Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93.447
Filter
1.
Mol Biol Rep ; 51(1): 714, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824264

ABSTRACT

BACKGROUND: NOTCH3 variants are known to be linked to cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). However, some null NOTCH3 variants with homozygous inheritance cause neurological symptoms distinct from CADASIL. The aim of this study was to expand the clinical spectrum of this distinct condition and provide further evidence of its autosomal recessive inheritance. METHODS AND RESULTS: Whole exome sequencing (WES) was performed on a proband who exhibited livedo racemosa, ataxia, cognitive decline, seizures, and MRI white matter abnormalities without anterior temporal pole lesions. Segregation analysis was conducted with Sanger sequencing. WES of the proband identified a novel homozygous NOTCH3 null variant (c.2984delC). The consanguineous parents were confirmed as heterozygous variant carriers. In addition, three heterozygous NOTCH3 null variants were reported as incidental findings in three unrelated cases analyzed in our center. CONCLUSION: The findings of this study suggest an autosomal recessive inheritance pattern in this early-onset leukoencephalopathy, in contrast to CADASIL's dominant gain-of-function mechanism; which is a clear example of genotype-phenotype correlation. Comprehensive genetic analysis provides valuable insights into disease mechanisms and facilitates diagnosis and family planning for NOTCH3-associated neurological disorders.


Subject(s)
Exome Sequencing , Genes, Recessive , Pedigree , Phenotype , Receptor, Notch3 , Humans , Receptor, Notch3/genetics , Male , Female , Exome Sequencing/methods , Genes, Recessive/genetics , Adult , Genetic Association Studies , CADASIL/genetics , Magnetic Resonance Imaging/methods , Alleles , Homozygote , Consanguinity , Loss of Function Mutation/genetics , Mutation/genetics , Heterozygote
2.
Int Heart J ; 65(3): 580-585, 2024.
Article in English | MEDLINE | ID: mdl-38825499

ABSTRACT

Cardiac ryanodine receptor (RyR2) gain-of-function mutations cause catecholaminergic polymorphic ventricular tachycardia (CPVT). Conversely, RyR2 loss-of-function mutations cause a new disease entity, termed calcium release deficiency syndrome (CRDS), which may include RYR2-related long QT syndrome (LQTS). Importantly, unlike CPVT, patients with CRDS do not always exhibit exercise- or epinephrine-induced ventricular arrhythmias, which precludes a diagnosis of CRDS. Here we report a boy and his father, who both experienced exercise-induced cardiac events and harbor the same RYR2 E4107A variant. In the boy, an exercise stress test (EST) and epinephrine provocation test (EPT) did not induce any ventricular arrhythmias. QTc was slightly prolonged (QTc: 474 ms), and an EPT induced QTc prolongation (QTc-baseline: 466 ms, peak: 532 ms, steady-state: 527 ms). In contrast, in his father, QTc was not prolonged (QTc: 417 ms), and neither an EST nor EPT induced QTc prolongation. However, an EST induced multifocal premature ventricular contraction (PVC) bigeminy and bidirectional PVC couplets. Thus, they exhibited distinct clinical phenotypes: the boy exhibited LQTS (or CRDS) phenotype, whereas his father exhibited CPVT phenotype. These findings suggest that, in addition to the altered RyR2 function, other unidentified factors, such as other genetic, epigenetic, and environmental factors, and aging, may be involved in the diverse phenotypic manifestations. Considering that a single RYR2 variant can cause both CPVT and LQTS (or CRDS) phenotypes, in cascade screening of patients with CPVT and CRDS, an EST and EPT are not sufficient and genetic analysis is required to identify individuals who are at increased risk for life-threatening arrhythmias.


Subject(s)
Long QT Syndrome , Phenotype , Ryanodine Receptor Calcium Release Channel , Tachycardia, Ventricular , Humans , Ryanodine Receptor Calcium Release Channel/genetics , Male , Long QT Syndrome/genetics , Long QT Syndrome/diagnosis , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/diagnosis , Electrocardiography , Pedigree , Adult , Exercise Test , Mutation
3.
Nat Commun ; 15(1): 4681, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824190

ABSTRACT

The telomere sequence, TTAGGG, is conserved across all vertebrates and plays an essential role in suppressing the DNA damage response by binding a set of proteins termed shelterin. Changes in the telomere sequence impair shelterin binding, initiate a DNA damage response, and are toxic to cells. Here we identify a family with a variant in the telomere template sequence of telomerase, the enzyme responsible for telomere elongation, that led to a non-canonical telomere sequence. The variant is inherited across at least one generation and one family member reports no significant medical concerns despite ~9% of their telomeres converting to the novel sequence. The variant template disrupts telomerase repeat addition processivity and decreased the binding of the telomere-binding protein POT1. Despite these disruptions, the sequence is readily incorporated into cellular chromosomes. Incorporation of a variant sequence prevents POT1-mediated inhibition of telomerase suggesting that incorporation of a variant sequence may influence telomere addition. These findings demonstrate that telomeres can tolerate substantial degeneracy while remaining functional and provide insights as to how incorporation of a non-canonical telomere sequence might alter telomere length dynamics.


