Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 561
Filter
1.
J Microbiol Methods ; 221: 106943, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705209

ABSTRACT

Bovine respiratory disease (BRD) is an important health and economic burden to the cattle industry worldwide. Three bacterial pathogens frequently associated with BRD (Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni) can possess integrative and conjugative elements (ICEs), a diverse group of mobile genetic elements that acquire antimicrobial resistance (AMR) genes (ARGs) and decrease the therapeutic efficacy of antimicrobial drugs. We developed a duplex recombinase polymerase amplification (RPA) assay to detect up to two variants of ICEs in these Pasteurellaceae. Whole genome sequence analysis of M. haemolytica, P. multocida, and H. somni isolates harbouring ICEs revealed the presence of tnpA or ebrB next to tet(H), a conserved ARG that is frequently detected in ICEs within BRD-associated bacteria. This real-time multiplex RPA assay targeted both ICE variants simultaneously, denoted as tetH_tnpA and tetH_ebrB, with a limit of detection (LOD) of 29 (95% CI [23, 46]) and 38 genome copies (95% CI [30, 59]), respectively. DNA was extracted from 100 deep nasopharyngeal swabs collected from feedlot cattle on arrival. Samples were tested for ICEs using a real-time multiplex RPA assay, and for M. haemolytica, P. multocida, H. somni, and Mycoplasma bovis using both culture methods and RPA. The assay provided sensitive and accurate identification of ICEs in extracted DNA, providing a useful molecular tool for timely detection of potential risk factors associated with the development of antimicrobial-resistant BRD in feedlot cattle.


Subject(s)
Multiplex Polymerase Chain Reaction , Nasopharynx , Recombinases , Animals , Cattle , Nasopharynx/microbiology , Recombinases/genetics , Multiplex Polymerase Chain Reaction/methods , Multiplex Polymerase Chain Reaction/veterinary , Interspersed Repetitive Sequences/genetics , Cattle Diseases/microbiology , Cattle Diseases/diagnosis , DNA, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Bovine Respiratory Disease Complex/microbiology , Conjugation, Genetic , Sensitivity and Specificity , Mannheimia haemolytica/genetics , Mannheimia haemolytica/isolation & purification , Pasteurellaceae/genetics , Pasteurellaceae/isolation & purification
2.
Poult Sci ; 103(6): 103751, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38652951

ABSTRACT

Infectious coryza (IC) is an acute infectious respiratory disease in chickens that is caused by Avibacterium paragallinarum (A. paragallinarum). A. paragallinarum poses a significant threat to poultry health due to its virulence and multidrug resistance. This study isolated and identified 21 A. paragallinarum isolates from Guangdong between 2022 and 2023. Biochemical tests showed that 100% of A. paragallinarum isolates fermented glucose but did not ferment alginate and galactose, and only YZ18 was nicotinamide adenine dinucleotide independent. To determine the genetic relatedness between these isolates and NCBI reference strains, whole-genome-based phylogenetic analysis was employed. In addition, analysis of the 2,000 bp-length hmtp210 gene showed that the hmtp210 gene was strongly associated with A. paragallinarum serotypes. Meanwhile, a PCR assay for serotyping A. paragallinarum was developed based on the hmtp210 gene, this assay has high sensitivity and specificity. The antimicrobial susceptibility of isolates was assessed using the disk diffusion method. The antibiotic resistance genes of isolates were analyzed using the genomic method. Phenotypic resistance to ampicillin (95.2%), streptomycin (95.2%), methotrexate-sulfamethoxazole (90.5%), and tetracycline (85.7%) was most frequent among the isolates. All of the isolates exhibited resistance to multiple drugs, and furthermore, the isolates possessed a collective total of 14 genes associated with antibiotic resistance. This study will contribute to advancing our knowledge of A. paragallinarum antibiotic resistance and provide a scientific basis for the prophylaxis and treatment of IC, and the subsequent rational design of potential clinical therapeutics.


Subject(s)
Anti-Bacterial Agents , Chickens , Poultry Diseases , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Animals , China/epidemiology , Anti-Bacterial Agents/pharmacology , Prevalence , Haemophilus Infections/veterinary , Haemophilus Infections/microbiology , Haemophilus Infections/epidemiology , Pasteurellaceae/genetics , Pasteurellaceae/drug effects , Drug Resistance, Bacterial/genetics , Phylogeny , Haemophilus paragallinarum/genetics , Haemophilus paragallinarum/drug effects , Haemophilus paragallinarum/physiology , Genome, Bacterial
3.
Infect Immun ; 92(3): e0003824, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38391206

