Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 4072, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38374177

ABSTRACT

Psychedelic substances induce profound alterations in consciousness. Careful preparation is therefore essential to limit adverse reactions, enhance therapeutic benefits, and maintain user safety. This paper describes the development of a self-directed, digital intervention for psychedelic preparation. Drawing on elements from the UK Medical Research Council (MRC) framework for developing complex interventions, the design was informed by a four-factor model of psychedelic preparedness, using a person-centred approach. Our mixed-methods investigation consisted of two studies. The first involved interviews with 19 participants who had previously attended a 'high-dose' psilocybin retreat, systematically exploring their preparation behaviours and perspectives on the proposed intervention. The second study engaged 28 attendees of an ongoing psilocybin retreat in co-design workshops, refining the intervention protocol using insights from the initial interviews. The outcome is a co-produced 21-day digital course (Digital Intervention for Psychedelic Preparation (DIPP)), that is organised into four modules: Knowledge-Expectation, Psychophysical-Readiness, Safety-Planning, and Intention-Preparation. Fundamental components of the course include daily meditation practice, supplementary exercises tied to the weekly modules, and mood tracking. DIPP provides a comprehensive and scalable solution to enhance psychedelic preparedness, aligning with the broader shift towards digital mental health interventions.


Subject(s)
Hallucinogens , Pentamidine/analogs & derivatives , Humans , Hallucinogens/pharmacology , Psilocybin/pharmacology , Mental Health , Consciousness
2.
J Am Chem Soc ; 144(38): 17423-17431, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36122408

ABSTRACT

The first non-uranyl, f-element oxo complex synthesized from dioxygen in dry air is presented in this work. The synthesis was accomplished by treating the redox-active thorium amidophenolate complex, [Th(dippap)3][K(15-c-5)2]2 (1-ap crown), with dioxygen in dry air, forming a rare terminal thorium oxo, [O═Th(dippisq)2(dippap)][K(15-c-5)2]2 (2-oxo). Compound 1-ap crown was regenerated by treating 2-oxo with potassium graphite. X-ray crystallography of 2-oxo revealed a comparatively longer bond length for the thorium-oxygen double bond when compared to other thorium oxos. As such, several thorium-oxygen single bonds were synthesized for comparison, including Th(dippisq)2(OSiMe3)2(THF) (4-OSiMe3), Th(OSiMe3)4(bipy)2 (5-OSiMe3), and [Th(OH)2 (dippHap)4][K(15-c-5)2]2 (6-OH). Full spectroscopic and structural characterization of the complexes was performed via 1H NMR spectroscopy, X-ray crystallography, EPR spectroscopy, and electronic absorption spectroscopy as well as SQUID magnetometry, which all confirmed the electronic structure of these complexes.


Subject(s)
Graphite , Thorium , Ligands , Oxidation-Reduction , Oxygen/chemistry , Pentamidine/analogs & derivatives , Potassium , Thorium/chemistry
3.
Assay Drug Dev Technol ; 17(3): 89-99, 2019 04.
Article in English | MEDLINE | ID: mdl-30835490

ABSTRACT

Inwardly rectifying IK1 potassium currents of the heart control the resting membrane potential of ventricular cardiomyocytes during diastole and contribute to their repolarization after each action potential. Mutations in the gene encoding Kir2.1 channels, which primarily conduct ventricular IK1, are associated with inheritable forms of arrhythmias and sudden cardiac death. Therefore, potential iatrogenic inhibition of Kir2.1-mediated IK1 currents is a cardiosafety concern during new drug discovery and development. Kir2.1 channels are part of the panel of cardiac ion channels currently considered for refined early compound risk assessment within the Comprehensive in vitro Proarrhythmia Assay initiative. In this study, we have validated a cell-based assay allowing functional quantification of Kir2.1 inhibitors using whole-cell recordings of Chinese hamster ovary cells stably expressing human Kir2.1 channels. We reproduced key electrophysiological and pharmacological features known for native IK1, including current enhancement by external potassium and voltage- and concentration-dependent blockade by external barium. Furthermore, the Kir inhibitors ML133, PA-6, and chloroquine, as well as the multichannel inhibitors chloroethylclonidine, chlorpromazine, SKF-96365, and the class III antiarrhythmic agent terikalant demonstrated slowly developing inhibitory activity in the low micromolar range. The robustness of this assay authorizes medium throughput screening for cardiosafety purposes and could help to enrich the currently limited Kir2.1 pharmacology.