Subject(s)
Pedigree , Shelterin Complex , Telomerase , Telomere-Binding Proteins , Telomere , Humans , Telomere/metabolism , Telomere/genetics , Telomere-Binding Proteins/metabolism , Telomere-Binding Proteins/genetics , Shelterin Complex/metabolism , Telomerase/genetics , Telomerase/metabolism , Male , Female , Telomere Homeostasis/genetics , Base Sequence , Adult
4.
Ren Fail ; 46(2): 2362391, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38847497

ABSTRACT

Fabry disease, a lysosomal storage disease, is an uncommon X-linked recessive genetic disorder stemming from abnormalities in the alpha-galactosidase gene (GLA) that codes human alpha-Galactosidase A (α-Gal A). To date, over 800 GLA mutations have been found to cause Fabry disease (FD). Continued enhancement of the GLA mutation spectrum will contribute to a deeper recognition and underlying mechanisms of FD. In this study, a 27-year-old male proband exhibited a typical phenotype of Fabry disease. Subsequently, family screening for Fabry disease was conducted, and high-throughput sequencing was employed to identify the mutated gene. The three-level structure of the mutated protein was analyzed, and its subcellular localization and enzymatic activity were determined. Apoptosis was assessed in GLA mutant cell lines to confirm the functional effects. As a result, a new mutation, c.777_778del (p. Gly261Leufs*3), in the GLA gene was identified. The mutation caused a frameshift during translation and the premature appearance of a termination codon, which led to a partial deletion of the domain in C-terminal region and altered the protein's tertiary structure. In vitro experiments revealed a significant reduction of the enzymatic activity in mutant cells. The expression was noticeably decreased at the mRNA and protein levels in mutant cell lines. Additionally, the subcellular localization of α-Gal A changed from a homogeneous distribution to punctate aggregation in the cytoplasm. GLA mutant cells exhibited significantly higher levels of apoptosis compared to wild-type cells.


Subject(s)
Codon, Nonsense , Fabry Disease , Pedigree , alpha-Galactosidase , Humans , Fabry Disease/genetics , Fabry Disease/diagnosis , alpha-Galactosidase/genetics , alpha-Galactosidase/metabolism , Male , Adult , China , Asian People/genetics , Apoptosis/genetics , East Asian People
5.
Biomed Environ Sci ; 37(5): 503-510, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38843923

ABSTRACT

Objective: VATER/VACTERL-like association is associated with adverse pregnancy outcomes. Genetic evidence of this disorder is sporadic. In this study, we aimed to provide genetic insights to improve the diagnosis of VACTERL. Methods: We have described a Chinese family in which four members were affected by renal defects or agenesis, anal atresia, and anovaginal fistula, which is consistent with the diagnosis of a VACTERL-like association. Pedigree and genetic analyses were conducted using genome and exome sequencing. Results: Segregation analysis revealed the presence of a recessive X-linked microdeletion in two living affected individuals, harboring a 196-380 kb microdeletion on Xq27.1, which was identified by familial exome sequencing. Genome sequencing was performed on the affected male, confirming a -196 kb microdeletion in Xq27.1, which included a 28% loss of the CDR-1 gene. Four family members were included in the co-segregation analysis, and only VACTERL-like cases with microdeletions were reported in X27.1. Conclusion: These results suggest that the 196-380 kb microdeletion in Xq27.1 could be a possible cause of the VATER/VACTERL-like association. However, further genetic and functional analyses are required to confirm or rule out genetic background as the definitive cause of the VACTERL association.