ABSTRACT

Histophilus somni is one of the predominant bacterial pathogens responsible for bovine respiratory and systemic diseases in cattle. Despite the identification of numerous H. somni virulence factors, little is known about the regulation of such factors. The post-transcriptional regulatory protein Hfq may play a crucial role in regulation of components that affect bacterial virulence. The contribution of Hfq to H. somni phenotype and virulence was investigated following creation of an hfq deletion mutant of H. somni strain 2336 (designated H. somni 2336Δhfq). A comparative analysis of the mutant to the wild-type strain was carried out by examining protein and carbohydrate phenotype, RNA sequence, intracellular survival in bovine monocytes, serum susceptibility, and virulence studies in mouse and calf models. H. somni 2336Δhfq exhibited a truncated lipooligosaccharide (LOS) structure, with loss of sialylation. The mutant demonstrated increased susceptibility to intracellular and serum-mediated killing compared to the wild-type strain. Transcriptomic analysis displayed significant differential expression of 832 upregulated genes and 809 downregulated genes in H. somni 2336Δhfq compared to H. somni strain 2336, including significant downregulation of lsgB and licA, which contribute to LOS oligosaccharide synthesis and sialylation. A substantial number of differentially expressed genes were associated with polysaccharide synthesis and other proteins that could influence virulence. The H. somni 2336Δhfq mutant strain was attenuated in a mouse septicemia model and somewhat attenuated in a calf intrabronchial challenge model. H. somni was recovered less frequently from nasopharyngeal swabs, endotracheal aspirates, and lung tissues of calves challenged with H. somni 2336Δhfq compared to the wild-type strain, and the percentage of abnormal lung tissue in calves challenged with H. somni 2336Δhfq was lower than in calves challenged with the wild-type strain. In conclusion, our results support that Hfq accounts for the regulation of H. somni virulence factors.


Subject(s)
Haemophilus somnus , Pasteurellaceae , Animals , Cattle , Mice , Virulence/genetics , Haemophilus somnus/genetics , Virulence Factors/genetics , Virulence Factors/metabolism , Proteins/metabolism , Monocytes , Pasteurellaceae/genetics
4.
BMC Vet Res ; 20(1): 51, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341558

ABSTRACT

BACKGROUND: Respiratory tract diseases cause significant economic loss in beef cattle. This study aimed to determine whether the application of hyperimmune serum (HS) containing antibodies against selected antigens of Gram-negative bacteria would improve the health and growth of different breeds of beef calves kept on three farms. Two recombinant protein antigens (Histophilus somni rHsp60 and rOMP40) were used to immunize four cows to produce HS. Eighty seven beef calves (Charolaise n = 36, Limousine n = 34, and crossbreed n = 17) were included into study. One hundred milliliters of serum were administered subcutaneously to 43 beef calves (Charolaise n = 18, Limousine n = 17, and crossbreed n = 8) twice, between 1 and 5 and 21-28 days of life. Calves were examined three times, and blood samples were taken to evaluate immunoglobulin M, G1, and G2, fibrinogen, serum amyloid A, and haptoglobin concentrations and reactivity of these Ig classes of antibodies against H. somni rHsp60 and rOMP40. Average daily weight gain during the first month and until weaning was calculated. RESULTS: HS showed higher (p ≤ 0.05) reactivity in calf sera against H. somni rHsp60 and OMP40 in IgG1 and IgG2. In experimental calves, compared to control calves, the reactivity of IgG1 against rOMP40 in the second sampling was higher in Limousine calves (p ≤ 0.001) and in the other two herds (p ≤ 0.05). Serum IgG2 antibody activity against H. somni rHsp60 in the second sampling was higher in experimental calves than in control calves in charolaise (p ≤ 0.05) and limousine (p ≤ 0.001) herds. The reactivity of IgG2 against rOMP40 in the second sampling of experimental calves was higher in herds with Charolaise and Limousine calves (p ≤ 0.001) and in crossbred calves (p ≤ 0.05). In the third sampling, serum IgG1 antibody reactivity against rOMP40 in Limousine calves was higher (p ≤ 0.05) in the experimental group. Among the other evaluated parameters, only SAA in the second sampling in the herd with Charolaise calves and heart rate in the herd with Limousine calves were significantly higher in the control calves (p ≤ 0.05). CONCLUSION: The application of HS to calves in all herds had an impact on specific reactivity in IgG1 and IgG2 classes against H. somni rOMP40 and rHsp60, antigens which were used for serum production.


Subject(s)
Cattle Diseases , Pasteurellaceae , Female , Cattle , Animals , Gram-Negative Bacteria , Recombinant Proteins , Immunoglobulin M , Pasteurellaceae/physiology , Immunoglobulin G , Cattle Diseases/microbiology
5.
Article in English | MEDLINE | ID: mdl-38415662

ABSTRACT

The misclassification of the species Pasteurella caecimuris Lagkouvardos et al. 2016 along with the heterotypic synonymy between P. caecimuris and Rodentibacter heylii Adhikary et al. 2017 has long been recognized. However, no formal assignment of P. caecimuris to its correct taxonomic position has been made accordingly and therefore the nomenclatural consequences have not been implemented. In the present study, the author first re-evaluates the taxonomic relationships of P. caecimuris using genome-based approaches, confirming the need of reclassification to the genus Rodentibacter and presenting evidence of the synonymy between R. heylii and P. caecimuris. Next, the author proposes a new name Rodentibacter caecimuris comb. nov. and, based on the priority of their specific epithets, treats Rodentibacter heylii as a later heterotypic synonym of Rodentibacter caecimuris.


