Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.425
Filter
1.
BMC Plant Biol ; 24(1): 513, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849759

ABSTRACT

BACKGROUND: The phosphorylation of the Light-Harvesting Complex of photosystem II (LHCII) driven by STATE TRANSITION 7 (STN7) kinase is a part of one of the crucial regulatory mechanisms of photosynthetic light reactions operating in fluctuating environmental conditions, light in particular. There are evidenced that STN7 can also be activated without light as well as in dark-chilling conditions. However, the biochemical mechanism standing behind this complex metabolic pathway has not been deciphered yet. RESULTS: In this work, we showed that dark-chilling induces light-independent LHCII phosphorylation in runner bean (Phaseolus coccineus L.). In dark-chilling conditions, we registered an increased reduction of the PQ pool which led to activation of STN7 kinase, subsequent LHCII phosphorylation, and possible LHCII relocation inside the thylakoid membrane. We also presented the formation of a complex composed of phosphorylated LHCII and photosystem I typically formed upon light-induced phosphorylation. Moreover, we indicated that the observed steps were preceded by the activation of the oxidative pentose phosphate pathway (OPPP) enzymes and starch accumulation. CONCLUSIONS: Our results suggest a direct connection between photosynthetic complexes reorganization and dark-chilling-induced activation of the thioredoxin system. The proposed possible pathway starts from the activation of OPPP enzymes and further NADPH-dependent thioredoxin reductase C (NTRC) activation. In the next steps, NTRC simultaneously activates ADP-glucose pyrophosphorylase and thylakoid membrane-located NAD(P)H dehydrogenase-like complex. These results in starch synthesis and electron transfer to the plastoquinone (PQ) pool, respectively. Reduced PQ pool activates STN7 kinase which phosphorylates LHCII. In this work, we present a new perspective on the mechanisms involving photosynthetic complexes while efficiently operating in the darkness. Although we describe the studied pathway in detail, taking into account also the time course of the following steps, the biological significance of this phenomenon remains puzzling.


Subject(s)
Light , Phaseolus , Phaseolus/physiology , Phaseolus/metabolism , Phaseolus/enzymology , Phosphorylation , Thylakoids/metabolism , Photosystem I Protein Complex/metabolism , Cold Temperature , Light-Harvesting Protein Complexes/metabolism , Photosystem II Protein Complex/metabolism , Plant Proteins/metabolism , Starch/metabolism , Pentose Phosphate Pathway/physiology , Enzyme Activation , Photosynthesis/physiology , Stress, Physiological , Protein Serine-Threonine Kinases/metabolism
2.
Sci Rep ; 14(1): 13670, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871968

ABSTRACT

Cervical cancer, one of the most common gynecological cancers, is primarily caused by human papillomavirus (HPV) infection. The development of resistance to chemotherapy is a significant hurdle in treatment. In this study, we investigated the mechanisms underlying chemoresistance in cervical cancer by focusing on the roles of glycogen metabolism and the pentose phosphate pathway (PPP). We employed the cervical cancer cell lines HCC94 and CaSki by manipulating the expression of key enzymes PCK1, PYGL, and GYS1, which are involved in glycogen metabolism, through siRNA transfection. Our analysis included measuring glycogen levels, intermediates of PPP, NADPH/NADP+ ratio, and the ability of cells to clear reactive oxygen species (ROS) using biochemical assays and liquid chromatography-mass spectrometry (LC-MS). Furthermore, we assessed chemoresistance by evaluating cell viability and tumor growth in NSG mice. Our findings revealed that in drug-resistant tumor stem cells, the enzyme PCK1 enhances the phosphorylation of PYGL, leading to increased glycogen breakdown. This process shifts glucose metabolism towards PPP, generating NADPH. This, in turn, facilitates ROS clearance, promotes cell survival, and contributes to the development of chemoresistance. These insights suggest that targeting aberrant glycogen metabolism or PPP could be a promising strategy for overcoming chemoresistance in cervical cancer. Understanding these molecular mechanisms opens new avenues for the development of more effective treatments for this challenging malignancy.


Subject(s)
Drug Resistance, Neoplasm , Glycogen , Neoplastic Stem Cells , Phosphoenolpyruvate Carboxykinase (GTP) , Reactive Oxygen Species , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Reactive Oxygen Species/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Animals , Mice , Cell Line, Tumor , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism , Phosphoenolpyruvate Carboxykinase (GTP)/genetics , Glycogen/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Glycogenolysis , Pentose Phosphate Pathway/drug effects , Cell Survival/drug effects
3.
Microb Cell Fact ; 23(1): 121, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725068