Subject(s)
Anal Canal , Chromosomes, Human, X , Pedigree , Adult , Female , Humans , Male , Anal Canal/abnormalities , China , Chromosome Deletion , Chromosomes, Human, X/genetics , East Asian People/genetics , Esophagus/abnormalities , Heart Defects, Congenital , Kidney/abnormalities , Limb Deformities, Congenital/genetics , Spine/abnormalities , Trachea/abnormalities
6.
Genet Sel Evol ; 56(1): 43, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844876

ABSTRACT

BACKGROUND: Limitations of the concept of identity by descent in the presence of stratification within a breeding population may lead to an incomplete formulation of the conventional numerator relationship matrix ( A ). Combining A with the genomic relationship matrix ( G ) in a single-step approach for genetic evaluation may cause inconsistencies that can be a source of bias in the resulting predictions. The objective of this study was to identify stratification using genomic data and to transfer this information to matrix A , to improve the compatibility of A and G . METHODS: Using software to detect population stratification (ADMIXTURE), we developed an iterative approach. First, we identified 2 to 40 strata ( k ) with ADMIXTURE, which we then introduced in a stepwise manner into matrix A , to generate matrix A Γ using the metafounder methodology. Improvements in consistency between matrix G and A Γ were evaluated by regression analysis and through the comparison of the overall mean and mean diagonal values of both matrices. The approach was tested on genotype and pedigree information of European and North American Brown Swiss animals (85,249). Analyses with ADMIXTURE were initially performed on the full set of genotypes (S1). In addition, we used an alternative dataset where we avoided sampling of closely related animals (S2). RESULTS: Results of the regression analyses of standard A on G were - 0.489, 0.780 and 0.647 for intercept, slope and fit of the regression. When analysing S1 data results of the regression for A Γ on G corresponding values were - 0.028, 1.087 and 0.807 for k =7, while there was no clear optimum k . Analyses of S2 gave a clear optimal k =24, with - 0.020, 0.998 and 0.817 as results of the regression. For this k differences in mean and mean diagonal values between both matrices were negligible. CONCLUSIONS: The derivation of hidden stratification information based on genotyped animals and its integration into A improved compatibility of the resulting A Γ and G considerably compared to the initial situation. In dairy breeding populations with large half-sib families as sub-structures it is necessary to balance the data when applying population structure analysis to obtain meaningful results.


Subject(s)
Genetics, Population , Models, Genetic , Pedigree , Animals , Genetics, Population/methods , Cattle/genetics , Breeding/methods , Genotype , Software , Male
7.
Blood Press ; 33(1): 2355268, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38824681

ABSTRACT

INTRODUCTION: Von Hippel-Lindau disease (e.g. VHL) is an autosomal dominant multi-organ cancer syndrome caused by a mutation in the VHL tumour suppressor gene. In this study, we introduce a novel genetic variant found in 11 family members diagnosed initially with isolated Pheochromocytoma. Subsequent findings revealed its association with VHL syndrome and corresponds to the Type 2 C phenotype. METHODS: The VHL gene was amplified through the utilisation of the polymerase chain reaction (PCR). PCR fragments were sequenced using bidirectional Sanger sequencing, using BigDye™ Terminator v3.1 Cycle Sequencing Kit, running on the 3500 genetic analyser. Results were assembled and analysed Using Software SeqA and chromas pro. RESULTS: A heterozygous in-frame duplication of three nucleotides, specifically ATG, c.377_379dup; p.Asp126dup in exon 2, was identified in all the patients tested within the pedigree. CONCLUSION: In this study, we disclose the identification of a novel genetic variant in a Jordanian family, affecting eleven family members with pheochromocytoma associated with VHL disease. This finding underscores the importance of screening family members and contemplating genetic testing for individuals newly diagnosed with pheochromocytoma and could enhance our comprehension of the potential adverse consequences associated with VHL germline mutations.


Goal: To study a novel gene change in a family with Von Hippel-Lindau (e.g. VHL) syndrome, which increases cancer chances.Participants: 11 family members with Pheochromocytoma, a tumour linked to VHL.Methods:Used PCR to copy the VHL gene.Analysed the gene using Sanger sequencing.Findings:Found a novel gene change in all family members. This change, called an in-frame duplication, affects a protein.It's in a specific part of the gene.Conclusion:Stressing the importance of genetic testing for Pheochromocytoma patients to grasp VHL mutation risks.


