring in the genus, giving more information that the subgenus Passiflora is apomorphic when compared to the other two. The pollen wall characters should be considered on the interpretation of natural history, as well as the phylogenetic relationships of the family, mainly in the Passiflora genus, that has a large number of species distributed across the Neotropical regions.


Subject(s)
Passiflora/anatomy & histology , Pollen/anatomy & histology , Pollen/cytology , Cell Wall , Microscopy, Electron, Scanning , Passiflora/cytology
2.
Plant Biol (Stuttg) ; 21(4): 662-669, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30676681

ABSTRACT

Several studies on cytogenetic characterisation of passion flowers are helpful to elucidate doubts about taxa relationships, delimitation and classification into more coherent groups based on karyomorphological data. Molecular and conventional cytogenetic techniques were applied to three Passiflora species with red flowers, P. coccinea, P. vitifolia and P. tholozanii, for species karyotype relationships. Additionally, for descriptive morphology, were used flowers, leaves and seeds. Results describe for the first time the karyomorphological and chromosome number (2n = 18) for P. tholozanii. anova was performed (P < 0.05) and statistical significance for average chromosome size (CV: 16.53%) between species. Genomic in situ hybridisation (GISH) proved relationships between P. coccinea and P. tholozanii, which suggests a common origin, however, we could not identify hybridisation between genomic probes from P. vitifolia in P. tholozanii chromosomes. Among the species analysed, P. tholozanii has great similarity in karyotypic and morphology to P. coccinea but not to P. vitifolia. We suggest the inclusion of P. tholozanii in the same subgenus and section as P. coccinea based on the similarity in karyomorphological and morphological traits between the species. Additionally, GISH might indicate a common or hybrid origin of P. tholozanii.


Subject(s)
Passiflora/cytology , Azure Stains , Chromosomes, Plant/genetics , Cytogenetic Analysis , Karyotyping , Passiflora/anatomy & histology , Passiflora/genetics , Plant Root Cap/anatomy & histology , Plant Root Cap/cytology , Plant Root Cap/genetics
3.
Sci Total Environ ; 656: 1091-1101, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30625641

ABSTRACT

Passiflora edulis Sims is a liana species of high economic interest and is an interesting model plant for understanding ozone action on disturbed vegetation. In this work we hypothesized that P. edulis has adaptive responses to oxidative stress that enable it to tolerate ozone damage based on its capacity to grow under a diversity of environmental conditions and to dominate disturbed areas. We exposed seedlings to three levels of ozone in a Free-Air Controlled Exposure (FACE) system (22, 41 and 58 ppb h AOT40 and 13.52, 17.24 and 20.62 mmol m-2 POD0, over 97 days) for identifying its tolerance mechanisms. Anatomical (leaf blade structure and fluorescence emission of chloroplast metabolites), physiological (leaf gas exchange, growth rate and biomass production) and biochemical (pigments, total sugars, starch, enzymatic and non-enzymatic antioxidant metabolites, reactive oxygen species and lipid peroxidation derivatives) responses were assessed. Ozone caused decreased total number of leaves, hyperplasia and hypertrophy of the mesophyll cells, and accelerated leaf senescence. However, O3 did not affect carbohydrates content, net photosynthetic rate, or total biomass production, indicating that the carboxylation efficiency and associated physiological processes were not affected. In addition, P. edulis showed higher leaf contents of ascorbic acid, glutathione (as well high ratio between their reduced and total forms), carotenoids, and flavonoids located in the chloroplast outer envelope membrane. Our results indicate that P. edulis is an O3-tolerant species due to morphological acclimation responses and an effective antioxidant defense system represented by non-enzymatic antioxidants, which maintained the cellular redox balance under ozone.