Subject(s)
Fatty Acids , Pasteurella , Pasteurellaceae , DNA, Bacterial/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Bacterial Typing Techniques , Sequence Analysis, DNA , Base Composition , Fatty Acids/chemistry
6.
Vet Microbiol ; 290: 109995, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301451

ABSTRACT

Gallibacterium anatis is a Gram-negative bacterium found in the respiratory and genital tracts of various animals, primarily poultry. Its association with septicemia and high mortality in poultry, along with the rise in multidrug-resistant strains, has amplified concerns. Recent research uncovered significant variability in antibiotic resistance profiles among G. anatis isolates from different Austrian flocks, and even between different organs within the same bird. In response, in the present study 60 of these isolates were sequenced and a combination of comparative genomics and genome-wide association study (GWAS) analysis was applied to understand the genetic variability of G. anatis across flocks and organs and to identify genes related to antibiotic resistance. The results showed that each flock harbored one or two strains of G. anatis with only a few strains shared between flocks, demonstrating a great variability among flocks. We identified genes associated with resistance to nalidixic acid, trimethoprim, cefoxitin, tetracycline, ampicillin and sulfamethoxazole. Our findings revealed that G. anatis may develop antibiotic resistance through two mechanisms: single-nucleotide mutations and the presence of specific genes that confer resistance. Unexpectedly, some tetracycline-resistant isolates lacked all known tetracycline-associated genes, suggesting the involvement of novel mechanisms of tetracycline resistance that require additional exploration. Furthermore, our functional annotation of resistance genes highlighted the citric acid cycle pathway as a potential key modulator of antibiotic resistance in G. anatis. In summary, this study describes the first application of GWAS analysis to G. anatis and provides new insights into the acquisition of multidrug resistance in this important avian pathogen.


Subject(s)
Pasteurellaceae , Poultry Diseases , Animals , Anti-Bacterial Agents/pharmacology , Genome-Wide Association Study/veterinary , Chickens/microbiology , Tetracycline , Poultry/genetics , Tetracycline Resistance/genetics , Genomics , Poultry Diseases/microbiology
7.
Avian Pathol ; 53(4): 291-302, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38385975

ABSTRACT

ABSTRACTThe study describes three clinical cases of infection with Avibacterium spp.. In case no. 1, respiratory clinical signs and high mortality (0.7-4.2% daily; total 21.2%) in Ross 308 broiler chickens were shown to be caused by coinfection with sequence type 9 of O. rhinotracheale presumptive serotype A and A. paragallinarum presumptive serotype B. The identical (pulsed-field gel electrophoresis) restriction pattern (pulsotype) of seven A. paragallinarum isolates indicated that infectious coryza in broilers was caused by the same clone. In cases 2 and 3, sudden increased deaths in Ross 308 broiler breeders (especially males) with lesions in the endocardium (valvular or mural endocarditis) were shown to be caused by A. endocarditis. Among nine antibiotics tested, florfenicol was the only antibiotic to which all A. paragallinarum and O. rhinotracheale isolates were susceptible. Out of the eight antibiotics tested, 11 A. endocarditis isolates from both clinical cases of infective endocarditis were susceptible to penicillin, amoxicillin, doxycycline and florfenicol. The A. endocarditis isolates tested in both clinical cases had different PFGE patterns (pulsotypes), but identical within a case. The causes of infectious coryza and infective endocarditis in the cases presented have not been determined. In the prevention of infectious diseases in large-scale livestock farming, it is very important to follow the rules of biosecurity.


Subject(s)
Anti-Bacterial Agents , Chickens , Coinfection , Flavobacteriaceae Infections , Haemophilus Infections , Ornithobacterium , Poultry Diseases , Animals , Poultry Diseases/microbiology , Poultry Diseases/pathology , Chickens/microbiology , Ornithobacterium/genetics , Ornithobacterium/isolation & purification , Female , Coinfection/veterinary , Coinfection/microbiology , Flavobacteriaceae Infections/veterinary , Flavobacteriaceae Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Male , Poland/epidemiology , Haemophilus Infections/veterinary , Haemophilus Infections/microbiology , Haemophilus paragallinarum/genetics , Haemophilus paragallinarum/isolation & purification , Endocarditis, Bacterial/veterinary , Endocarditis, Bacterial/microbiology , Pasteurellaceae/isolation & purification , Pasteurellaceae/genetics , Microbial Sensitivity Tests/veterinary
8.
Trop Anim Health Prod ; 55(6): 383, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37889324

