Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Evol Biol ; 27(11): 2334-46, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25417738

ABSTRACT

The interaction between the European wild parsnip Pastinaca sativa and its coevolved florivore the parsnip webworm Depressaria pastinacella, established in North America for over 150 years, has resulted in evolution of local chemical phenotype matching. The recent invasion of New Zealand by webworms, exposing parsnips there to florivore selection for the first time, provided an opportunity to assess rates of adaptive response in a real-time experiment. We planted reciprocal common gardens in the USA and NZ with seeds from (1) US populations with a long history of webworm association; (2) NZ populations that had never been infested and (3) NZ populations infested for 3 years (since 2007) or 6 years (since 2004). We measured impacts of florivory on realized fitness, reproductive effort and pollination success and measured phenotypic changes in infested NZ populations relative to uninfested NZ populations to determine whether rapid adaptive evolution in response to florivory occurred. Irrespective of country of origin or location, webworms significantly reduced plant fitness. Webworms reduced pollination success in small plants but not in larger plants. Although defence chemistry remained unchanged, plants in infested populations were larger after 3-6 years of webworm florivory. As plant size is a strong predictor of realized fitness, evolution of large size as a component of florivore tolerance may occur more rapidly than evolution of enhanced chemical defence.


Subject(s)
Biological Evolution , Herbivory , Moths/physiology , Pastinaca/physiology , Plant Weeds/physiology , Adaptation, Physiological , Animals , Ecosystem , Flowers/chemistry , Flowers/physiology , Gene-Environment Interaction , Genetic Fitness , New Zealand , Pastinaca/genetics , Plant Weeds/genetics , Pollination , Selection, Genetic , United States
2.
Ecol Appl ; 23(1): 60-72, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23495636

ABSTRACT

Managers need new tools for detecting the movement and spread of nonnative, invasive species. Habitat suitability models are a popular tool for mapping the potential distribution of current invaders, but the ability of these models to prioritize monitoring efforts has not been tested in the field. We tested the utility of an iterative sampling design (i.e., models based on field observations used to guide subsequent field data collection to improve the model), hypothesizing that model performance would increase when new data were gathered from targeted sampling using criteria based on the initial model results. We also tested the ability of habitat suitability models to predict the spread of invasive species, hypothesizing that models would accurately predict occurrences in the field, and that the use of targeted sampling would detect more species with less sampling effort than a nontargeted approach. We tested these hypotheses on two species at the state scale (Centaurea stoebe and Pastinaca sativa) in Wisconsin (USA), and one genus at the regional scale (Tamarix) in the western United States. These initial data were merged with environmental data at 30-m2 resolution for Wisconsin and 1-km2 resolution for the western United States to produce our first iteration models. We stratified these initial models to target field sampling and compared our models and success at detecting our species of interest to other surveys being conducted during the same field season (i.e., nontargeted sampling). Although more data did not always improve our models based on correct classification rate (CCR), sensitivity, specificity, kappa, or area under the curve (AUC), our models generated from targeted sampling data always performed better than models generated from nontargeted data. For Wisconsin species, the model described actual locations in the field fairly well (kappa = 0.51, 0.19, P < 0.01), and targeted sampling did detect more species than nontargeted sampling with less sampling effort (chi2 = 47.42, P < 0.01). From these findings, we conclude that habitat suitability models can be highly useful tools for guiding invasive species monitoring, and we support the use of an iterative sampling design for guiding such efforts.


Subject(s)
Centaurea/physiology , Ecosystem , Introduced Species , Models, Biological , Pastinaca/physiology , Conservation of Natural Resources , Demography , Environmental Monitoring , United States
3.
PLoS One ; 7(11): e49471, 2012.
Article in English | MEDLINE | ID: mdl-23185340