Subject(s)
Automation , Chloroquine/pharmacology , Imidazoles/pharmacology , Pentamidine/pharmacology , Phenanthrolines/pharmacology , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Animals , CHO Cells , Chloroquine/chemistry , Cricetulus , Dose-Response Relationship, Drug , Electrophysiological Phenomena , Humans , Imidazoles/chemistry , Molecular Structure , Pentamidine/analogs & derivatives , Pentamidine/chemistry , Phenanthrolines/chemistry , Potassium Channels, Inwardly Rectifying/metabolism
4.
J Vet Intern Med ; 32(5): 1549-1554, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30079486

ABSTRACT

BACKGROUND: The inward rectifier inhibitor pentamidine analogue 6 (PA-6) is effective in cardioversion of goats with persistent rapid pacing induced atrial fibrillation (AF) and is not proarrhythmic in dogs with experimental chronic 3rd-degree AV block. Efficacy and safety in the clinical setting are unknown. HYPOTHESIS: That PA-6 would be effective in converting AF to sinus rhythm (SR) in dogs with naturally occurring AF, without the presence of overt adverse effects. ANIMALS: Ten client-owned large and giant breed dogs. METHODS: Animals with persistent or permanent AF were recruited for our prospective study. PA-6 was administered IV as a bolus of 2.5 mg/kg 10 min-1 followed by a maintenance infusion of 0.04 mg/kg min-1 for a maximum of 50 minutes in conscious dogs. Standard 6 lead limb ECG was recorded during the infusion. Visible and audible signs of adverse effects were scored during the entire procedure. RESULTS: PA-6 did not induce changes in QRS duration (54.7 ± 4.6 versus 56.7 ± 6.1 ms, P = .42), QTc interval (241.1 ± 19.5 versus 258.7 ± 19.8 ms, P = .061) or RR interval (363.4 ± 84.6 versus 440.8 ± 96.3 ms, P = .072) at the end of the bolus. No cardioversion to SR was observed in any dog. Three dogs displayed no adverse effects. Five dogs had premature ventricular depolarizations during PA-6 infusion on the ECG. Respiratory distress with laryngeal stridor, subtle muscle twitching, and mild generalized muscular weakness were noncardiac adverse effects observed in 5 dogs. Adverse effects resolved spontaneously. CONCLUSIONS AND CLINICAL IMPORTANCE: Chronic naturally occurring AF in large and giant breed dogs could not be cardioverted to SR by PA-6.


Subject(s)
Anti-Arrhythmia Agents/therapeutic use , Atrial Fibrillation/veterinary , Dog Diseases/drug therapy , Pentamidine/analogs & derivatives , Pentamidine/therapeutic use , Animals , Anti-Arrhythmia Agents/administration & dosage , Atrial Fibrillation/drug therapy , Dogs , Female , Male , Pentamidine/administration & dosage
5.
J Clin Invest ; 127(12): 4297-4313, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29083320

ABSTRACT

The transcription factor PU.1 is often impaired in patients with acute myeloid leukemia (AML). Here, we used AML cells that already had low PU.1 levels and further inhibited PU.1 using either RNA interference or, to our knowledge, first-in-class small-molecule inhibitors of PU.1 that we developed specifically to allosterically interfere with PU.1-chromatin binding through interaction with the DNA minor groove that flanks PU.1-binding motifs. These small molecules of the heterocyclic diamidine family disrupted the interaction of PU.1 with target gene promoters and led to downregulation of canonical PU.1 transcriptional targets. shRNA or small-molecule inhibition of PU.1 in AML cells from either PU.1lo mutant mice or human patients with AML-inhibited cell growth and clonogenicity and induced apoptosis. In murine and human AML (xeno)transplantation models, treatment with our PU.1 inhibitors decreased tumor burden and resulted in increased survival. Thus, our study provides proof of concept that PU.1 inhibition has potential as a therapeutic strategy for the treatment of AML and for the development of small-molecule inhibitors of PU.1.


Subject(s)
Chromatin/metabolism , Leukemia, Myeloid, Acute/drug therapy , Pentamidine , Proto-Oncogene Proteins/antagonists & inhibitors , Trans-Activators/antagonists & inhibitors , Allosteric Regulation , Animals , Apoptosis/drug effects , Apoptosis/genetics , Chromatin/genetics , HEK293 Cells , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Transgenic , Pentamidine/analogs & derivatives , Pentamidine/pharmacology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA Interference , THP-1 Cells , Trans-Activators/genetics , Trans-Activators/metabolism , Xenograft Model Antitumor Assays
6.
J Biomed Sci ; 24(1): 44, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28711067