ABSTRACT

Gallibacterium anatis (G. anatis), a member of the Pasteurellaceae family, normally inhabits the upper respiratory and lower genital tracts of poultry. However, under certain circumstances of immunosuppression, co-infection (especially with Escherichia coli or Mycoplasma), or various stressors, G. anatis caused respiratory, reproductive, and systemic diseases. Infection with G. anatis has emerged in different countries worldwide. The bacterium affects mainly chickens; however, other species of domestic and wild birds may get infected. Horizontal, vertical, and venereal routes of G. anatis infection have been reported. The pathogenicity of G. anatis is principally related to the presence of some essential virulence factors such as Gallibacterium toxin A, fimbriae, haemagglutinin, outer membrane vesicles, capsule, biofilms, and protease. The clinical picture of G. anatis infection is mainly represented as tracheitis, oophoritis, salpingitis, and peritonitis, while other lesions may be noted in cases of concomitant infection. Control of such infection depends mainly on applying biosecurity measures and vaccination. The antimicrobial sensitivity test is necessary for the correct treatment of G. anatis. However, the development of multiple drug resistance is common. This review article sheds light on G. anatis regarding history, susceptibility, dissemination, virulence factors, pathogenesis, clinical picture, diagnosis, and control measures.


Subject(s)
Pasteurellaceae Infections , Pasteurellaceae , Poultry Diseases , Female , Animals , Poultry , Chickens , Pasteurellaceae Infections/veterinary , Pasteurellaceae Infections/microbiology , Virulence Factors , Escherichia coli , Poultry Diseases/microbiology
9.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Article in English | MEDLINE | ID: mdl-37882672

ABSTRACT

Forty-one isolates of Bisgaard taxon 6 obtained from guinea pigs, pandas, pigs and muskrat and isolates of taxon 10 from horses and horse bites in humans were subjected phenotypic characterization. Production of acid from (-)-d-mannitol, (-)-d-sorbitol and (+)-d-glycogen separated taxon 10 (positive) from taxon 6 (negative), while from two to 11 phenotypic characteristics separated taxa 6 and 10 from the 32 genera of Pasteurellaceae reported so far. Forty-four strains were genetically characterized. Sequencing of 16S rRNA genes documented a monophyletic relationship at the species level and the highest 16S rRNA gene sequence similarity of 95.6 % to other species was found between strain CCUG 15568T and the type strain of Mannheimia glucosida (CCUG 38457T). Digital DNA-DNA hybridization (dDDH) values predicted from whole genomic sequences between CCUG 15568T and other characterized strains of taxa 6 and 10 were 69.3-99.9 %. The average nucleotide identity values were higher than 95 % for all strains. The highest dDDH value of 29 % outside the taxa 6 and 10 group was obtained with the genome of the type strain of [Actinobacillus] succinogenes, indicating a separate taxonomic status at species level to taxa 6 and 10. The phylogenetic comparison of concatenated conserved protein sequences showed the unique position of the taxa investigated in the current study which qualified for the status of a new genus since the highest identity was found with Basfia with 79 %, well below the upper threshold between genera of 85 %. Based upon the low genetic similarity to other genera of the family Pasteurellaceae and a unique phenotype, we suggest that Bisgaard taxa 6 and 10 should be classified as Exercitatus varius gen. nov., sp. nov. The G+C of the type strain of Exercitatus varius, 8.5T (=CCUG 15568T=DSM 115565T), is 46.2 mol%, calculated from the whole genome.


Subject(s)
Fatty Acids , Pasteurellaceae , Humans , Animals , Guinea Pigs , Horses , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Base Composition , Fatty Acids/chemistry
10.
J Am Assoc Lab Anim Sci ; 62(5): 409-415, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37758466

ABSTRACT

Soiled bedding sentinel programs have long been the cornerstone of rodent health monitoring surveillance. Many recent studies have evaluated methods to replace live animals in these programs; however, the type of ventilated rack being used greatly influences the detection rate of adventitious pathogens. This study evaluated 4 alternative sampling techniques across 5 distinct vivaria and assessed their accuracy in detecting 5 pathogens. Testing was done in an operational (real-world) setting using IVC racks that vent air at the cage level. The 5 agents surveyed were mouse norovirus, Helicobacter spp., Rodentibacter spp. Entamoeba muris, and Spironucleus muris. Samples were collected for subsequent PCR assays as follows: 1) cages with live sentinels exposed to soiled bedding; 2) filter paper placed on the lid of an unoccupied cage containing soiled bedding; 3) filter paper placed in the bedding of an unoccupied cage that contained soiled bedding; 4) swabs from an unoccupied sentinel cage that contained soiled bedding; and 5) pooled swabs from colony cages admixed with swabs from soiled bedding sentinel mice. Cumulative accuracy for all pathogens of interest was highest with the existing soiled bedding sentinel program, followed by pooled swabs of colony cages mixed with swabs from occupied soiled bedding sentinel cages. Soiled bedding sentinel cages detected mouse norovirus, Helicobacter spp., and S. muris with the highest accuracy; the pooled swabs were best in detecting Rodentibacter spp. and E. muris. The findings suggest that with the type of rack and caging used in our facilities, the soiled bedding sentinel method has highest concurrence with the expected health status of an animal room, and the results from this method can be enhanced with the addition of pooled swabs of colony animals.