ABSTRACT

BACKGROUND: Mycosporine-like amino acids (MAAs) are a class of strongly UV-absorbing compounds produced by cyanobacteria, algae and corals and are promising candidates for natural sunscreen components. Low MAA yields from natural sources, coupled with difficulties in culturing its native producers, have catalyzed synthetic biology-guided approaches to produce MAAs in tractable microbial hosts like Escherichia coli, Saccharomyces cerevisiae and Corynebacterium glutamicum. However, the MAA titres obtained in these hosts are still low, necessitating a thorough understanding of cellular factors regulating MAA production. RESULTS: To delineate factors that regulate MAA production, we constructed a shinorine (mycosporine-glycine-serine) producing yeast strain by expressing the four MAA biosynthetic enzymes from Nostoc punctiforme in Saccharomyces cerevisiae. We show that shinorine is produced from the pentose phosphate pathway intermediate sedoheptulose 7-phosphate (S7P), and not from the shikimate pathway intermediate 3-dehydroquinate (3DHQ) as previously suggested. Deletions of transaldolase (TAL1) and phosphofructokinase (PFK1/PFK2) genes boosted S7P/shinorine production via independent mechanisms. Unexpectedly, the enhanced S7P/shinorine production in the PFK mutants was not entirely due to increased flux towards the pentose phosphate pathway. We provide multiple lines of evidence in support of a reversed pathway between glycolysis and the non-oxidative pentose phosphate pathway (NOPPP) that boosts S7P/shinorine production in the phosphofructokinase mutant cells. CONCLUSION: Reversing the direction of flux between glycolysis and the NOPPP offers a novel metabolic engineering strategy in Saccharomyces cerevisiae.


Subject(s)
Amino Acids , Glycolysis , Pentose Phosphate Pathway , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Amino Acids/metabolism , Metabolic Engineering/methods , Nostoc/metabolism , Nostoc/genetics , Sugar Phosphates/metabolism , Glycine/metabolism , Glycine/analogs & derivatives , Cyclohexylamines
4.
Biochem Biophys Res Commun ; 722: 150162, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38801802

ABSTRACT

Extracellular fatty acids (FAs) play an important role in regulating cellular functions such as cell proliferation, survival, and migration. The effects of oleic acid (OA) on cancer cells vary depending on the cell type. Our prior study showed that two distinct ovarian cancer cell lines, RMG-1 and HNOA, proliferate in response to OA, but they differ with respect to glucose utilization. Here, we aimed to elucidate the mechanism(s) by which OA stimulates proliferation of RMG-1 cells. We found that OA stimulates RMG-1 proliferation by activating the FA transporter CD36. OA also increases uptake of glucose and glutamine, which subsequently activate the pentose phosphate pathway (PPP) and glutamine metabolism, respectively. Given that ribose 5-phosphate derived from the PPP is utilized for glutamine metabolism and the subsequent de novo nucleotide synthesis, our findings suggest that OA affects the PPP associated with Gln metabolism, rather than glycolysis associated with glutaminolysis; this leads ultimately to activation of DNA synthesis, which is required for cell proliferation. This selective activation by OA contrasts with the mechanisms observed in HNOA cells, in which OA-induced cell proliferation is driven by transcriptional regulation of the GLUT gene. The diverse responses of cancer cells to OA may be attributed to distinct mechanisms of OA reception and/or different metabolic pathways activated by OA.


Subject(s)
Cell Proliferation , Glutamine , Oleic Acid , Ovarian Neoplasms , Pentose Phosphate Pathway , Glutamine/metabolism , Pentose Phosphate Pathway/drug effects , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Cell Proliferation/drug effects , Humans , Cell Line, Tumor , Female , Oleic Acid/pharmacology , Oleic Acid/metabolism , Glucose/metabolism
5.
Yeast ; 41(6): 401-417, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38708451

ABSTRACT

To develop a cost-effective microbial cell factory for the production of biofuels and biochemicals, an understanding of tolerant mechanisms is vital for the construction of robust host strains. Here, we characterized a new function of a key metabolic transcription factor named Znf1 and its involvement in stress response in Saccharomyces cerevisiae to enhance tolerance to advanced biofuel, isobutanol. RNA-sequencing analysis of the wild-type versus the znf1Δ deletion strains in glucose revealed a new role for transcription factor Znf1 in the pentose phosphate pathway (PPP) and energy generation. The gene expression analysis confirmed that isobutanol induces an adaptive cell response, resulting in activation of ATP1-3 and COX6 expression. These genes were Znf1 targets that belong to the electron transport chain, important to produce ATPs. Znf1 also activated PPP genes, required for the generation of key amino acids, cellular metabolites, and maintenance of NADP/NADPH redox balance. In glucose, Znf1 also mediated the upregulation of valine biosynthetic genes of the Ehrlich pathway, namely ILV3, ILV5, and ARO10, associated with the generation of key intermediates for isobutanol production. Using S. cerevisiae knockout collection strains, cells with deleted transcriptional regulatory gene ZNF1 or its targets displayed hypersensitivity to isobutanol and acid inhibitors; in contrast, overexpression of ZNF1 enhanced cell survival. Thus, the transcription factor Znf1 functions in the maintenance of energy homeostasis and redox balance at various checkpoints of yeast metabolic pathways. It ensures the rapid unwiring of gene transcription in response to toxic products/by-products generated during biofuel production. Importantly, we provide a new approach to enhance strain tolerance during the conversion of glucose to biofuels.