ABSTRACT

BACKGROUND: The inward rectifier potassium current IK1 contributes to a stable resting membrane potential and phase 3 repolarization of the cardiac action potential. KCNJ2 gain-of-function mutations V93I and D172N associate with increased IK1, short QT syndrome type 3 and congenital atrial fibrillation. Pentamidine-Analogue 6 (PA-6) is an efficient (IC50 = 14 nM with inside-out patch clamp methodology) and specific IK1 inhibitor that interacts with the cytoplasmic pore region of the KIR2.1 ion channel, encoded by KCNJ2. At 10 µM, PA-6 increases wild-type (WT) KIR2.1 expression in HEK293T cells upon chronic treatment. We hypothesized that PA-6 will interact with and inhibit V93I and D172N KIR2.1 channels, whereas impact on channel expression at the plasma membrane requires higher concentrations. METHODS: Molecular modelling was performed with the human KIR2.1 closed state homology model using FlexX. WT and mutant KIR2.1 channels were expressed in HEK293 cells. Patch-clamp single cell electrophysiology measurements were performed in the whole cell and inside-out mode of the patch clamp method. KIR2.1 expression level and localization were determined by western blot analysis and immunofluorescence microscopy, respectively. RESULTS: PA-6 docking in the V93I/D172N double mutant homology model of KIR2.1 demonstrated that mutations and drug-binding site are >30 Å apart. PA-6 inhibited WT and V93I outward currents with similar potency (IC50 = 35.5 and 43.6 nM at +50 mV for WT and V93I), whereas D172N currents were less sensitive (IC50 = 128.9 nM at +50 mV) using inside-out patch-clamp electrophysiology. In whole cell mode, 1 µM of PA-6 inhibited outward IK1 at -50 mV by 28 ± 36%, 18 ± 20% and 10 ± 6%, for WT, V93I and D172N channels respectively. Western blot analysis demonstrated that PA-6 (5 µM, 24 h) increased KIR2.1 expression levels of WT (6.3 ± 1.5 fold), and V93I (3.9 ± 0.9) and D172N (4.8 ± 2.0) mutants. Immunofluorescent microscopy demonstrated dose-dependent intracellular KIR2.1 accumulation following chronic PA-6 application (24 h, 1 and 5 µM). CONCLUSIONS: 1) KCNJ2 gain-of-function mutations V93I and D172N in the KIR2.1 ion channel do not impair PA-6 mediated inhibition of IK1, 2) PA-6 elevates KIR2.1 protein expression and induces intracellular KIR2.1 accumulation, 3) PA-6 is a strong candidate for further preclinical evaluation in treatment of congenital SQT3 and AF.


Subject(s)
Gene Expression Regulation/drug effects , Pentamidine/analogs & derivatives , Pentamidine/pharmacology , Potassium Channel Blockers/pharmacology , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Potassium Channels, Inwardly Rectifying/genetics , Action Potentials , HEK293 Cells , Humans , Membrane Potentials , Molecular Docking Simulation , Pentamidine/chemistry , Potassium Channel Blockers/chemistry , Potassium Channels, Inwardly Rectifying/metabolism
7.
Br J Pharmacol ; 174(15): 2576-2590, 2017 08.
Article in English | MEDLINE | ID: mdl-28542844

ABSTRACT

BACKGROUND AND PURPOSE: The density of the inward rectifier current (IK1 ) increases in atrial fibrillation (AF), shortening effective refractory period and thus promoting atrial re-entry. The synthetic compound pentamidine analogue 6 (PA-6) is a selective and potent IK1 inhibitor. We tested PA-6 for anti-AF efficacy and potential proarrhythmia, using established models in large animals. EXPERIMENTAL APPROACH: PA-6 was applied i.v. in anaesthetized goats with rapid pacing-induced AF and anaesthetized dogs with chronic atrio-ventricular (AV) block. Electrophysiological and pharmacological parameters were determined. KEY RESULTS: PA-6 (2.5 mg·kg-1 ·10 min-1 ) induced cardioversion to sinus rhythm (SR) in 5/6 goats and prolonged AF cycle length. AF complexity decreased significantly before cardioversion. PA-6 accumulated in cardiac tissue with ratios between skeletal muscle : atrial muscle : ventricular muscle of approximately 1:8:21. In SR dogs, PA-6 peak plasma levels 10 min post infusion were 5.5 ± 0.9 µM, PA-6 did not induce significant prolongation of QTc and did not affect heart rate, PQ or QRS duration. In dogs with chronic AV block, PA-6 did not affect QRS but lengthened QTc during the experiment, but not chronically. PA-6 did not induce TdP arrhythmias in nine animals (0/9) in contrast to dofetilide (5/9). PA-6 (200 nM) inhibited IK1 , but not IK,ACh , in human isolated atrial cardiomyocytes. CONCLUSION AND IMPLICATIONS: PA-6 restored SR in goats with persistent AF and, in dogs with chronic AV block, prolonged QT intervals, without inducing TdP arrhythmias. Our results demonstrate cardiac safety and good anti-AF properties for PA-6.