Subject(s)
Adrenal Gland Neoplasms , Pedigree , Phenotype , Pheochromocytoma , Von Hippel-Lindau Tumor Suppressor Protein , von Hippel-Lindau Disease , Humans , Pheochromocytoma/genetics , von Hippel-Lindau Disease/genetics , Female , Male , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Adult , Adrenal Gland Neoplasms/genetics , Middle Aged , Genetic Variation
8.
PLoS One ; 19(6): e0304141, 2024.
Article in English | MEDLINE | ID: mdl-38843250

ABSTRACT

Lynch syndrome is caused by inactivating variants in DNA mismatch repair genes, namely MLH1, MSH2, MSH6 and PMS2. We have investigated five MLH1 and one MSH2 variants that we have identified in Turkish and Tunisian colorectal cancer patients. These variants comprised two small deletions causing frameshifts resulting in premature stops which could be classified pathogenic (MLH1 p.(His727Profs*57) and MSH2 p.(Thr788Asnfs*11)), but also two missense variants (MLH1 p.(Asn338Ser) and p.(Gly181Ser)) and two small, in-frame deletion variants (p.(Val647-Leu650del) and p.(Lys678_Cys680del)). For such small coding genetic variants, it is unclear if they are inactivating or not. We here provide clinical description of the variant carriers and their families, and we performed biochemical laboratory testing on the variant proteins to test if their stability or their MMR activity are compromised. Subsequently, we compared the results to in-silico predictions on structure and conservation. We demonstrate that neither missense alteration affected function, while both deletion variants caused a dramatic instability of the MLH1 protein, resulting in MMR deficiency. These results were consistent with the structural analyses that were performed. The study shows that knowledge of protein function may provide molecular explanations of results obtained with functional biochemical testing and can thereby, in conjunction with clinical information, elevate the evidential value and facilitate clinical management in affected families.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , DNA Mismatch Repair , MutL Protein Homolog 1 , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Humans , Male , MutL Protein Homolog 1/genetics , Female , DNA Mismatch Repair/genetics , Middle Aged , MutS Homolog 2 Protein/genetics , Adult , Tunisia , Pedigree , Turkey , Aged , Mutation, Missense
9.
BMC Med Genomics ; 17(1): 156, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844949

ABSTRACT

BACKGROUND: Recurrent pregnancy loss (RPL) is a common pregnancy complication that brings great pain to pregnant women and their families. Genetic factors are an important cause reason of RPL. However, clinical research on monogenic diseases with recurrent miscarriage is insufficient. CASE PRESENTATION: Here we reported a Chinese family with RPL and genetic analysis of the abortion and parents. A paternally inherited heterozygous missense variant c.1415T > G (p.V472G) and a maternally inherited heterozygous nonsense variant c.2314del (p.M772*) in TMEM67 gene were identified by trio-exome sequencing. c.2314del (p.M772*) generated a premature stop codon and truncated protein, was classified as "pathogenic". c.1415T > G (p.V472G) located in extra-cellular region, was classified as "likely pathogenic". Biallelic variants in TMEM67 gene cause lethal Meckel syndrome 3, consistent with the proband's prenatal phenotype. CONCLUSION: The current study of the Chinese family expands the pathogenic variant spectrum of TMEM67 and emphasizes the necessity of exome sequencing in RPL condition.


Subject(s)
Abortion, Habitual , Membrane Proteins , Pedigree , Humans , Female , Membrane Proteins/genetics , Abortion, Habitual/genetics , Pregnancy , Adult , Asian People/genetics , Male , Exome Sequencing , China , East Asian People
10.
Clin Epigenetics ; 16(1): 76, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845031

ABSTRACT

Tatton-Brown-Rahman syndrome (TBRS) is a rare congenital genetic disorder caused by autosomal dominant pathogenic variants in the DNA methyltransferase DNMT3A gene. Typical TBRS clinical features are overgrowth, intellectual disability, and minor facial anomalies. However, since the syndrome was first described in 2014, a widening spectrum of abnormalities is being described. Cardiovascular abnormalities are less commonly reported but can be a major complication of the syndrome. This article describes a family of three individuals diagnosed with TBRS in adulthood and highlights the variable expression of cardiovascular features. A 34-year-old proband presented with progressive aortic dilatation, mitral valve (MV) regurgitation, left ventricular (LV) dilatation, and ventricular arrhythmias. The affected family members (mother and brother) were diagnosed with MV regurgitation, LV dilatation, and arrhythmias. Exome sequencing and computational protein analysis suggested that the novel familial DNMT3A mutation Ser775Tyr is located in the methyltransferase domain, however, distant from the active site or DNA-binding loops. Nevertheless, this bulky substitution may have a significant effect on DNMT3A protein structure, dynamics, and function. Analysis of peripheral blood cfDNA and transcriptome showed shortened mononucleosome fragments and altered gene expression in a number of genes related to cardiovascular health and of yet undescribed function, including several lncRNAs. This highlights the importance of epigenetic regulation by DNMT3A on cardiovascular system development and function. From the clinical perspective, we suggest that new patients diagnosed with congenital DNMT3A variants and TBRS require close examination and follow-up for aortic dilatation and valvular disease because these conditions can progress rapidly. Moreover, personalized treatments, based on the specific DNMT3A variants and the different pathways of their function loss, can be envisioned in the future.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases , DNA Methyltransferase 3A , Pedigree , Humans , DNA Methyltransferase 3A/genetics , Adult , Male , DNA (Cytosine-5-)-Methyltransferases/genetics , Female , Cardiomyopathies/genetics , Aortic Diseases/genetics , Exome Sequencing/methods , Intellectual Disability/genetics , Mutation
11.
J Feline Med Surg ; 26(5): 1098612X241241408, 2024 May.
Article in English | MEDLINE | ID: mdl-38717789