Subject(s)
Air Pollutants/adverse effects , Ozone/adverse effects , Passiflora/drug effects , Dose-Response Relationship, Drug , Passiflora/anatomy & histology , Passiflora/chemistry , Passiflora/physiology , Plant Leaves/anatomy & histology , Plant Leaves/chemistry , Plant Leaves/drug effects , Plant Leaves/physiology , Seedlings/anatomy & histology , Seedlings/chemistry , Seedlings/drug effects , Seedlings/physiology
4.
An Acad Bras Cienc ; 90(2 suppl 1): 2381-2396, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29044321

ABSTRACT

The genus Passiflora is the most diversified of the Passifloraceae, and its palynology presents wide morphological variability. The objective of the study was to evaluate the pollen morphology of 18 Passiflora species in order to identify informative pollinic characteristics to contribute to the taxonomic classification of the genus. The morphology of the pollen grains and the exine structure were investigated using light microscopy and scanning electron microscopy. Differences in the pollen morphology were found in the studied species, mainly in terms of shape, pollen aperture and ornamentation pattern of the exine. Most of the species belonging to the subgenus Passiflora presented ornamented 6-syncolpate pollen grains with an oblate-spheroidal shape and an exine with large lumens. In the subgenus Decaloba the pollen grains were 6-colporate, 12-colpate and 12-colporate, with subprolate to prolate-spheroidal shape, as well as an exine with smaller lumen size and few ornamented. The pollen morphology of the species of the subgenera Passiflora and Decaloba has shown palynological characteristics that have specific diagnostic value, thus allowing a better understanding of the taxonomy of the genus Passiflora.


Subject(s)
Passiflora/classification , Pollen/classification , Microscopy, Electron, Scanning , Passiflora/anatomy & histology , Passiflora/ultrastructure , Pollen/anatomy & histology , Pollen/ultrastructure , Species Specificity
5.
PLoS One ; 12(11): e0187905, 2017.
Article in English | MEDLINE | ID: mdl-29136029

ABSTRACT

Extrafloral glands in Passifloraceae species have aroused the interest of many researchers because of their wide morphological diversity. The present work analyzed the foliar glands on 34 species of Passiflora from samples containing glands in the petiole and foliar blade fixed in 50% solution of formaldehyde-ethanol-acetic acid and stored in a 70% ethanol solution. For anatomical analyses, part of the material was embedded in Paraplast, longitudinally sectioned and double stained with safranin and astra blue. Scanning electron microscopy analysis was also carried out. To analyze the presence of sugars in the secretion of foliar glands, a glucose strip test was used. Based on the results of morphological, anatomical and glucose strip tests, the foliar secretory glands in Passiflora can be grouped into two categories: Type I glands, defined as nectaries, can be elevated or flattened, and can have a sugar content high enough to be detected by the glucose strip test analysis. Type II glands are elevated and did not show a positive reaction to the glucose strip test. From an anatomical viewpoint, glands characterized as extrafloral nectaries show a multistratified secretory epidermis, typically followed by two flat layers of nectariferous parenchyma with dense content. Internal to these layers, vascular bundles are immersed in the subsecretory parenchyma and terminate in phloem cells. On the other hand, type II glands show a single layer of elongated secretory epidermal cells. Internal to this single layer, parenchyma and vascular tissue with both phloem and xylem elements can be observed. The analyzed species show a wide diversity of gland shape and distribution, and the combined analysis of morphology, anatomy and preliminary tests for the presence of glucose in the exudate in different Passiflora subgenera suggests the occurrence of two categories of glands: nectaries and resin glands.


Subject(s)
Passiflora/anatomy & histology , Plant Leaves/anatomy & histology , Microscopy, Electron, Scanning
6.
Gigascience ; 6(1): 1-13, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28369351

ABSTRACT

Background: Leaf shape among Passiflora species is spectacularly diverse. Underlying this diversity in leaf shape are profound changes in the patterning of the primary vasculature and laminar outgrowth. Each of these aspects of leaf morphology-vasculature and blade-provides different insights into leaf patterning. Results: Here, we morphometrically analyze >3300 leaves from 40 different Passiflora species collected sequentially across the vine. Each leaf is measured in two different ways: using 1) 15 homologous Procrustes-adjusted landmarks of the vasculature, sinuses, and lobes; and 2) Elliptical Fourier Descriptors (EFDs), which quantify the outline of the leaf. The ability of landmarks, EFDs, and both datasets together are compared to determine their relative ability to predict species and node position within the vine. Pairwise correlation of x and y landmark coordinates and EFD harmonic coefficients reveals close associations between traits and insights into the relationship between vasculature and blade patterning. Conclusions: Landmarks, more reflective of the vasculature, and EFDs, more reflective of the blade contour, describe both similar and distinct features of leaf morphology. Landmarks and EFDs vary in ability to predict species identity and node position in the vine and exhibit a correlational structure (both within landmark or EFD traits and between the two data types) revealing constraints between vascular and blade patterning underlying natural variation in leaf morphology among Passiflora species.