Subject(s)
Helicobacter , Norovirus , Pasteurellaceae , Rodent Diseases , Animals , Mice , Housing, Animal , Filtration , Polymerase Chain Reaction , Bedding and Linens , Rodent Diseases/diagnosis
11.
Microbiologyopen ; 12(3): e1353, 2023 06.
Article in English | MEDLINE | ID: mdl-37379423

ABSTRACT

Glaesserella parasuis, Mycoplasma hyorhinis, and Mycoplasma hyosynoviae are important porcine pathogens responsible for polyserositis, polyarthritis, meningitis, pneumonia, and septicemia causing significant economic losses in the swine industry. A new multiplex quantitative polymerase chain reaction (qPCR) was designed on one hand for the detection of G. parasuis and the virulence marker vtaA to distinguish between highly virulent and non-virulent strains. On the other hand, fluorescent probes were established for the detection and identification of both M. hyorhinis and M. hyosynoviae targeting 16S ribosomal RNA genes. The development of the qPCR was based on reference strains of 15 known serovars of G. parasuis, as well as on the type strains M. hyorhinis ATCC 17981T and M. hyosynoviae NCTC 10167T . The new qPCR was further evaluated using 21 G. parasuis, 26 M. hyorhinis, and 3 M. hyosynoviae field isolates. Moreover, a pilot study including different clinical specimens of 42 diseased pigs was performed. The specificity of the assay was 100% without cross-reactivity or detection of other bacterial swine pathogens. The sensitivity of the new qPCR was demonstrated to be between 11-180 genome equivalents (GE) of DNA for M. hyosynoviae and M. hyorhinis, and 140-1200 GE for G. parasuis and vtaA. The cut-off threshold cycle was found to be at 35. The developed sensitive and specific qPCR assay has the potential to become a useful molecular tool, which could be implemented in veterinary diagnostic laboratories for the detection and identification of G. parasuis, its virulence marker vtaA, M. hyorhinis, and M. hyosynoviae.


Subject(s)
Multiplex Polymerase Chain Reaction , Mycoplasma Infections , Mycoplasma hyorhinis , Mycoplasma hyosynoviae , Pasteurellaceae Infections , Pasteurellaceae , Swine Diseases , Multiplex Polymerase Chain Reaction/methods , Pasteurellaceae/isolation & purification , Mycoplasma hyorhinis/isolation & purification , Mycoplasma hyosynoviae/isolation & purification , Swine Diseases/diagnosis , Swine Diseases/microbiology , Animals , Swine , Mycoplasma Infections/diagnosis , Mycoplasma Infections/microbiology , Mycoplasma Infections/veterinary , Pasteurellaceae Infections/diagnosis , Pasteurellaceae Infections/microbiology , Pasteurellaceae Infections/veterinary , Pilot Projects , Sensitivity and Specificity
12.
J Am Assoc Lab Anim Sci ; 62(3): 229-242, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37127407

ABSTRACT

Rodents used in biomedical research are maintained as specific pathogen-free (SPF) by employing biosecurity measures that eliminate and exclude adventitious infectious agents known to confound research. The efficacy of these practices is assessed by routine laboratory testing referred to as health monitoring (HM). This study summarizes the results of HM performed at Charles River Research Animal Diagnostic Services (CR-RADS) on samples submitted by external (non-Charles River) clients between 2003 and 2020. Summarizing this vast amount of data has been made practicable by the recent introduction of end-user business intelligence tools to Excel. HM summaries include the number of samples tested and the percent positive by diagnostic methodology, including direct examination for parasites, cultural isolation and identification for bacteria, serology for antibodies to viruses and fastidious microorganisms, and polymerase chain reaction (PCR) assays for pathogen-specific genomic sequences. Consistent with comparable studies, the percentages of pathogen-positive samples by diagnostic methodology and year interval are referred to as period prevalence estimates (%PE). These %PE substantiate the elimination of once common respiratory pathogens, such as Sendai virus, and reductions in the prevalence of other agents considered common, such as the rodent coronaviruses and parvoviruses. Conversely, the %PE of certain pathogens, for example, murine norovirus (MNV), Helicobacter, Rodentibacter, and parasites remain high, perhaps due to the increasing exchange of genetically engineered mutant (GEM) rodents among researchers and the challenges and high cost of eliminating these agents from rodent housing facilities. Study results also document the growing role of PCR in HM because of its applicability to all pathogen types and its high specificity and sensitivity; moreover, PCR can detect pathogens in samples collected antemortem directly from colony animals and from the environment, thereby improving the detection of host-adapted, environmentally unstable pathogens that are not efficiently transmitted to sentinels by soiled bedding.