ABSTRACT

CASE SERIES SUMMARY: Four confirmed cases of xanthinuria in cats, and one suspected case based on pedigree analysis, were identified. Clinical presentations varied and included haematuria, pollakiuria, dysuria, and urethral and ureteral obstruction. All cats had upper urinary tract uroliths. Diagnosis was obtained through infrared mass spectrometry of uroliths or urine. Clinical signs commenced at 3-8 months of age and reduced in all cats in the medium to long term after the introduction of a protein-restricted diet. Four cats were castrated males and one was a spayed female. Cases consisted of four Munchkin pedigree cats and one unrelated domestic shorthair cat. All four affected Munchkin pedigree cats were related, with three cases full siblings and the fourth case a half-sibling. No connection to the Munchkin pedigree could be established for the domestic shorthair cat. A candidate causative genetic variant (XDH p.A681V) proposed for this cat was excluded in the Munchkin family. RELEVANCE AND NOVEL INFORMATION: All affected cats presented diagnostic challenges and routine urinalysis was insufficient to obtain a diagnosis. Cases of feline xanthinuria may be underdiagnosed due to situations where uroliths cannot be retrieved for analysis and there is an inability to make a diagnosis using crystal morphology alone on routine urinalysis. Metabolic screening of urine may provide an effective mechanism to confirm xanthinuria in suspected cases where uroliths are inaccessible or absent. In this case series, male cats were more common. Their anatomy may increase the risk of lower urinary tract signs and urethral obstruction developing secondary to xanthine urolithiasis. A protein-restricted diet appears to reduce clinical signs as part of long-term management. PLAIN LANGUAGE SUMMARY: Four closely related Munchkin cats and one domestic shorthair cat were found with a suspected genetic disease causing high levels of xanthine in their urine. The case series looks at similarities and differences in their clinical signs, as well as difficulties experienced in obtaining a correct diagnosis. All cats had upper urinary tract stones and required metabolic testing of the stones or urine to diagnose. All cats were young when their clinical signs started and were on a high-protein diet. Four cats were desexed males and one was a desexed female. A genetic variant that may have caused the disease in the domestic shorthair cat was ruled out in the Munchkin family. Cases of high xanthine levels in feline urine may be underdiagnosed as the stones may not be accessed for testing. In this case series, male cats were more common. Their anatomy may increase the risk of lower urinary tract signs. A protein-restricted diet appears to reduce clinical signs as part of long-term management.


Subject(s)
Cat Diseases , Pedigree , Cats , Animals , Cat Diseases/diagnosis , Cat Diseases/urine , Cat Diseases/genetics , Male , Female , Urolithiasis/veterinary , Urolithiasis/diagnosis , Urolithiasis/urine
13.
FASEB J ; 38(10): e23651, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38752537

ABSTRACT

Singleton-Merten syndrome (SMS) is a rare immunogenetic disorder affecting multiple systems, characterized by dental dysplasia, aortic calcification, glaucoma, skeletal abnormalities, and psoriasis. Glaucoma, a key feature of both classical and atypical SMS, remains poorly understood in terms of its molecular mechanism caused by DDX58 mutation. This study presented a novel DDX58 variant (c.1649A>C [p.Asp550Ala]) in a family with childhood glaucoma. Functional analysis showed that DDX58 variant caused an increase in IFN-stimulated gene expression and high IFN-ß-based type-I IFN. As the trabecular meshwork (TM) is responsible for controlling intraocular pressure (IOP), we examine the effect of IFN-ß on TM cells. Our study is the first to demonstrate that IFN-ß significantly reduced TM cell viability and function by activating autophagy. In addition, anterior chamber injection of IFN-ß remarkably increased IOP level in mice, which can be attenuated by treatments with autophagy inhibitor chloroquine. To uncover the specific mechanism underlying IFN-ß-induced autophagy in TM cells, we performed microarray analysis in IFN-ß-treated and DDX58 p.Asp550Ala TM cells. It showed that RSAD2 is necessary for IFN-ß-induced autophagy. Knockdown of RSAD2 by siRNA significantly decreased autophagy flux induced by IFN-ß. Our findings suggest that DDX58 mutation leads to the overproduction of IFN-ß, which elevates IOP by modulating autophagy through RSAD2 in TM cells.