Subject(s)
Atrial Fibrillation/chemically induced , Disease Models, Animal , Pentamidine/pharmacology , Administration, Intravenous , Animals , Dogs , Female , Goals , Humans , Pentamidine/administration & dosage , Pentamidine/analogs & derivatives
8.
Physiol Rep ; 5(1)2017 Jan.
Article in English | MEDLINE | ID: mdl-28087819

ABSTRACT

The pentamidine analog PA-6 was developed as a specific inward rectifier potassium current (IK1) antagonist, because established inhibitors either lack specificity or have side effects that prohibit their use in vivo. We previously demonstrated that BaCl2, an established IK1 inhibitor, could prolong action potential duration (APD) and increase cardiac conduction velocity (CV). However, few studies have addressed whether targeted IK1 inhibition similarly affects ventricular electrophysiology. The aim of this study was to determine the effects of PA-6 on cardiac repolarization and conduction in Langendorff-perfused guinea pig hearts. PA-6 (200 nm) or vehicle was perfused into ex-vivo guinea pig hearts for 60 min. Hearts were optically mapped with di-4-ANEPPS to quantify CV and APD at 90% repolarization (APD90). Ventricular APD90 was significantly prolonged in hearts treated with PA-6 (115 ± 2% of baseline; P < 0.05), but not vehicle (105 ± 2% of baseline). PA-6 slightly, but significantly, increased transverse CV by 7%. PA-6 significantly prolonged APD90 during hypokalemia (2 mmol/L [K+]o), although to a lesser degree than observed at 4.56 mmol/L [K+]o In contrast, the effect of PA-6 on CV was more pronounced during hypokalemia, where transverse CV with PA-6 (24 ± 2 cm/sec) was significantly faster than with vehicle (13 ± 3 cm/sec, P < 0.05). These results show that under normokalemic conditions, PA-6 significantly prolonged APD90, whereas its effect on CV was modest. During hypokalemia, PA-6 prolonged APD90 to a lesser degree, but profoundly increased CV Thus, in intact guinea pig hearts, the electrophysiologic effects of the IK1 inhibitor, PA-6, are [K+]o-dependent.


Subject(s)
Action Potentials/drug effects , Anthraquinones/pharmacology , Heart Conduction System/drug effects , Heart Ventricles/drug effects , Pentamidine/analogs & derivatives , Potassium Channel Blockers/pharmacology , Potassium Channels/drug effects , Potassium/metabolism , Action Potentials/physiology , Animals , Anthraquinones/administration & dosage , Barium Compounds/administration & dosage , Barium Compounds/pharmacology , Chlorides/administration & dosage , Chlorides/pharmacology , Electrophysiological Phenomena , Guinea Pigs , Heart/physiology , Heart Conduction System/physiology , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Hypokalemia/physiopathology , Male , Potassium Channel Blockers/administration & dosage , Potassium Channels/metabolism , Pyridinium Compounds/analysis , Pyridinium Compounds/metabolism , Voltage-Sensitive Dye Imaging/methods
9.
Antimicrob Agents Chemother ; 60(11): 6828-6836, 2016 11.
Article in English | MEDLINE | ID: mdl-27600039

ABSTRACT

Leishmaniasis is a disease caused by pathogenic Leishmania parasites; current treatments are toxic and expensive, and drug resistance has emerged. While pentamidine, a diamidine-type compound, is one of the treatments, its antileishmanial mechanism of action has not been investigated in depth. Here we tested several diamidines, including pentamidine and its analog DB75, against Leishmania donovani and elucidated their antileishmanial mechanisms. We identified three promising new antileishmanial diamidine compounds with 50% effective concentrations (EC50s) of 3.2, 3.4, and 4.5 µM, while pentamidine and DB75 exhibited EC50s of 1.46 and 20 µM, respectively. The most potent antileishmanial inhibitor, compound 1, showed strong DNA binding properties, with a shift in the melting temperature (ΔTm) of 24.2°C, whereas pentamidine had a ΔTm value of 2.1°C, and DB75 had a ΔTm value of 7.7°C. Additionally, DB75 localized in L. donovani kinetoplast DNA (kDNA) and mitochondria but not in nuclear DNA (nDNA). For 2 new diamidines, strong localization signals were observed in kDNA at 1 µM, and at higher concentrations, the signals also appeared in nuclei. All tested diamidines showed selective and dose-dependent inhibition of kDNA, but not nDNA, replication, likely by inhibiting L. donovani topoisomerase IB. Overall, these results suggest that diamidine antileishmanial compounds exert activity by accumulating toward and blocking replication of parasite kDNA.


Subject(s)
Amidines/pharmacology , Leishmania donovani/drug effects , Trypanocidal Agents/pharmacology , Amidines/chemistry , Benzamidines/chemistry , Benzamidines/pharmacology , DNA Replication/drug effects , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , DNA, Kinetoplast/metabolism , DNA, Mitochondrial/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drug Evaluation, Preclinical/methods , Fluorescence , Leishmania donovani/growth & development , Molecular Targeted Therapy , Pentamidine/analogs & derivatives , Pentamidine/pharmacology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology , Trypanocidal Agents/chemistry
10.
Physiol Rep ; 4(8)2016 Apr.
Article in English | MEDLINE | ID: mdl-27117805