Subject(s)
Adenosine Triphosphate , Butanols , Gene Expression Regulation, Fungal , Pentose Phosphate Pathway , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcription Factors , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Pentose Phosphate Pathway/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Butanols/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Adenosine Triphosphate/metabolism , Glucose/metabolism , Biofuels
6.
ACS Infect Dis ; 10(6): 1896-1903, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38735064

ABSTRACT

Glucose is widely used in the reconstitution of intravenous medications, which often include antimicrobials. How glucose affects antimicrobial activity has not been comprehensively studied. The present work reports that glucose added to bacteria growing in a rich medium suppresses the bactericidal but not the bacteriostatic activity of several antimicrobial classes, thereby revealing a phenomenon called glucose-mediated antimicrobial tolerance. Glucose, at concentrations corresponding to blood-sugar levels of humans, increased survival of Escherichia coli treated with quinolones, aminoglycosides, and cephalosporins with little effect on minimal inhibitory concentration. Glucose suppressed a ROS surge stimulated by ciprofloxacin. Genes involved in phosphorylated fructose metabolism contributed to glucose-mediated tolerance, since a pfkA deficiency, which blocks the formation of fructose-1,6-bisphosphate, eliminated protection by glucose. Disrupting the pentose phosphate pathway or the TCA cycle failed to alter glucose-mediated tolerance, consistent with an upstream involvement of phosphorylated fructose. Exogenous sodium pyruvate or sodium citrate reversed glucose-mediated antimicrobial tolerance. Both metabolites bypass the effects of fructose-1,6-bisphosphate, a compound known to scavenge hydroxyl radical and chelate iron, activities that suppress ROS accumulation. Treatment with these two compounds constitutes a novel way to mitigate the glucose-mediated antimicrobial tolerance that may exist during intravenous antimicrobial therapy, especially for diabetes patients.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Glucose , Microbial Sensitivity Tests , Reactive Oxygen Species , Glucose/metabolism , Reactive Oxygen Species/metabolism , Escherichia coli/drug effects , Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Humans , Microbial Viability/drug effects , Pentose Phosphate Pathway/drug effects , Fructosediphosphates/pharmacology , Fructosediphosphates/metabolism
7.
Redox Biol ; 73: 103187, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744190

ABSTRACT

Monocyte-derived dendritic cells (MDDCs) are key players in the defense against fungal infection because of their outstanding capacity for non-opsonic phagocytosis and phenotypic plasticity. Accordingly, MDDCs rewire metabolism to meet the energetic demands for microbial killing and biomass synthesis required to restore homeostasis. It has been commonplace considering the metabolic reprogramming a mimicry of the Warburg effect observed in tumor cells. However, this may be an oversimplification since the offshoots of glycolysis and the tricarboxylic acid (TCA) cycle are connected in central carbon metabolism. Zymosan, the external wall of Saccharomyces cerevisiae, contains ß-glucan and α-mannan chains that engage the C-type lectin receptors dectin-1/2 and Toll-like receptors. This makes it an optimal fungal surrogate for experimental research. Using real-time bioenergetic assays and [U-13C]glucose labeling, central hubs connected to cytokine expression were identified. The pentose phosphate pathway (PPP) exhibited a more relevant capacity to yield ribose-5-phosphate than reducing equivalents of NADPH, as judged from the high levels of isotopologues showing 13C-labeling in the ribose moiety and the limited contribution of the oxidative arm of the PPP to the production of ROS by NADPH oxidases (NOX). The finding of 13C-label in the purine ring and in glutathione unveiled the contribution of serine-derived glycine to purine ring and glutathione synthesis. Serine synthesis also supported the TCA cycle. Zymosan exhausted NAD+ and ATP, consistent with intracellular consumption and/or extracellular export. Poly-ADP-ribosylated proteins detected in the nuclear fractions of MDDCs did not show major changes upon zymosan stimulation, which suggests its dependence on constitutive Fe(II)/2-oxoglutarate-dependent demethylation of 5-methylcytosine by TET translocases and/or demethylation of histone H3 lysine 27 by JMJD demethylases rather than on NOX activities. These results disclose a unique pattern of central carbon metabolism following fungal challenge, characterized by the leverage of glycolysis offshoots and an extensive recycling of NAD+ and poly(ADP-ribose).