Subject(s)
Autophagy , Interferon-beta , Intraocular Pressure , Trabecular Meshwork , Autophagy/drug effects , Trabecular Meshwork/metabolism , Trabecular Meshwork/drug effects , Humans , Animals , Mice , Intraocular Pressure/physiology , Interferon-beta/metabolism , Male , Female , Glaucoma/pathology , Glaucoma/metabolism , Glaucoma/genetics , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/pathology , Hearing Loss, Sensorineural/metabolism , DEAD Box Protein 58/metabolism , DEAD Box Protein 58/genetics , Mice, Inbred C57BL , Mutation , Optic Atrophy/genetics , Optic Atrophy/metabolism , Optic Atrophy/pathology , Pedigree , Odontodysplasia , Vascular Calcification , Dental Enamel Hypoplasia , Metacarpus/abnormalities , Osteoporosis , Muscular Diseases , Aortic Diseases , Receptors, Immunologic
14.
Mol Genet Genomics ; 299(1): 55, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771357

ABSTRACT

Neurodevelopmental disorders (NDDs) are a clinically and genetically heterogeneous group of early-onset pediatric disorders that affect the structure and/or function of the central or peripheral nervous system. Achieving a precise molecular diagnosis for NDDs may be challenging due to the diverse genetic underpinnings and clinical variability. In the current study, we investigated the underlying genetic cause(s) of NDDs in four unrelated Pakistani families. Using exome sequencing (ES) as a diagnostic approach, we identified disease-causing variants in established NDD-associated genes in all families, including one hitherto unreported variant in RELN and three recurrent variants in VPS13B, DEGS1, and SPG11. Overall, our study highlights the potential of ES as a tool for clinical diagnosis.


Subject(s)
Exome Sequencing , Genetic Association Studies , Neurodevelopmental Disorders , Pedigree , Vesicular Transport Proteins , Humans , Neurodevelopmental Disorders/genetics , Male , Female , Vesicular Transport Proteins/genetics , Genetic Association Studies/methods , Child , Child, Preschool , Exome/genetics , Pakistan , Genetic Predisposition to Disease , Mutation , Cell Adhesion Molecules, Neuronal/genetics
15.
Chronobiol Int ; 41(5): 757-766, 2024 May.
Article in English | MEDLINE | ID: mdl-38695651

ABSTRACT

Delayed sleep phase disorder and advanced sleep phase disorder cause disruption of the circadian clock and present with extreme morning/evening chronotype with unclear role of the genetic etiology, especially for delayed sleep phase disorder. To assess if genotyping can aid in clinical diagnosis, we examined the presence of genetic variants in circadian clock genes previously linked to both sleep disorders in Slovenian patient cohort. Based on Morning-evening questionnaire, we found 15 patients with extreme chronotypes, 13 evening and 2 morning, and 28 controls. Sanger sequencing was used to determine the presence of carefully selected candidate SNPs in regions of the CSNK1D, PER2/3 and CRY1 genes. In a patient with an extreme morning chronotype and a family history of circadian sleep disorder we identified two heterozygous missense variants in PER3 gene, c.1243C>G (NM_001377275.1 (p.Pro415Ala)) and c.1250A>G (NM_001377275.1 (p.His417Arg)). The variants were significantly linked to Advanced sleep phase disorder and were also found in proband's father with extreme morningness. Additionally, a rare SNP was found in PER2 gene in a patient with clinical picture of Delayed sleep phase disorder. The novel variant in PER2 (NM_022817.3):c.1901-218 G>T was found in proband's parent with eveningness, indicating an autosomal dominant inheritance. We identified a family with autosomal dominant inheritance of two PER3 heterozygous variants that can be linked to Advanced sleep phase disorder. We revealed also a rare hereditary form of Delayed sleep phase disorder with a new PER2 variant with autosomal dominant inheritance, shedding the light into the genetic causality.