ABSTRACT

The inwardly rectifying potassium current (IK 1) conducted through Kir2.X channels contribute to repolarization of the cardiac action potential and to stabilization of the resting membrane potential in cardiomyocytes. Our aim was to investigate the effect of the recently discovered IK 1 inhibitor PA-6 on action potential repolarization and refractoriness in isolated rat hearts. Transiently transfected HEK-293 cells expressing IK 1 were voltage-clamped with ramp protocols. Langendorff-perfused heart experiments were performed on male Sprague-Dawley rats, effective refractory period, Wenckebach cycle length, and ventricular effective refractory period were determined following 200 nmol/L PA-6 perfusion. 200 nmol/L PA-6 resulted in a significant time-latency in drug effect on the IK 1 current expressed in HEK-293 cells, giving rise to a maximal effect at 20 min. In the Langendorff-perfused heart experiments, PA-6 prolonged the ventricular action potential duration at 90% repolarization (from 41.8 ± 6.5 msec to 72.6 ± 21.1 msec, 74% compared to baseline, P < 0.01, n = 6). In parallel, PA-6 significantly prolonged the ventricular effective refractory period compared to baseline (from 34.8 ± 4.6 msec to 58.1 ± 14.7 msec, 67%, P < 0.01, n = 6). PA-6 increased the short-term beat-to-beat variability and ventricular fibrillation was observed in two of six hearts. Neither atrial ERP nor duration of atrial fibrillation was altered following PA-6 application. The results show that pharmacological inhibition of cardiac IK 1 affects ventricular action potential repolarization and refractoriness and increases the risk of ventricular arrhythmia in isolated rat hearts.


Subject(s)
Action Potentials/physiology , Heart Ventricles/metabolism , Myocytes, Cardiac/physiology , Pentamidine/analogs & derivatives , Potassium Channels/metabolism , Action Potentials/drug effects , Animals , HEK293 Cells , Humans , Isolated Heart Preparation , Male , Myocytes, Cardiac/drug effects , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Transfection
11.
J Med Chem ; 59(2): 592-608, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26727270

ABSTRACT

The drug pentamidine inhibits calcium-dependent complex formation with p53 ((Ca)S100B·p53) in malignant melanoma (MM) and restores p53 tumor suppressor activity in vivo. However, off-target effects associated with this drug were problematic in MM patients. Structure-activity relationship (SAR) studies were therefore completed here with 23 pentamidine analogues, and X-ray structures of (Ca)S100B·inhibitor complexes revealed that the C-terminus of S100B adopts two different conformations, with location of Phe87 and Phe88 being the distinguishing feature and termed the "FF-gate". For symmetric pentamidine analogues ((Ca)S100B·5a, (Ca)S100B·6b) a channel between sites 1 and 2 on S100B was occluded by residue Phe88, but for an asymmetric pentamidine analogue ((Ca)S100B·17), this same channel was open. The (Ca)S100B·17 structure illustrates, for the first time, a pentamidine analog capable of binding the "open" form of the "FF-gate" and provides a means to block all three "hot spots" on (Ca)S100B, which will impact next generation (Ca)S100B·p53 inhibitor design.


Subject(s)
S100 Calcium Binding Protein beta Subunit/antagonists & inhibitors , S100 Calcium Binding Protein beta Subunit/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cattle , Cell Line, Tumor , Crystallography, X-Ray , Drug Design , Humans , Models, Molecular , Pentamidine/analogs & derivatives , Pentamidine/chemistry , Pentamidine/pharmacology , Protein Conformation , Rats , Small Molecule Libraries , Structure-Activity Relationship , Tumor Suppressor Protein p53/drug effects
12.
Bioorg Med Chem ; 23(15): 4489-4500, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26117647

ABSTRACT

The anti-protozoal drug pentamidine is active against opportunistic Pneumocystis pneumonia, but in addition has several other biological targets, including the NMDA receptor (NR). Here we describe the inhibitory potencies of 76 pentamidine analogs at 2 binding sites of the NR, the channel binding site labeled with [(3)H]MK-801 and the [(3)H]ifenprodil binding site. Most analogs acted weaker at the ifenprodil than at the channel site. The spermine-sensitivity of NR inhibition by the majority of the compounds was reminiscent of other long-chain dicationic NR blockers. The potency of the parent compound as NR blocker was increased by modifying the heteroatoms in the bridge connecting the 2 benzamidine moieties and also by integrating the bridge into a seven-membered ring. Docking of the 45 most spermine-sensitive bisbenzamidines to a recently described acidic interface between the N-terminal domains of GluN1 and GluN2B mediating polyamine stimulation of the NR revealed the domain contributed by GluN1 as the most relevant target.