Subject(s)
Body Patterning , Computational Biology , Passiflora/anatomy & histology , Plant Leaves/anatomy & histology , Fourier Analysis , Passiflora/classification , Passiflora/growth & development , Plant Leaves/growth & development , Plant Vascular Bundle/anatomy & histology , Species Specificity
7.
Genet Mol Res ; 13(4): 9828-45, 2014 Nov 27.
Article in English | MEDLINE | ID: mdl-25501192

ABSTRACT

Morphological characterization is the most accessible and used method to quantify the genetic diversity of the available germplasm. The multivariate statistical method is highly important for this purpose. This study aimed to characterize parents and hybrids of Passiflora according to morphoagronomic descriptors and estimate the genetic divergence between them based on the joint analysis of qualitative and quantitative variables using the Ward-modified location model (MLM) procedure. One hundred and thirty-eight individuals were assessed (10 P. edulis, 10 P. setacea, and 118 interspecific hybrids) using 23 quantitative and 12 qualitative descriptors. The values for the quantitative descriptors were measured and subjected to multivariate statistics using the Ward-MLM strategy. Large genetic variability was detected by the morphoagronomic data in the 138 genotypes that were evaluated, and the hybrids presented higher variability than the parents. Pseudo-F and pseudo-t2 criteria showed that the optimal number of groups was three. Group I was composed of 118 hybrid genotypes; group II was composed of the 10 P. setacea genotypes, and group III was composed of the 10 P. edulis genotypes. The longest distance was found between groups II and III (474.96). The shortest distance was detected between groups I and II (198.78), which indicates that the segregating population is genetically closer to P. setacea than to P. edulis. The Ward-MLM procedure is a useful tool to detect genetic diversity and group accessions using both qualitative and quantitative variables.


Subject(s)
Hybridization, Genetic , Passiflora/anatomy & histology , Passiflora/genetics , Crosses, Genetic , Flowers/anatomy & histology , Flowers/genetics , Fruit/anatomy & histology , Fruit/genetics , Genotype , Likelihood Functions , Multivariate Analysis , Phenotype , Quantitative Trait, Heritable , Species Specificity
8.
Proc Biol Sci ; 281(1795)2014 Nov 22.
Article in English | MEDLINE | ID: mdl-25274372

ABSTRACT

A striking example of plant/pollinator trait matching is found between Andean species of Passiflora with 6-14-cm-long nectar tubes and the sword-billed hummingbird, Ensifera ensifera, with up to 11-cm-long bills. Because of the position of their anthers and stigmas, and self-incompatibility, these passionflower species depend on E. ensifera for pollination. Field observations show that the bird and plant distribution match completely and that scarcity of Ensifera results in reduced passionflower seed set. We here use nuclear and plastid DNA sequences to investigate how often and when these mutualisms evolved and under which conditions, if ever, they were lost. The phylogeny includes 26 (70%) of the 37 extremely long-tubed species, 13 (68%) of the 19 species with tubes too short for Ensifera and four of the seven bat-pollinated species for a total of 43 (69%) of all species in Passiflora supersection Tacsonia (plus 11 outgroups). We time-calibrated the phylogeny to infer the speed of any pollinator switching. Results show that Tacsonia is monophyletic and that its stem group dates to 10.7 Ma, matching the divergence at 11.6 Ma of E. ensifera from its short-billed sister species. Whether pollination by short-billed hummingbirds or by Ensifera is the ancestral condition cannot be securely inferred, but extremely long-tubed flowers exclusively pollinated by Ensifera evolved early during the radiation of the Tacsonia clade. There is also evidence of several losses of Ensifera dependence, involving shifts to bat pollination and shorter billed birds. Besides being extremely asymmetric-a single bird species coevolving with a speciose plant clade-the Ensifera/Passiflora system is a prime example of a specialized pollinator not driving plant speciation, but instead being the precondition for the maintenance of isolated populations (through reliable seed set) that then underwent allopatric speciation.