Subject(s)
Helicobacter , Pasteurellaceae , Rats , Animals , Mice , Prevalence , Polymerase Chain Reaction , Bacteria , Housing, Animal
13.
PLoS One ; 18(5): e0286158, 2023.
Article in English | MEDLINE | ID: mdl-37220152

ABSTRACT

Small RNAs (sRNA), in association with the global chaperone regulator Hfq, positively or negatively regulate gene expression in bacteria. For this study, Histophilus somni sRNAs that bind to Hfq were identified and then partially characterized. The Hfq-associated sRNAs in H. somni were isolated and identified by co-immunoprecipitation using anti-Hfq antibody, followed by sRNA sequencing. Sequence analysis of the sRNA samples identified 100 putative sRNAs, out of which 16 were present in pathogenic strain 2336, but not in non-pathogenic strain 129Pt. Bioinformatic analyses suggested that the sRNAs HS9, HS79, and HS97 could bind to many genes putatively involved in virulence/biofilm formation. Furthermore, multi-sequence alignment of the sRNA regions in the genome revealed that HS9 and HS97 could interact with sigma 54, which is a transcription factor linked to important bacterial traits, including motility, virulence, and biofilm formation. Northern blotting was used to determine the approximate size, abundance and any processing events attributed to the sRNAs. Selected sRNA candidates were confirmed to bind Hfq, as determined by electrophoretic mobility shift assays using sRNAs synthesized by in vitro transcription and recombinant Hfq. The exact transcriptional start site of the sRNA candidates was determined by RNA ligase-mediated rapid amplification of cDNA ends, followed by cloning and sequencing. This is the first investigation of H. somni sRNAs that show they may have important regulatory roles in virulence and biofilm formation.


Subject(s)
Pasteurellaceae , RNA, Small Untranslated , Blotting, Northern , Cell Aggregation , Computational Biology
14.
Microbiol Spectr ; 11(3): e0520922, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37212663

ABSTRACT

Avibacterium paragallinarum is the pathogen involved in infectious coryza (IC), an acute infectious upper respiratory disease in chickens. The prevalence of IC has increased in China in recent years. There is a lack of reliable and effective procedures for gene manipulation, which has limited the research on the bacterial genetics and pathogenesis of A. paragallinarum. Natural transformation has been developed as a method of gene manipulation in Pasteurellaceae by the introduction of foreign genes or DNA fragments into bacterial cells, but there has been no report on natural transformation in A. paragallinarum. In this study, we analyzed the existence of homologous genetic factors and competence proteins underlying natural transformation in A. paragallinarum and established a method for transformation in it. Through bioinformatics analysis, we identified 16 homologs of Haemophilus influenzae competence proteins in A. paragallinarum. We found that the uptake signal sequence (USS) was overrepresented in the genome of A. paragallinarum (1,537 to 1,641 copies of the core sequence ACCGCACTT). We then constructed a plasmid, pEA-KU, that carries the USS and a plasmid, pEA-K, without the USS. These plasmids can be transferred via natural transformation into naturally competent strains of A. paragallinarum. Significantly, the plasmid that carries USS showed a higher transformation efficiency. In summary, our results demonstrate that A. paragallinarum has the ability to undergo natural transformation. These findings should prove to be a valuable tool for gene manipulation in A. paragallinarum. IMPORTANCE Natural transformation is an important mechanism for bacteria to acquire exogenous DNA molecules during the process of evolution. Additionally, it can also be used as a method to introduce foreign genes into bacteria under laboratory conditions. Natural transformation does not require equipment such as an electroporation apparatus. It is easy to perform and is similar to gene transfer under natural conditions. However, there have been no reports on natural transformation in Avibacterium paragallinarum. In this study, we analyzed the presence of homologous genetic factors and competence proteins underlying natural transformation in A. paragallinarum. Our results indicate that natural competence could be induced in A. paragallinarum serovars A, B, and C. Furthermore, the method that we established to transform plasmids into naturally competent A. paragallinarum strains was stable and efficient.


Subject(s)
Haemophilus Infections , Haemophilus paragallinarum , Pasteurellaceae , Poultry Diseases , Animals , Haemophilus Infections/veterinary , Haemophilus Infections/microbiology , Poultry Diseases/microbiology , Chickens/microbiology , Pasteurellaceae/genetics , Haemophilus paragallinarum/genetics
15.
Gene ; 867: 147359, 2023 May 30.
Article in English | MEDLINE | ID: mdl-36918048

ABSTRACT

Several Pasteurella like organisms isolated from various avian species were recently reclassified into new genus based on whole genome sequence analysis. One such Pasteurella like organism, Bisgaard taxon 14 was classified as Spirabiliibacterium mucosae. In the present study, a Gram-negative organism was isolated from ailing pigeons with respiratory infection from a farm in Tamil Nadu, India and the organism was misidentified as Burkholderia mallei by Vitek 2 compact system based on biochemical characterization. Since, B. mallei is highly pathogenic and zoonotic, to further confirm, 16S rDNA sequencing and analysis was carried out which revealed that the strain belonged to Bisgaard taxon 14 (Spirabiliibacterium mucosae). To further confirm the findings, whole genome sequencing of the isolate was performed. Whole genome phylogeny and average nucleotide identity (ANI) analysis showed that the genome was closely matching with Spirabiliibacterium mucosae type strain 20,609 /3. Hence, the strain from pigeon was named as Spirabiliibacterium mucosae TN_CUL_2021 and the genome was submitted in NCBI SRA database. The genome of S. mucosase TN_CUL_2021 is only the second genome available worldwide in the NCBI database. Comparative genome analysis of 26 Pasteurellaceae family strains revealed 1101 genes specific for Spirabiliibacterium mucosae. Similarly, luxS virulence gene was found only in S. mucosae and Bisgaardia hudsonensis strains. Since there are only 2 genomes available in the NCBI genome database, further studies on isolation of S. mucosae needs to be carried out to identify its epidemiology and pathogenesis so as to develop better diagnostic assays and vaccines.