Subject(s)
Brain/metabolism , Dizocilpine Maleate/chemistry , Pentamidine/analogs & derivatives , Piperidines/chemistry , Receptors, N-Methyl-D-Aspartate/chemistry , Animals , Binding Sites , Dizocilpine Maleate/metabolism , Molecular Docking Simulation , Pentamidine/chemical synthesis , Pentamidine/metabolism , Piperazine , Piperazines/chemistry , Piperazines/metabolism , Piperidines/metabolism , Protein Structure, Tertiary , Rats , Receptors, N-Methyl-D-Aspartate/metabolism , Tritium/chemistry
13.
Chemistry ; 21(14): 5528-39, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25703690

ABSTRACT

Small-molecule targeting of the DNA minor groove is a promising approach to modulate genomic processes necessary for normal cellular function. For instance, dicationic diamindines, a well-known class of minor groove binding compounds, have been shown to inhibit interactions of transcription factors binding to genomic DNA. The applications of these compounds could be significantly expanded if we understand sequence-specific recognition of DNA better and could use the information to design more sequence-specific compounds. Aside from polyamides, minor groove binders typically recognize DNA at A-tract or alternating AT base pair sites. Targeting sites with GC base pairs, referred to here as mixed base pair sequences, is much more difficult than those rich in AT base pairs. Compound 1 is the first dicationic diamidine reported to recognize a mixed base pair site. It binds in the minor groove of ATGA sequences as a dimer with positive cooperativity. Due to the well-characterized behavior of 1 with ATGA and AT rich sequences, it provides a paradigm for understanding the elements that are key for recognition of mixed sequence sites. Electrospray ionization mass spectrometry (ESI-MS) is a powerful method to screen DNA complexes formed by analogues of 1 for specific recognition. We also report a novel approach to determine patterns of recognition by 1 for cognate ATGA and ATGA-mutant sequences. We found that functional group modifications and mutating the DNA target site significantly affect binding and stacking, respectively. Both compound conformation and DNA sequence directionality are crucial for recognition.


Subject(s)
DNA/chemistry , Pentamidine/analogs & derivatives , Pentamidine/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Base Sequence , DNA/metabolism , Dimerization , Models, Molecular , Nucleic Acid Conformation , Spectrometry, Mass, Electrospray Ionization
14.
Biochemistry ; 54(2): 577-87, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25495885

ABSTRACT

Sequence-specific recognition of DNA by small organic molecules offers a potentially effective approach for the external regulation of gene expression and is an important goal in cell biochemistry. Rational design of compounds from established modules can potentially yield compounds that bind strongly and selectively with specific DNA sequences. An initial approach is to start with common A·T bp recognition molecules and build in G·C recognition units. Here we report on the DNA interaction of a synthetic compound that specifically binds to a G·C bp in the minor groove of DNA by using an azabenzimidazole moiety. The detailed interactions were evaluated with biosensor-surface plasmon resonance (SPR), isothermal calorimetric (ITC), and mass spectrometry (ESI-MS) methods. The compound, DB2277, binds with single G·C bp containing sequences with sub-nanomolar potency and displays slow dissociation kinetics and high selectivity. A detailed thermodynamic and kinetic study at different experimental salt concentrations and temperatures shows that the binding free energy is salt concentration dependent but essentially temperature independent under our experimental conditions, and binding enthalpy is temperature dependent but salt concentration independent. The results show that in the proper compound structural context novel heterocyclic cations can be designed to strongly recognize complex DNA sequences.


Subject(s)
Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , DNA/metabolism , Pentamidine/analogs & derivatives , Pentamidine/pharmacology , Base Sequence , DNA/chemistry , Drug Design , Kinetics , Surface Plasmon Resonance , Thermodynamics
15.
Int J Pharm ; 477(1-2): 167-75, 2014 Dec 30.
Article in English | MEDLINE | ID: mdl-25455769

ABSTRACT

UNLABELLED: Pentamidine is an effective antiparasitic agent and approved drug for the treatment of African trypanosomiasis (sleeping sickness). However, pentamidine suffers from poor orally bioavailability and lacks central nervous system (CNS) delivery. Therefore its applicability is limited to intravenous or intramuscular treatment of the first stage of the African trypanosomiasis. For this reason, several new pentamidine pro-drugs have been developed with the aim of providing improved orally availability and CNS penetration. AIM: this work aims to measure and to compare the distribution, bioavailability, and ability to cross the blood-brain barrier of [(123)I]-labeled pentamidine and its pro-drugs, N,N'-dihydroxypentamidine and N,N'­bis(succinyloxy) pentamidine, using SPECT (single photon emission computed tomography) after intravenously and per orally administration in rats. METHODS: a total of 60 male Sprague Dawley rats were examined. Each [(123)I]-labeled substance (n=3) was applied to 12 rats (n=6 i.v. and n=6 orally). In two additional test series both [(123)I]iodopentamidine (n=6) and N,N'-bis(succinyloxy)-[(123)I]iodopentamidine (n=6) were administered orally together with the non-radioactive homologues. To evaluate the in vivo stability of the labeled compounds, [(123)I]NaI solution was administered intravenously (n=6) and orally (n=6). In vivo SPECT images were acquired after 30 min, 4h, and 24h and blood samples were taken over 24h. The SPECT images were fusioned with previously acquired magnetic resonance images. After the last SPECT the rats were perfused, sacrificed and the organ γ-radiation levels were determined with a γ-counter. Analysis and quantification of the reconstructed SPECT images was performed using the region of interest technique. RESULTS AND CONCLUSION: the data showed a highly improved oral bioavailability of the [(123)I]-labeled pro-drugs compared to [(123)I]-labeled pentamidine. While [(123)I]iodopentamidine was mainly renally eliminated the pro-drugs were primarily metabolized in the liver and underwent biliary elimination. Considering pentamidine's nephrotoxicity this feature has to be seen as an advantage of the pro-drug principle. Moreover, a significantly higher concentration in the brain was detected after intravenous injection of N,N'-dihydroxy[(123)I]iodopentamidine compared to [(123)I]iodopentamidine. The feasibility of an effective treatment of second stage African trypanosomiasis, in which the parasites already infected the brain, with the herein investigated pro-drugs remains to be clarified with infected animals in additional in vivo studies.