ABSTRACT

We attempted to confirm that seed banks can be viewed as an important genetic reservoir by testing the hypothesis that standing (aboveground) plants represent a nonrandom sample of the seed bank. We sampled multilocus allozyme genotypes from three species with different life history strategies: Amaranthus retroflexus, Carduus acanthoides, Pastinaca sativa. In four populations of each species we analysed the extent to which allele and genotype frequencies vary in consecutive life history stages including the summer seed bank, which has been overlooked up to now. We compared the winter seed bank (i.e., seeds collected before the spring germination peak), seedlings, rosettes, the summer seed bank (i.e., seeds collected after the spring germination peak) and fruiting plants. We found that: (1) All three species partitioned most of their genetic diversity within life history stages and less among stages within populations and among populations. (2) All genetic diversity parameters, except for allele frequencies, were similar among all life history stages across all populations in different species. (3) There were differences in allele frequencies among life history stages at all localities in Amaranthus retroflexus and at three localities in both Carduus acanthoides and Pastinaca sativa. (4) Allele frequencies did not differ between the winter and summer seed bank in most Carduus acanthoides and Pastinaca sativa populations, but there was a marked difference in Amaranthus retroflexus. In conclusion, we have shown that the summer seed bank is not genetically depleted by spring germination and that a majority of genetic diversity remains in the soil through summer. We suggest that seed banks in the species investigated play an important role by maintaining genetic diversity sufficient for recovery rather than by accumulating new genetic diversity at each locality.


Subject(s)
Seeds/chemistry , Seeds/genetics , Soil/analysis , Alleles , Amaranthus/physiology , Carduus/physiology , Ecosystem , Genetic Variation , Geography , Models, Genetic , Models, Statistical , Pastinaca/physiology , Plants/genetics , Seasons , Species Specificity
4.
Evolution ; 57(4): 806-15, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12778550

ABSTRACT

According to the geographic mosaic theory of coevolution, selection intensity in interactions varies across a landscape, forming a selection mosaic; interaction traits match at coevolutionary hotspots where selection is reciprocal and mismatch at coldspots where reciprocity is not a factor. Chemical traits play an important role in the interaction between wild parsnip (Pastinaca sativa) and the parsnip webworm (Depressaria pastinacella). Furanocoumarins, produced as plant defenses, are detoxified by the webworms by cytochrome P450 monooxygenases; significant additive genetic variation exists for both furanocoumarin production in the plant and detoxification in the insect, making these traits available for selection. To test the hypothesis that differences in selection intensity affect the distribution of coevolutionary hotspots and coldspots in this interaction, we examined 20 populations of webworms and wild parsnips in Illinois and Wisconsin that varied in size, extent of infestation, proximity to woods (and potential vertebrate predators), and proximity to a chemically distinct alternate host plant, Heracleum lanatum (cow parsnip). Twelve of 20 populations displayed phenotype matching between plant defense and insect detoxification profiles. Of the eight mismatched populations, a logistic regression model related matching probability to two predictors: the presence of the alternate host and average content of xanthotoxin (one of the five furanocoumarins produced by P. sativa). The odds of mismatching were significantly increased by the presence of the alternate host (odds ratio = 15.4) and by increased xanthotoxin content (odds ratio = 6.053). Parsnips growing near cow parsnip displayed chemical phenotypes that were chemically intermediate between cow parsnip and parsnips growing in isolation. Rapid phenotype matching in this system is likely due in part to differential mortality every season; larvae transferred to a plant 30 m or more from the plant on which they developed tended to experience increased mortality over larvae transferred to another umbel on the same plant on which they had developed, and plant populations that mismatched in 2001 displayed a change in chemical phenotype distribution from the previous year. Trait mixing through gene flow is also a likely factor in determining mismatch frequency. Populations from which webworms were eradicated the previous year were all recolonized; in three of seven of these populations, infestation rates exceeded 90%. Our findings, consistent with the geographic mosaic theory, suggest that the presence of a chemically distinct alternate host plant can affect selection intensity in such a way as to reduce the likelihood of reciprocity in the coevolutionary interaction between wild parsnip and the parsnip webworm.


Subject(s)
Biological Evolution , Moths/physiology , Pastinaca/physiology , Phenotype , Selection, Genetic , Animals , Cytochrome P-450 Enzyme System/metabolism , Furocoumarins/metabolism , Geography , Illinois , Larva/physiology , Linear Models , Moths/genetics , Pastinaca/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...