Subject(s)
Pasteurellaceae , Animals , India , DNA, Bacterial/genetics , Pasteurellaceae/genetics , Genomics , Birds/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics
16.
J Vet Diagn Invest ; 35(1): 13-21, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36401513

ABSTRACT

Gallibacterium spp., particularly G. anatis, have received much attention as poultry pathogens in recent years. We report here the presence and antimicrobial resistance profile of 69 Gallibacterium isolates obtained from 2,204 diagnostic submissions of broiler and layer chickens in 2019-2021. Gallibacterium-positive chickens had lesions primarily in the respiratory tract, reproductive tract, and related serosal surfaces. Gallibacterium spp. were initially identified based on their typical cultural characteristics on blood agar. The isolates were confirmed by a genus-specific PCR spanning 16S-23S rRNA and MALDI-TOF mass spectrometry. Phylogenetic analysis based on 16S rRNA gene sequence revealed distinct clades. Of the 69 isolates, 68 clustered with the reference strains of G. anatis and 1 with Gallibacterium genomospecies 1 and 2. Antimicrobial susceptibility testing of 58 of the 69 isolates by a MIC method showed variable responses to antimicrobials. The isolates were all susceptible to enrofloxacin, ceftiofur, florfenicol, and gentamicin. There was a high level of susceptibility to trimethoprim-sulfamethoxazole (98.0%), streptomycin (98.0%), amoxicillin (84.0%), sulfadimethoxine (71.0%), and neomycin (71.0%). All of the isolates were resistant to tylosin. There was resistance to penicillin (98.0%), erythromycin (95.0%), clindamycin (94.0%), novobiocin (90.0%), tetracycline (88.0%), oxytetracycline (76.0%), and sulfathiazole (53.0%). A high rate of intermediate susceptibility was observed for spectinomycin (67.0%) and sulfathiazole (40.0%). Our findings indicate a potential role of G. anatis as an important poultry pathogen and cause of subsequent disease, alone or in combination with other pathogens. Continuous monitoring and an antimicrobial susceptibility assay are recommended for effective treatment and disease control.


Subject(s)
Pasteurellaceae , Poultry Diseases , Animals , Chickens/microbiology , RNA, Ribosomal, 16S/genetics , Phylogeny , Anti-Bacterial Agents/pharmacology , Poultry Diseases/microbiology , Microbial Sensitivity Tests/veterinary
17.
Can J Microbiol ; 69(3): 123-135, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36495587

ABSTRACT

Integrative and conjugative elements (ICEs) are self-transferable mobile genetic elements that play a significant role in disseminating antimicrobial resistance between bacteria via horizontal gene transfer. A recently identified ICE in a clinical isolate of Histophilus somni (ICEHs02) is 72 914 base pairs in length and harbours seven predicted antimicrobial resistance genes conferring resistance to tetracycline (tetR-tet(H)), florfenicol (floR), sulfonamide (Sul2), aminoglycosides (APH(3″)-Ib, APH(6)-Id, APH(3')-Ia), and copper (mco). This study investigated ICEHs02 host range, assessed effects of antimicrobial stressors on transfer frequency, and examined effects of ICEHs02 acquisition on hosts. Conjugation assays examined transfer frequency of ICEHs02 to H. somni and Pasteurella multocida strains. Polymerase chain reaction assays confirmed the presence of a circular intermediate, ICE-associated core genes, and cargo genes in recipient strains. Susceptibility testing examined ICEHs02-associated resistance phenotypes in recipient strains. Tetracycline and ciprofloxacin induction significantly increased the transfer rates of ICEHs02 in vitro. The copy numbers of the circular intermediate of ICEHs02 per chromosome exhibited significant increases of ∼37-fold after tetracycline exposure and ∼4-fold after ciprofloxacin treatment. The acquisition of ICEHs02 reduced the relative fitness of H. somni transconjugants (TG) by 28% (w = 0.72 ± 0.04) and the relative fitness of P. multocida TG was decreased by 15% (w = 0.85 ± 0.01).