Subject(s)
Carbon , Dendritic Cells , Humans , Carbon/metabolism , Dendritic Cells/metabolism , Zymosan/metabolism , Monocytes/metabolism , Pentose Phosphate Pathway , Glycolysis , Reactive Oxygen Species/metabolism , Energy Metabolism , Saccharomyces cerevisiae/metabolism , Citric Acid Cycle , NADPH Oxidases/metabolism , Phagocytosis , Cytokines/metabolism
8.
Appl Environ Microbiol ; 90(6): e0072424, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38771053

ABSTRACT

The central carbon (C) metabolic network is responsible for most of the production of energy and biosynthesis in microorganisms and is therefore key to a mechanistic understanding of microbial life in soil communities. Many upland soil communities have shown a relatively high C flux through the pentose phosphate (PP) or the Entner-Doudoroff (ED) pathway, thought to be related to oxidative damage control. We tested the hypothesis that the metabolic organization of the central C metabolic network differed between two ecosystems, an anoxic marsh soil and oxic upland soil, and would be affected by altering oxygen concentrations. We expected there to be high PP/ED pathway activity under high oxygen concentrations and in oxic soils and low PP/ED activity in reduced oxygen concentrations and in marsh soil. Although we found high PP/ED activity in the upland soil and low activity in the marsh soil, lowering the oxygen concentration for the upland soil did not reduce the relative PP/ED pathway activity as hypothesized, nor did increasing the oxygen concentration in the marsh soil increase the PP/ED pathway activity. We speculate that the high PP/ED activity in the upland soil, even when exposed to low oxygen concentrations, was related to a high demand for NADPH for biosynthesis, thus reflecting higher microbial growth rates in C-rich soils than in C-poor sediments. Further studies are needed to explain the observed metabolic diversity among soil ecosystems and determine whether it is related to microbial growth rates.IMPORTANCEWe observed that the organization of the central carbon (C) metabolic processes differed between oxic and anoxic soil. However, we also found that the pentose phosphate pathway/Entner-Doudoroff (PP/ED) pathway activity remained high after reducing the oxygen concentration for the upland soil and did not increase in response to an increase in oxygen concentration in the marsh soil. These observations contradicted the hypothesis that oxidative stress is a main driver for high PP/ED activity in soil communities. We suggest that the high PP/ED activity and NADPH production reflect higher anabolic activities and growth rates in the upland soil compared to the anaerobic marsh soil. A greater understanding of the molecular and biochemical processes in soil communities is needed to develop a mechanistic perspective on microbial activities and their relationship to soil C and nutrient cycling. Such an increased mechanistic perspective is ecologically relevant, given that the central carbon metabolic network is intimately tied to the energy metabolism of microbes, the efficiency of new microbial biomass production, and soil organic matter formation.


Subject(s)
Carbon , Soil Microbiology , Wetlands , Carbon/metabolism , Bacteria/metabolism , Bacteria/classification , Soil/chemistry , Tracheophyta/metabolism , Tracheophyta/microbiology , Tracheophyta/growth & development , Oxygen/metabolism , Anaerobiosis , Pentose Phosphate Pathway , Fresh Water/microbiology , Ecosystem
9.
Arch Biochem Biophys ; 756: 110021, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697344

ABSTRACT

The physiological efficiency of cells largely depends on the possibility of metabolic adaptations to changing conditions, especially on the availability of nutrients. Central carbon metabolism has an essential role in cellular function. In most cells is based on glucose, which is the primary energy source, provides the carbon skeleton for the biosynthesis of important cell macromolecules, and acts as a signaling molecule. The metabolic flux between pathways of carbon metabolism such as glycolysis, pentose phosphate pathway, and mitochondrial oxidative phosphorylation is dynamically adjusted by specific cellular economics responding to extracellular conditions and intracellular demands. Using Saccharomyces cerevisiae yeast cells and potentially similar fermentable carbon sources i.e. glucose and fructose we analyzed the parameters concerning the metabolic status of the cells and connected with them alteration in cell reproductive potential. Those parameters were related to the specific metabolic network: the hexose uptake - glycolysis and activity of the cAMP/PKA pathway - pentose phosphate pathway and biosynthetic capacities - the oxidative respiration and energy generation. The results showed that yeast cells growing in a fructose medium slightly increased metabolism redirection toward respiratory activity, which decreased pentose phosphate pathway activity and cellular biosynthetic capabilities. These differences between the fermentative metabolism of glucose and fructose, lead to long-term effects, manifested by changes in the maximum reproductive potential of cells.