Subject(s)
Biological Evolution , Birds/physiology , Chiroptera/physiology , Passiflora/physiology , Pollination , Animals , Cell Nucleus/genetics , Flowers/anatomy & histology , Food Chain , Molecular Sequence Data , Passiflora/anatomy & histology , Passiflora/genetics , Phylogeny , Plant Dispersal , Plant Proteins/genetics , Plastids/genetics , Sequence Analysis, DNA , South America
9.
New Phytol ; 193(3): 787-796, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22122433

ABSTRACT

• The diversity of plant breeding systems provides the opportunity to study a range of potential reproductive adaptations. Many mechanisms remain poorly understood, among them the evolution and maintenance of male flowers in andromonoecy. Here, we studied the role of morphologically male flowers ('male morph') in andromonoecious Passiflora incarnata. • We measured morphological differences between hermaphroditic and male morph flowers in P. incarnata and explored the fruiting and siring ability of both flower types. • Male morph flowers in P. incarnata were of similar size to hermaphroditic flowers, and there was little evidence of different resource allocation to the two flower types. Male morph flowers were less capable of producing fruit, even under ample pollen and resource conditions. By contrast, male morph flowers were more successful in siring seeds. On average, male morph flowers sired twice as many seeds as hermaphroditic flowers. This difference in male fitness was driven by higher pollen export from male morph flowers as a result of greater pollen production and less self-pollen deposition. • The production of male morph flowers in P. incarnata appears to be a flexible adaptive mechanism to enhance male fitness, which might be especially beneficial when plants face temporary resource shortages for nurturing additional fruits.


Subject(s)
Flowers/anatomy & histology , Flowers/physiology , Passiflora/anatomy & histology , Passiflora/physiology , Analysis of Variance , Fruit/growth & development , Genetic Fitness , Pollen/physiology , Pollination/physiology , Quantitative Trait, Heritable , Reproduction/physiology , Seasons
10.
Braz J Biol ; 66(3): 853-62, 2006 Aug.
Article in English | MEDLINE | ID: mdl-17119833

ABSTRACT

Leaf morphology may vary considerably even within a branch of Passiflora suberosa plants. Leaves are of a typical green type in shaded areas, but in open fields turn into violet, and apparently have greater thickness and trichome density. The proximate causes and the adaptive meaning, if any, for the existence of the violet morph are still unknown. By cultivating P. suberosa clones under two light regimes (total and partial exposure to sunlight), we consecutively induced (first year) and then reversed (second year) the appearance of the violet morph. We evaluated the corresponding changes in morpho-anatomic and chemical leaf characteristics. Plants that were grown under partial sunlight had a greater size and did not alter their green color, but those grown under total sunlight changed into violet, were smaller in size and their leaves were tougher, thicker, and had a greater number of trichomes. The violet morph had increased anthocyanins and phenolic derivatives. It also showed cellular hypertrophy, a greater number of cell layers in the mesophyll, and a lignified pericycle. Since these morphs are interchangeable by changing light conditions, we inferred that they are not determined by genotypic diversity, but are mainly a result of a physiological response to light stress, and thus part of P. suberosa phenotypic plasticity.


Subject(s)
Passiflora/anatomy & histology , Phenotype , Pigmentation/physiology , Plant Leaves/anatomy & histology , Sunlight , Anthocyanins/analysis , Chromatography, Paper , Passiflora/chemistry , Passiflora/physiology , Phenol/analysis , Plant Leaves/chemistry , Plant Leaves/physiology
11.
Braz J Biol ; 66(2B): 747-54, 2006 May.
Article in English | MEDLINE | ID: mdl-16906307

ABSTRACT

The pollination of Passiflora coccinea by the hummingbird Phaethornis superciliosus was studied in Central Amazon, Brazil. We hypothesized that a greater nectar secretion rate (NSR) increases the pollination success of single flowers through Ph. superciliosus visiting behavior. For control flowers, NSR was an increasing function of flower base diameter (FBD). The total number of Ph. superciliosus probes per flower was an increasing function of FBD. Additionally, deposition of pollen on stigmas increased with the cumulative number of Ph. superciliosus probes. Our results show that larger P. coccinea flowers secrete nectar at higher rates, are probed more times during each hummingbird visit and are more successful at pollination. This seems to be the first non-manipulative study describing such an effect of NSR on the pollination of single flowers in nature.