Subject(s)
Circadian Clocks , Period Circadian Proteins , Polymorphism, Single Nucleotide , Sleep Disorders, Circadian Rhythm , Humans , Period Circadian Proteins/genetics , Male , Female , Adult , Middle Aged , Sleep Disorders, Circadian Rhythm/genetics , Circadian Clocks/genetics , Circadian Rhythm/genetics , Circadian Rhythm/physiology , Genetic Predisposition to Disease , Slovenia , Pedigree , Sleep/genetics , Sleep/physiology , Young Adult
16.
Nat Genet ; 56(5): 869-876, 2024 May.
Article in English | MEDLINE | ID: mdl-38714868

ABSTRACT

Insufficient thyroid hormone production in newborns is referred to as congenital hypothyroidism. Multinodular goiter (MNG), characterized by an enlarged thyroid gland with multiple nodules, is usually seen in adults and is recognized as a separate disorder from congenital hypothyroidism. Here we performed a linkage analysis of a family with both nongoitrous congenital hypothyroidism and MNG and identified a signal at 15q26.1. Follow-up analyses with whole-genome sequencing and genetic screening in congenital hypothyroidism and MNG cohorts showed that changes in a noncoding TTTG microsatellite on 15q26.1 were frequently observed in congenital hypothyroidism (137 in 989) and MNG (3 in 33) compared with controls (3 in 38,722). Characterization of the noncoding variants with epigenomic data and in vitro experiments suggested that the microsatellite is located in a thyroid-specific transcriptional repressor, and its activity is disrupted by the variants. Collectively, we presented genetic evidence linking nongoitrous congenital hypothyroidism and MNG, providing unique insights into thyroid abnormalities.


Subject(s)
Chromosomes, Human, Pair 15 , Congenital Hypothyroidism , Microsatellite Repeats , Pedigree , Humans , Congenital Hypothyroidism/genetics , Microsatellite Repeats/genetics , Female , Male , Chromosomes, Human, Pair 15/genetics , Goiter, Nodular/genetics , Adult , Thyroid Gland/pathology , Thyroid Gland/metabolism , Genetic Linkage
17.
Nat Genet ; 56(5): 877-888, 2024 May.
Article in English | MEDLINE | ID: mdl-38714869

ABSTRACT

Thyrotropin (TSH) is the master regulator of thyroid gland growth and function. Resistance to TSH (RTSH) describes conditions with reduced sensitivity to TSH. Dominantly inherited RTSH has been linked to a locus on chromosome 15q, but its genetic basis has remained elusive. Here we show that non-coding mutations in a (TTTG)4 short tandem repeat (STR) underlie dominantly inherited RTSH in all 82 affected participants from 12 unrelated families. The STR is contained in a primate-specific Alu retrotransposon with thyroid-specific cis-regulatory chromatin features. Fiber-seq and RNA-seq studies revealed that the mutant STR activates a thyroid-specific enhancer cluster, leading to haplotype-specific upregulation of the bicistronic MIR7-2/MIR1179 locus 35 kb downstream and overexpression of its microRNA products in the participants' thyrocytes. An imbalance in signaling pathways targeted by these micro-RNAs provides a working model for this cause of RTSH. This finding broadens our current knowledge of genetic defects altering pituitary-thyroid feedback regulation.


Subject(s)
Chromosomes, Human, Pair 15 , Enhancer Elements, Genetic , MicroRNAs , Microsatellite Repeats , Mutation , Thyrotropin , Humans , MicroRNAs/genetics , Microsatellite Repeats/genetics , Chromosomes, Human, Pair 15/genetics , Female , Thyrotropin/genetics , Male , Thyroid Gland/metabolism , Animals , Primates/genetics , Pedigree
18.
Mol Genet Genomic Med ; 12(5): e2447, 2024 May.
Article in English | MEDLINE | ID: mdl-38733165

ABSTRACT

BACKGROUND: Cornelia de Lange syndrome (CdLS) is a multisystem genetic disorder, and cases caused by variants in the structural maintenance of chromosomes protein 3 (SMC3) gene are uncommon. Here, we report two cases of CdLS associated with novel pathogenic variants in SMC3 from two Chinese families. METHODS: Clinical presentations of two patients with CdLS were evaluated, and specimens from the patients and other family members were collected for Trio-based whole-exome sequencing. Pyrosequencing, chip-based digital PCR, minigene splicing assay, and in silico analysis were carried out to elucidate the impact of novel variants. RESULTS: Novel heterozygous variants in SMC3 were identified in each proband. One harbored a novel splicing and mosaic variant (c.2535+1G>A) in SMC3. The mutated allele G>A conversion was approximately 23.1% by digital PCR, which indicated that 46.2% of peripheral blood cells had this variant. Additionally, in vitro minigene splicing analysis validated that the c.2535+1G>A variant led to an exon skipping in messenger RNA splicing. The other carried a heterozygous variant (c.435C>A), which was predicted to be pathogenic as well as significantly altered in local electrical potential. The former showed multiple abnormalities and marked clinical severity, and the latter mainly exhibited a speech developmental disorder and slightly facial anomalies. CONCLUSION: Both patients were clinically diagnosed with Cornelia de Lange syndrome 3 (CdLS3). The newly identified SMC3 gene variants can expand the understanding of CdLS3 and provide reliable evidence for genetic counseling to the affected family.