Subject(s)
Energy Metabolism , Fermentation , Fructose , Glucose , Glycolysis , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Fructose/metabolism , Glucose/metabolism , Pentose Phosphate Pathway
10.
PLoS Biol ; 22(5): e3002299, 2024 May.
Article in English | MEDLINE | ID: mdl-38713712

ABSTRACT

Activation of immune cells requires the remodeling of cell metabolism in order to support immune function. We study these metabolic changes through the infection of Drosophila larvae by parasitoid wasp. The parasitoid egg is neutralized by differentiating lamellocytes, which encapsulate the egg. A melanization cascade is initiated, producing toxic molecules to destroy the egg while the capsule also protects the host from the toxic reaction. We combined transcriptomics and metabolomics, including 13C-labeled glucose and trehalose tracing, as well as genetic manipulation of sugar metabolism to study changes in metabolism, specifically in Drosophila hemocytes. We found that hemocytes increase the expression of several carbohydrate transporters and accordingly uptake more sugar during infection. These carbohydrates are metabolized by increased glycolysis, associated with lactate production, and cyclic pentose phosphate pathway (PPP), in which glucose-6-phosphate is re-oxidized to maximize NADPH yield. Oxidative PPP is required for lamellocyte differentiation and resistance, as is systemic trehalose metabolism. In addition, fully differentiated lamellocytes use a cytoplasmic form of trehalase to cleave trehalose to glucose and fuel cyclic PPP. Intracellular trehalose metabolism is not required for lamellocyte differentiation, but its down-regulation elevates levels of reactive oxygen species, associated with increased resistance and reduced fitness. Our results suggest that sugar metabolism, and specifically cyclic PPP, within immune cells is important not only to fight infection but also to protect the host from its own immune response and for ensuring fitness of the survivor.


Subject(s)
Glucose , Hemocytes , Pentose Phosphate Pathway , Trehalose , Animals , Trehalose/metabolism , Glucose/metabolism , Hemocytes/metabolism , Larva/metabolism , Larva/parasitology , Drosophila melanogaster/metabolism , Drosophila melanogaster/parasitology , Disease Resistance , Glycolysis , Host-Parasite Interactions , Wasps/metabolism , Wasps/physiology , Cell Differentiation , Drosophila/metabolism , Drosophila/parasitology
11.
J Agric Food Chem ; 72(21): 12219-12228, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38747135

ABSTRACT

Phycocyanobilin, an algae-originated light-harvesting pigment known for its antioxidant properties, has gained attention as it plays important roles in the food and medication industries and has surged in demand owing to its low-yield extraction from natural resources. In this study, engineered Corynebacterium glutamicum was developed to achieve high PCB production, and three strategies were proposed: reinforcement of the heme biosynthesis pathway with the introduction of two PCB-related enzymes, strengthening of the pentose phosphate pathway to generate an efficient cycle of NADPH, and fed-batch fermentation to maximize PCB production. Each approach increased PCB synthesis, and the final engineered strain successfully produced 78.19 mg/L in a flask and 259.63 mg/L in a 5 L bioreactor, representing the highest bacterial production of PCB reported to date, to our knowledge. The strategies applied in this study will be useful for the synthesis of PCB derivatives and can be applied in the food and pharmaceutical industries.


Subject(s)
Corynebacterium glutamicum , Metabolic Engineering , Phycobilins , Phycocyanin , Corynebacterium glutamicum/metabolism , Corynebacterium glutamicum/genetics , Phycocyanin/metabolism , Phycocyanin/genetics , Phycobilins/metabolism , Phycobilins/genetics , Fermentation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Pentose Phosphate Pathway/genetics , Bioreactors/microbiology
12.
Phytomedicine ; 129: 155657, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692076

ABSTRACT

BACKGROUND: The pentose phosphate pathway (PPP) plays a crucial role in the material and energy metabolism in cancer cells. Targeting 6-phosphogluconate dehydrogenase (6PGD), the rate-limiting enzyme in the PPP metabolic process, to inhibit cellular metabolism is an effective anticancer strategy. In our previous study, we have preliminarily demonstrated that gambogic acid (GA) induced cancer cell death by inhibiting 6PGD and suppressing PPP at the cellular level. However, it is unclear whether GA could suppress cancer cell growth by inhibiting PPP pathway in mouse model. PURPOSE: This study aimed to confirm that GA as a covalent inhibitor of 6PGD protein and to validate that GA suppresses cancer cell growth by inhibiting the PPP pathway in a mouse model. METHODS: Cell viability was detected by CCK-8 assays as well as flow cytometry. The protein targets of GA were identified using a chemical probe and activity-based protein profiling (ABPP) technology. The target validation was performed by in-gel fluorescence assay, the Cellular Thermal Shift Assay (CETSA). A lung cancer mouse model was constructed to test the anticancer activity of GA. RNA sequencing was performed to analyze the global effect of GA on gene expression. RESULTS: The chemical probe of GA exhibited high biological activity in vitro. 6PGD was identified as one of the binding proteins of GA by ABPP. Our findings revealed a direct interaction between GA and 6PGD. We also found that the anti-cancer activity of GA depended on reactive oxygen species (ROS), as evidenced by experiments on cells with 6PGD knocked down. More importantly, GA could effectively reduce the production of the two major metabolites of the PPP in lung tissue and inhibit cancer cell growth in the mouse model. Finally, RNA sequencing data suggested that GA treatment significantly regulated apoptosis and hypoxia-related physiological processes. CONCLUSION: These results demonstrated that GA was a covalent inhibitor of 6PGD protein. GA effectively suppressed cancer cell growth by inhibiting the PPP pathway without causing significant side effects in the mouse model. Our study provides in vivo evidence that elucidates the anticancer mechanism of GA, which involves the inhibition of 6PGD and modulation of cellular metabolic processes.