Subject(s)
Gene Transfer, Horizontal , Pasteurellaceae , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Ciprofloxacin , Tetracyclines , Conjugation, Genetic
18.
Vet Res Commun ; 47(2): 683-691, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36342628

ABSTRACT

The purpose of this report is to provide information about the different presentations of cardiac and extra-cardiac histophilosis and, to assess the antimicrobial (ATM) susceptibility of Histophilus somni isolated from these cardiac lesions to different ATM agents commonly used for treating bovine bacterial respiratory pathogens. Eight feedlot calves, which died after suffering from food rejection, apathy, hyperthermia, cough and nasal mucous discharge, and lack of response to ATM therapy, were studied. Cardiac lesions observed at necropsy included valvular/mural endocarditis, myocardial infarction, and necrotizing myocarditis, miliar non-suppurative myocarditis, myocardic necrotic sequestrum, and/or pericarditis. Histopathological, bacteriological and molecular studies confirmed the presence of a fastidious microorganism in the affected organs. H. somni showed no resistance to most ATM tested (ceftiofur, gamithromycin, enrofloxacin, florfenicol, tilmicosin). The results obtained in this study confirmed that H. somni was the main cause of the subacute cardiac lesions associated with hyperthermia, apathy and respiratory signs observed in cattle examined in this research. These presentations must be considered by veterinary practitioners in order to establish a rational therapeutic.


Subject(s)
Cattle Diseases , Myocarditis , Pasteurellaceae Infections , Pasteurellaceae , Cattle , Animals , Cattle Diseases/microbiology , Pasteurellaceae Infections/veterinary , Pasteurellaceae Infections/microbiology , Myocarditis/microbiology , Myocarditis/veterinary , Death
19.
BMC Vet Res ; 18(1): 409, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36401280

ABSTRACT

BACKGROUND: Gram-negative bacterial infections are a serious problem in beef and dairy cattle. Bacterial outer membrane proteins (OMPs) play a pivotal role in cellular survival and the host-bacterium interaction. Histophilus somni OMP40 was identified as a porin with homology between its N-terminal amino acid sequence and the sequences of porins of other gram-negative bacteria The aim of this study was to produce recombinant H. somni OMP40 (rOMP40), optimize its production and evaluate its immunogenic properties in calves. The cross-reactivity of anti-rOMP40 antibodies were also checked. RESULTS: The highest overexpression of rOMP40 was demonstrated by Escherichia coli C41 using the autoinduction process. Double immunization of calves (20 µg rOMP40 per animal) induced a significant increase of anti-rOMP40 antibodies in the IgG1 (P ≤ 0.01) and IgG2 (P ≤ 0.01, after first immunization only) subclasses, but not IgM. ELISA revealed increased reactivity of the IgG against surface antigens of E. coli and Pasteurella multocida after the second immunization (P < 0.01). Cross reactivity of anti-rOMP40 antibodies with ~ 40 kDa antigens of most common gram-negative pathogens was shown by Western blotting. CONCLUSION: Immunization with H. somni rOMP40 induced a humoral response in cattle with broad cross-reactivity with similar antigens of other species of Pasteurellaceae and Enterobacteriaceae families and the delayed-type hypersensitivity reaction. The obtained results encourage further study to evaluate the protective effect of the produced protein as a subunit vaccine in cattle.


Subject(s)
Escherichia coli , Pasteurellaceae , Cattle , Animals , Antibody Formation , Recombinant Proteins , Bacterial Outer Membrane Proteins , Immunoglobulin G
20.
Microb Pathog ; 172: 105785, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36150554

ABSTRACT

The ptsG (hpIIBCGlc) gene, belonging to the glucose-specific phosphotransferase system, encodes the bacterial glucose-specific enzyme IIBC. In this study, the effects of a deletion of the ptsG gene were investigated by metabolome and transcriptome analyses. At the transcriptional level, we identified 970 differentially expressed genes between ΔptsG and sc1401 (Padj<0.05) and 2072 co-expressed genes. Among these genes, those involved in methane metabolism, amino sugar and nucleotide sugar metabolism, starch and sucrose metabolism, pyruvate metabolism, phosphotransferase system (PTS), biotin metabolism, Two-component system and Terpenoid backbone biosynthesis showed significant changes in the ΔptsG mutant strain. Metabolome analysis revealed that a total of 310 metabolites were identified, including 20 different metabolites (p < 0.05). Among them, 15 metabolites were upregulated and 5 were downregulated in ΔptsG mutant strain. Statistical analysis revealed there were 115 individual metabolites having correlation, of which 89 were positive and 26 negative. These metabolites include amino acids, phosphates, amines, esters, nucleotides, benzoic acid and adenosine, among which amino acids and phosphate metabolites dominate. However, not all of these changes were attributable to changes in mRNA levels and must also be caused by post-transcriptional regulatory processes. The knowledge gained from this lays the foundation for further study on the role of ptsG in the pathogenic process of Glaesserella parasuis (G.parasuis).


Subject(s)
Glucose , Pasteurellaceae , Phosphoenolpyruvate Sugar Phosphotransferase System , Adenosine/metabolism , Amines/metabolism , Amino Acids/metabolism , Amino Sugars/metabolism , Benzoates/metabolism , Biotin/genetics , Biotin/metabolism , Glucose/metabolism , Metabolome , Methane , Nucleotides/metabolism , Phosphates , Phosphoenolpyruvate Sugar Phosphotransferase System/genetics , Pyruvates/metabolism , RNA, Messenger/metabolism , Starch/metabolism , Sucrose/metabolism , Terpenes , Transcriptome , Pasteurellaceae/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...