Subject(s)
Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , De Lange Syndrome , Heterozygote , Pedigree , Humans , De Lange Syndrome/genetics , De Lange Syndrome/pathology , Cell Cycle Proteins/genetics , Male , Female , Chromosomal Proteins, Non-Histone/genetics , RNA Splicing , Mutation , Child, Preschool , Phenotype , Child , Chondroitin Sulfate Proteoglycans
19.
Cell Biochem Funct ; 42(4): e4034, 2024 06.
Article in English | MEDLINE | ID: mdl-38715189

ABSTRACT

L1 syndrome, a neurological disorder with an X-linked inheritance pattern, mainly results from mutations occurring in the L1 cell adhesion molecule (L1CAM) gene. The L1CAM molecule, belonging to the immunoglobulin (Ig) superfamily of neurocyte adhesion molecules, plays a pivotal role in facilitating intercellular signal transmission across membranes and is indispensable for proper neuronal development and function. This study identified a rare missense variant (c.1759G>C; p.G587R) in the L1CAM gene within a male fetus presenting with hydrocephalus. Due to a lack of functional analysis, the significance of the L1CAM mutation c.1759G>C (p.G587R) remains unknown. We aimed to perform further verification for its pathogenicity. Blood samples were obtained from the proband and his parents for trio clinical exome sequencing and mutation analysis. Expression level analysis was conducted using western blot techniques. Immunofluorescence was employed to investigate L1CAM subcellular localization, while cell aggregation and cell scratch assays were utilized to assess protein function. The study showed that the mutation (c.1759G>C; p.G587R) affected posttranslational glycosylation modification and induced alterations in the subcellular localization of L1-G587R in the cells. It resulted in the diminished expression of L1CAM on the cell surface and accumulation in the endoplasmic reticulum. The p.G587R altered the function of L1CAM protein and reduced homophilic adhesion capacity of proteins, leading to impaired adhesion and migration of proteins between cells. Our findings provide first biological evidence for the association between the missense mutation (c.1759G>c; p.G587R) in the L1CAM gene and L1 syndrome, confirming the pathogenicity of this missense mutation.


Subject(s)
Mutation, Missense , Neural Cell Adhesion Molecule L1 , Humans , Male , HEK293 Cells , Hydrocephalus/genetics , Hydrocephalus/metabolism , Hydrocephalus/pathology , Neural Cell Adhesion Molecule L1/genetics , Neural Cell Adhesion Molecule L1/metabolism , Pedigree , Infant, Newborn
20.
Zhonghua Xue Ye Xue Za Zhi ; 45(3): 294-298, 2024 Mar 14.
Article in Chinese | MEDLINE | ID: mdl-38716603

ABSTRACT

A 34 year old female patient was scheduled to undergo surgical resection due to a "breast nodule". Preoperative examination revealed an activated partial thromboplastin time (APTT) of 66.2 seconds, coagulation factor Ⅺ activity (FⅪ: C) of 2%, and FⅪ antigen (FⅪ: Ag) of 40.3%. The patient and family members showed no abnormal bleeding symptoms. Diagnosed as hereditary coagulation factor Ⅺ deficiency. Genetic testing revealed that the F11 gene had a heterozygous nonsense mutation in exon 10, c.1107C>A (p.Tyr351stop), and a heterozygous missense mutation in exon 13, c.1562A>G (p.Tyr503Cys). The father and son were p Heterozygous carriers of Tyr351stop mutation, while the mother and daughter are p Heterozygous carriers of Tyr503Cys mutations. The in vitro expression results showed that p The Tyr351stop mutation resulted in a significant decrease in the transcription level of F11 gene, while p The Tyr503Cys mutation has no effect on the transcription level and protein expression level of F11 gene, but it leads to a significant decrease in the level of FⅪ:C in the cell culture supernatant.


Subject(s)
Heterozygote , Pedigree , Humans , Female , Adult , Mutation , Factor XI/genetics , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...