Subject(s)
Behavior, Animal/physiology , Birds/physiology , Flowers/physiology , Passiflora/physiology , Pollen , Animals , Brazil , Flowers/anatomy & histology , Passiflora/anatomy & histology
12.
Braz. j. biol ; 66(3): 853-862, Aug. 2006. ilus, graf
Article in English, Portuguese | LILACS | ID: lil-435626

ABSTRACT

Leaf morphology may vary considerably even within a branch of Passiflora suberosa plants. Leaves are of a typical green type in shaded areas, but in open fields turn into violet, and apparently have greater thickness and trichome density. The proximate causes and the adaptive meaning, if any, for the existence of the violet morph are still unknown. By cultivating P. suberosa clones under two light regimes (total and partial exposure to sunlight), we consecutively induced (first year) and then reversed (second year) the appearance of the violet morph. We evaluated the corresponding changes in morpho-anatomic and chemical leaf characteristics. Plants that were grown under partial sunlight had a greater size and did not alter their green color, but those grown under total sunlight changed into violet, were smaller in size and their leaves were tougher, thicker, and had a greater number of trichomes. The violet morph had increased anthocyanins and phenolic derivatives. It also showed cellular hypertrophy, a greater number of cell layers in the mesophyll, and a lignified pericycle. Since these morphs are interchangeable by changing light conditions, we inferred that they are not determined by genotypic diversity, but are mainly a result of a physiological response to light stress, and thus part of P. suberosa phenotypic plasticity.


A morfologia das folhas de Passiflora suberosa pode variar consideravelmente mesmo dentro dos ramos de um dado espécime. P. suberosa ocorre tipicamente em áreas sombreadas e as folhas são verdes. Porém, em áreas abertas, onde há maior incidência de luz solar, as folhas são de coloração roxa, aparentemente mais duras e com grande densidade de tricomas. As possíveis causas e o significado adaptativo da manifestação destas características ainda são desconhecidas. Com base no cultivo de clones de P. suberosa sob dois regimes de luz solar (incidência total e parcial), nós consecutivamente induzimos (primeiro ano) e então revertemos (segundo ano) o aparecimento da forma roxa. As mudanças nas características morfológicas e químicas das formas verde e roxa foram avaliadas. As plantas que foram cultivadas sob incidência parcial de luz solar apresentaram maior tamanho dos ramos e não alteraram a cor verde das folhas. As plantas que foram cultivadas sob incidência total dos raios solares apresentaram coloração roxa, maior dureza, espessura e pilosidade. A forma roxa apresentou alto teor de antocianinas e derivados fenólicos. As plantas exibiram hipertrofia celular, maior número de camadas celulares no mesofilo e lignificação do periciclo. Considerando que as formas são intercambiáveis perante a mudança na intensidade luminosa, nós inferimos que elas não resultam da diversidade genotípica, mas sim de uma resposta fisiológica ao estresse luminoso e, dessa forma, parte da plasticidade fenotípica de P. suberosa.


Subject(s)
Phenotype , Passiflora/anatomy & histology , Pigmentation/physiology , Plant Leaves/anatomy & histology , Sunlight , Anthocyanins/analysis , Chromatography, Paper , Passiflora/chemistry , Passiflora/physiology , Phenol/analysis , Plant Leaves/chemistry , Plant Leaves/physiology
13.
Braz. j. biol ; 66(2b): 747-754, May 2006. ilus, graf
Article in English | LILACS | ID: lil-433160

ABSTRACT

Estudamos a polinização de Passiflora coccinea por beija-flores Phaethornis superciliosus na Amazônia Central, Brasil. Nossa hipótese é que maiores taxas de secreção de néctar (TSN) aumentam o sucesso da polinização de flores individuais através do comportamento de visitas de Ph. superciliosus. Para flores controladas, a TSN foi uma função positiva do diâmetro da base da flor (DBF). O número total de visitas de Ph. superciliosus por flor foi uma função positiva do DBF. Adicionalmente, a deposição de pólen sobre os estigmas aumentou com o aumento do número acumulado de visitas de Ph. superciliosus. Nossos resultados indicam que flores maiores de P. coccinea secretam néctar em taxas mais altas, são visitadas mais vezes pelos beija-flores, e apresentam maior sucesso de polinização. Este parece ser o primeiro estudo não-manipulativo que descreve este efeito da TSN sobre o sucesso de polinização de flores individuais na natureza.


Subject(s)
Animals , Behavior, Animal/physiology , Birds/physiology , Flowers/physiology , Pollen , Passiflora/physiology , Brazil , Flowers/anatomy & histology , Passiflora/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...