Subject(s)
Lung Neoplasms , Pentose Phosphate Pathway , Xanthones , Xanthones/pharmacology , Animals , Pentose Phosphate Pathway/drug effects , Lung Neoplasms/drug therapy , Mice , Humans , Phosphogluconate Dehydrogenase/metabolism , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/pharmacology , Cell Survival/drug effects , Disease Models, Animal
13.
mSphere ; 9(5): e0034823, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38591898

ABSTRACT

Staphylococcus aureus RNAIII is a dual-function regulatory RNA that controls the expression of multiple virulence genes and especially the transition from adhesion to the production of exotoxins. However, its contribution to S. aureus central metabolism remains unclear. Using MS2-affinity purification coupled with RNA sequencing, we uncovered more than 50 novel RNAIII-mRNA interactions. Among them, we demonstrate that RNAIII is a major activator of the rpiRc gene, encoding a regulator of the pentose phosphate pathway (PPP). RNAIII binds the 5' UTR of rpiRc mRNA to favor ribosome loading, leading to an increased expression of RpiRc and, subsequently, of two PPP enzymes. Finally, we show that RNAIII and RpiRc are involved in S. aureus fitness in media supplemented with various carbohydrate sources related to PPP and glycolysis. Collectively, our data depict an unprecedented phenotype associated with the RNAIII regulon, especially the direct implication of RNAIII in central metabolic activity modulation. These findings show that the contribution of RNAIII in Staphylococcus aureus adaptation goes far beyond what was initially reported. IMPORTANCE: Staphylococcus aureus is a major human pathogen involved in acute and chronic infections. Highly recalcitrant to antibiotic treatment, persistent infections are mostly associated with the loss of RNAIII expression, a master RNA regulator responsible for the switch from colonization to infection. Here, we used the MS2 affinity purification coupled with RNA sequencing approach to identify novel mRNA targets of RNAIII and uncover novel functions. We demonstrate that RNAIII is an activator of the expression of genes involved in the pentose phosphate pathway and is implicated in the adjustment of bacterial fitness as a function of carbohydrate sources. Taken together, our results demonstrate an unprecedented role of RNAIII that goes beyond the knowledge gained so far and contributes to a better understanding of the role of RNAIII in bacterial adaptation expression and the coordination of a complex regulatory network.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Pentose Phosphate Pathway , RNA, Bacterial , Staphylococcus aureus , Pentose Phosphate Pathway/genetics , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
14.
Nat Commun ; 15(1): 2999, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589375

ABSTRACT

Ribose-5-phosphate (R5P) is a precursor for nucleic acid biogenesis; however, the importance and homeostasis of R5P in the intracellular parasite Toxoplasma gondii remain enigmatic. Here, we show that the cytoplasmic sedoheptulose-1,7-bisphosphatase (SBPase) is dispensable. Still, its co-deletion with transaldolase (TAL) impairs the double mutant's growth and increases 13C-glucose-derived flux into pentose sugars via the transketolase (TKT) enzyme. Deletion of the latter protein affects the parasite's fitness but is not lethal and is correlated with an increased carbon flux via the oxidative pentose phosphate pathway. Further, loss of TKT leads to a decline in 13C incorporation into glycolysis and the TCA cycle, resulting in a decrease in ATP levels and the inability of phosphoribosyl-pyrophosphate synthetase (PRPS) to convert R5P into 5'-phosphoribosyl-pyrophosphate and thereby contribute to the production of AMP and IMP. Likewise, PRPS is essential for the lytic cycle. Not least, we show that RuPE-mediated metabolic compensation is imperative for the survival of the ΔsbpaseΔtal strain. In conclusion, we demonstrate that multiple routes can flexibly supply R5P to enable parasite growth and identify catalysis by TKT and PRPS as critical enzymatic steps. Our work provides novel biological and therapeutic insights into the network design principles of intracellular parasitism in a clinically-relevant pathogen.