Subject(s)
Blood-Brain Barrier/metabolism , Pentamidine/analogs & derivatives , Succinates/pharmacokinetics , Trypanocidal Agents/pharmacokinetics , Administration, Oral , Animals , Biological Availability , Brain/metabolism , Humans , Male , Pentamidine/pharmacokinetics , Prodrugs , Rats , Rats, Sprague-Dawley , Time Factors , Tissue Distribution , Tomography, Emission-Computed, Single-Photon/methods , Trypanosomiasis, African/drug therapy
16.
Antimicrob Agents Chemother ; 58(7): 4103-12, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24798287

ABSTRACT

The antileishmanial activity of a series of bis-pyridinium derivatives that are analogues of pentamidine have been investigated, and all compounds assayed were found to display activity against promastigotes and intracellular amastigotes of Leishmania donovani and Leishmania major, with 50% effective concentrations (EC50s) lower than 1 µM in most cases. The majority of compounds showed similar behavior in both Leishmania species, being slightly more active against L. major amastigotes. However, compound VGP-106 {1,1'-(biphenyl-4,4'-diylmethylene)bis[4-(4-bromo-N-methylanilino)pyridinium] dibromide} exhibited significantly higher activity against L. donovani amastigotes (EC50, 0.86 ± 0.46 µM) with a lower toxicity in THP-1 cells (EC50, 206.54 ± 9.89 µM). As such, VGP-106 was chosen as a representative compound to further elucidate the mode of action of this family of inhibitors in promastigote forms of L. donovani. We have determined that uptake of VGP-106 in Leishmania is a temperature-independent process, suggesting that the compound crosses the parasite membrane by diffusion. Transmission electron microscopy analysis showed a severe mitochondrial swelling in parasites treated with compound VGP-106, which induces hyperpolarization of the mitochondrial membrane potential and a significant decrease of intracellular free ATP levels due to the inhibition of ATP synthesis. Additionally, we have confirmed that VGP-106 induces mitochondrial ROS production and an increase in intracellular Ca(2+) levels. All these molecular events can activate the apoptotic process in Leishmania; however, propidium iodide assays gave no indication of DNA fragmentation. These results underline the potency of compound VGP-106, which may represent a new avenue for the development of novel antileishmanial compounds.


Subject(s)
Leishmania donovani/drug effects , Leishmania major/drug effects , Membrane Potential, Mitochondrial/drug effects , Mitochondrial Swelling/drug effects , Pentamidine/pharmacology , Adenosine Triphosphate/biosynthesis , Antiprotozoal Agents/pharmacology , Biological Transport , Calcium/metabolism , Cell Line , Choline Kinase/antagonists & inhibitors , Humans , Macrophages/drug effects , Parasitic Sensitivity Tests , Pentamidine/analogs & derivatives , Reactive Oxygen Species/metabolism
17.
J Med Chem ; 57(6): 2611-22, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24564570

ABSTRACT

Protein arginine methylation is a posttranslational modification critical for a variety of biological processes. Misregulation of protein arginine methyltransferases (PRMTs) has been linked to many pathological conditions. Most current PRMT inhibitors display limited specificity and selectivity, indiscriminately targeting many methyltransferase enzymes that use S-adenosyl-l-methionine as a cofactor. Here we report diamidine compounds for specific inhibition of PRMT1, the primary type I enzyme. Docking, molecular dynamics, and MM/PBSA analysis together with biochemical assays were conducted to understand the binding modes of these inhibitors and the molecular basis of selective inhibition for PRMT1. Our data suggest that 2,5-bis(4-amidinophenyl)furan (1, furamidine, DB75), one leading inhibitor, targets the enzyme active site and is primarily competitive with the substrate and noncompetitive toward the cofactor. Furthermore, cellular studies revealed that 1 is cell membrane permeable and effectively inhibits intracellular PRMT1 activity and blocks cell proliferation in leukemia cell lines with different genetic lesions.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Pentamidine/analogs & derivatives , Pentamidine/pharmacology , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Repressor Proteins/antagonists & inhibitors , Binding, Competitive/drug effects , Catalytic Domain/drug effects , Cell Line, Tumor , Cell Membrane Permeability/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Computer Simulation , Fluorescence Polarization , Humans , Immunoprecipitation , Kinetics , Leukemia/drug therapy , Leukemia/metabolism , Models, Molecular , Pentamidine/chemical synthesis , Protein Binding , Structure-Activity Relationship
18.
Antimicrob Agents Chemother ; 58(3): 1793-6, 2014.
Article in English | MEDLINE | ID: mdl-24366732

ABSTRACT

Light-emitting diode (LED) fluorescence microscopy offers potential benefits in the diagnosis of human African trypanosomiasis and in other aspects of diseases management, such as detection of drug-resistant strains. To advance such approaches, reliable and specific fluorescent markers to stain parasites in human fluids are needed. Here we describe a series of novel green fluorescent diamidines and their suitability as probes with which to stain trypanosomes.