Subject(s)
Toxoplasma , Toxoplasma/metabolism , Diphosphates/metabolism , Ribosemonophosphates/metabolism , Glycolysis , Pentose Phosphate Pathway
15.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673877

ABSTRACT

Monosomy 3 in uveal melanoma (UM) increases the risk of lethal metastases, mainly in the liver, which serves as the major site for the storage of excessive glucose and the metabolization of the dietary flavonoid quercetin. Although primary UMs with monosomy 3 exhibit a higher potential for basal glucose uptake, it remains unknown as to whether glycolytic capacity is altered in such tumors. Herein, we initially analyzed the expression of n = 151 genes involved in glycolysis and its interconnected branch, the "pentose phosphate pathway (PPP)", in the UM cohort of The Cancer Genome Atlas Study and validated the differentially expressed genes in two independent cohorts. We also evaluated the effects of quercetin on the growth, survival, and glucose metabolism of the UM cell line 92.1. The rate-limiting glycolytic enzyme PFKP was overexpressed whereas the ZBTB20 gene (locus: 3q13.31) was downregulated in the patients with metastases in all cohorts. Quercetin was able to impair proliferation, viability, glucose uptake, glycolysis, ATP synthesis, and PPP rate-limiting enzyme activity while increasing oxidative stress. UMs with monosomy 3 display a stronger potential to utilize glucose for the generation of energy and biomass. Quercetin can prevent the growth of UM cells by interfering with glucose metabolism.


Subject(s)
Cell Proliferation , Glucose , Glycolysis , Melanoma , Quercetin , Uveal Neoplasms , Quercetin/pharmacology , Melanoma/metabolism , Melanoma/pathology , Melanoma/genetics , Melanoma/drug therapy , Humans , Uveal Neoplasms/metabolism , Uveal Neoplasms/genetics , Uveal Neoplasms/pathology , Uveal Neoplasms/drug therapy , Glucose/metabolism , Glycolysis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Pentose Phosphate Pathway/drug effects , Chromosomes, Human, Pair 3/genetics
16.
New Phytol ; 242(6): 2453-2463, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38567702

ABSTRACT

CO2 release in the light (RL) and its presumed source, oxidative pentose phosphate pathways, were found to be insensitive to CO2 concentration. The oxidative pentose phosphate pathways form glucose 6-phosphate (G6P) shunts that bypass the nonoxidative pentose phosphate reactions of the Calvin-Benson cycle. Using adenosine diphosphate glucose and uridine diphosphate glucose as proxies for labeling of G6P in the stroma and cytosol respectively, it was found that only the cytosolic shunt was active. Uridine diphosphate glucose, a proxy for cytosolic G6P, and 6-phosphogluconate (6PG) were significantly less labeled than Calvin-Benson cycle intermediates in the light. But ADP glucose, a proxy for stromal G6P, is labeled to the same degree as Calvin-Benson cycle intermediates and much greater than 6PG. A metabolically inert pool of sedoheptulose bisphosphate can slowly equilibrate keeping the label in sedoheptulose lower than in other stromal metabolites. Finally, phosphorylation of fructose 6-phosphate (F6P) in the cytosol can allow some unlabeled carbon in cytosolic F6P to dilute label in phosphenolpyruvate. The results clearly show that there is oxidative pentose phosphate pathway activity in the cytosol that provides a shunt around the nonoxidative pentose phosphate pathway reactions of the Calvin-Benson cycle and is not strongly CO2-sensitive.


Subject(s)
Carbon Dioxide , Oxidation-Reduction , Pentose Phosphate Pathway , Photosynthesis , Carbon Dioxide/metabolism , Glucose-6-Phosphate/metabolism , Cytosol/metabolism , Light , Arabidopsis/metabolism , Arabidopsis/physiology
17.
Int Immunol ; 36(7): 329-338, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38441292

ABSTRACT

This review article delves into the complexities of granuloma formation, focusing on the metabolic reprogramming within these immune structures, especially in tuberculosis and sarcoidosis. It underscores the role of the monocyte-macrophage lineage in granuloma formation and maintenance, emphasizing the adaptability of these cells to environmental cues and inflammatory stimuli. Key to the discussion is the macrophage polarization influenced by various cytokines, with a detailed exploration of the metabolic shifts towards glycolysis under hypoxic conditions and the utilization of the pentose phosphate pathway (PPP) for crucial biosynthetic processes. Significant attention is given to the metabolism of L-arginine in macrophages and its impact on immune response and granuloma function. The review also highlights the role of mechanistic target of rapamycin (mTOR) signaling in macrophage differentiation and its implications in granulomatous diseases. Discoveries such as elevated PPP activity in granuloma-associated macrophages and the protective role of NADPH against oxidative stress offer novel insights into granuloma biology. The review concludes by suggesting potential therapeutic targets within these metabolic pathways to modulate granuloma formation and function, proposing new treatment avenues for conditions characterized by chronic inflammation and granuloma formation. This work contributes significantly to the understanding of immune regulation and chronic inflammation, presenting avenues for future research and therapy in granulomatous diseases.