Subject(s)
Fluorescent Dyes , Microscopy, Fluorescence/methods , Pentamidine , Trypanosoma brucei gambiense/metabolism , Trypanosomiasis, African/diagnosis , Humans , Pentamidine/analogs & derivatives , Pentamidine/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei gambiense/drug effects
19.
Eur J Med Chem ; 67: 310-24, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23871911

ABSTRACT

Sixty-two cationic benzyl phenyl ether derivatives (36 amidines and 26 prodrugs) were prepared and assayed for activities in vitro and in vivo against Trypanosoma brucei rhodesiense (STIB900), and in vitro against Plasmodium falciparum (K1) and Leishmania donovani axenic amastigotes. 3-Amidinobenzyl 4-amidino-2-iodo-6-methoxyphenyl ether dihydrochloride (55, IC50 = 3.0 nM) and seven other compounds exhibited IC50 values below 10 nM against T. b. rhodesiense in vitro. The 2-bromo-4,4'-diamidino analogue 19 (IC50 = 4.0 nM) and 12 other analogues were more potent than pentamidine (IC50 = 46 nM) against P. falciparum. The 3',4-diamidino-2,6-diiodo analogue 49 (IC50 = 1.4 µM) and two other compounds were more effective than pentamidine (IC50 = 1.8 µM) against L. donovani. A prodrug, 3',4-bis(N″-methoxy)amidino-2-bromo derivative 38, was the most efficacious against trypanosome infected mice, attaining 4/4 cures in four daily 25 mg/kg oral doses, and the 2-chloro-4,4'-diamidine 18 cured 3/4 mice in four daily 5 mg/kg intraperitoneal doses.


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmania donovani/drug effects , Pentamidine/analogs & derivatives , Pentamidine/pharmacology , Phenyl Ethers/chemical synthesis , Phenyl Ethers/pharmacology , Plasmodium falciparum/drug effects , Trypanosoma brucei rhodesiense/drug effects , Trypanosomiasis/drug therapy , Animals , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Dose-Response Relationship, Drug , Mice , Molecular Structure , Myoblasts/drug effects , Parasitic Sensitivity Tests , Pentamidine/chemical synthesis , Pentamidine/chemistry , Phenyl Ethers/chemistry , Rats , Structure-Activity Relationship , Trypanosomiasis/veterinary
20.
Parasitology ; 140(8): 929-51, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23561006

ABSTRACT

Parasitic protozoa comprise diverse aetiological agents responsible for important diseases in humans and animals including sleeping sickness, Chagas disease, leishmaniasis, malaria, toxoplasmosis and others. They are major causes of mortality and morbidity in tropical and subtropical countries, and are also responsible for important economic losses. However, up to now, for most of these parasitic diseases, effective vaccines are lacking and the approved chemotherapeutic compounds present high toxicity, increasing resistance, limited efficacy and require long periods of treatment. Many of these parasitic illnesses predominantly affect low-income populations of developing countries for which new pharmaceutical alternatives are urgently needed. Thus, very low research funding is available. Amidine-containing compounds such as pentamidine are DNA minor groove binders with a broad spectrum of activities against human and veterinary pathogens. Due to their promising microbicidal activity but their rather poor bioavailability and high toxicity, many analogues and derivatives, including pro-drugs, have been synthesized and screened in vitro and in vivo in order to improve their selectivity and pharmacological properties. This review summarizes the knowledge on amidines and analogues with respect to their synthesis, pharmacological profile, mechanistic and biological effects upon a range of intracellular protozoan parasites. The bulk of these data may contribute to the future design and structure optimization of new aromatic dicationic compounds as novel antiparasitic drug candidates.


Subject(s)
Amidines/pharmacology , Antiprotozoal Agents/pharmacology , Parasites/drug effects , Protozoan Infections/drug therapy , Amidines/chemical synthesis , Amidines/chemistry , Amidines/pharmacokinetics , Animals , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacokinetics , Humans , Intracellular Space/diagnostic imaging , Intracellular Space/parasitology , Microscopy, Electron, Transmission , Parasites/ultrastructure , Pentamidine/analogs & derivatives , Pentamidine/chemistry , Pentamidine/pharmacology , Protozoan Infections/parasitology , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...