Subject(s)
Granuloma , Macrophages , Humans , Macrophages/immunology , Macrophages/metabolism , Granuloma/immunology , Granuloma/pathology , Animals , Pentose Phosphate Pathway/immunology , Signal Transduction/immunology , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/immunology , Macrophage Activation/immunology , Glycolysis/immunology , Metabolic Reprogramming
18.
J Mol Recognit ; 37(3): e3083, 2024 May.
Article in English | MEDLINE | ID: mdl-38514991

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) are pentose phosphate pathway enzymes. Compounds with a heterocyclic pyrrole ring system containing this atom can be derivatized with various functional groups into highly effective bioactive agents. In this study, pyrrole derivatives on these enzyme's activity were investigated. The IC50 values of different concentrations of pyrrole derivatives for G6PD were found in the range of 0.022-0.221 mM Ki values 0.021 ± 0.003-0.177 ± 0.021 and for 6PGD IC50 values 0.020-0.147, mM Ki values 0.013 ± 0.002-0.113 ± 0.030 mM. The 2-acetyl-1-methylpyrrole (1g) showed the best inhibition value for G6PD and 6PGD enzymes. In addition, in silico molecular docking experiments were performed to elucidate how these pyrrole derivatives (1a-g) interact with the binding sites of the target enzymes. The study's findings on pyrrole derivatives could be used to create innovative therapeutics that could be a treatment for many diseases, especially cancer manifestations.


Subject(s)
Pentose Phosphate Pathway , Phosphogluconate Dehydrogenase , Molecular Docking Simulation , Phosphogluconate Dehydrogenase/chemistry , Phosphogluconate Dehydrogenase/metabolism , Binding Sites , Pyrroles/pharmacology
19.
Nat Commun ; 15(1): 2666, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531855

ABSTRACT

To broaden the substrate scope of microbial cell factories towards renewable substrates, rational genetic interventions are often combined with adaptive laboratory evolution (ALE). However, comprehensive studies enabling a holistic understanding of adaptation processes primed by rational metabolic engineering remain scarce. The industrial workhorse Pseudomonas putida was engineered to utilize the non-native sugar D-xylose, but its assimilation into the bacterial biochemical network via the exogenous xylose isomerase pathway remained unresolved. Here, we elucidate the xylose metabolism and establish a foundation for further engineering followed by ALE. First, native glycolysis is derepressed by deleting the local transcriptional regulator gene hexR. We then enhance the pentose phosphate pathway by implanting exogenous transketolase and transaldolase into two lag-shortened strains and allow ALE to finetune the rewired metabolism. Subsequent multilevel analysis and reverse engineering provide detailed insights into the parallel paths of bacterial adaptation to the non-native carbon source, highlighting the enhanced expression of transaldolase and xylose isomerase along with derepressed glycolysis as key events during the process.


Subject(s)
Pseudomonas putida , Xylose , Xylose/metabolism , Pseudomonas putida/genetics , Transaldolase/genetics , Metabolic Engineering , Pentose Phosphate Pathway
20.
Plant Physiol Biochem ; 209: 108520, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38522131

ABSTRACT

In Arabidopsis, the plastidial isoform of phosphoglucose isomerase, PGI1, mediates growth and photosynthesis, likely due to its involvement in the vascular production of cytokinins (CK). To examine this hypothesis, we characterized pgi1-2 knockout plants impaired in PGI1 and pgi1-2 plants specifically expressing PGI1 in root tips and vascular tissues. Moreover, to investigate whether the phenotype of pgi1-2 plants is due to impairments in the plastidial oxidative pentose phosphate pathway (OPPP) or the glycolytic pathway, we characterized pgl3-1 plants with reduced OPPP and pfk4pfk5 knockout plants impaired in plastidial glycolysis. Compared with wild-type (WT) leaves, pgi1-2 leaves exhibited weaker expression of photosynthesis- and 2-C-methyl-D-erythritol 4-P (MEP) pathway-related proteins, and stronger expression of oxidative stress protection-related enzymes. Consistently, pgi1-2 leaves accumulated lower levels of chlorophyll, and higher levels of tocopherols, flavonols and anthocyanins than the WT. Vascular- and root tip-specific PGI1 expression countered the reduced photosynthesis, low MEP pathway-derived CK content, dwarf phenotype and the metabolic characteristics of pgi1-2 plants, reverting them to WT-like levels. Moreover, pgl3-1, but not pfk4pfk5 plants phenocopied pgi1-2. Histochemical analyses of plants expressing GUS under the control of promoter regions of genes encoding plastidial OPPP enzymes exhibited strong GUS activity in root tips and vascular tissues. Overall, our findings show that root tip and vascular PGI1-mediated plastidial OPPP activity affects photosynthesis and growth through mechanisms involving long-distance modulation of the leaf proteome by MEP pathway-derived CKs.


Subject(s)
Arabidopsis , Pentose Phosphate Pathway , Anthocyanins/metabolism , Photosynthesis , Arabidopsis/metabolism , Cytokinins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...