Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Phylogenet Evol ; 163: 107229, 2021 10.
Article in English | MEDLINE | ID: mdl-34129936

ABSTRACT

Biological radiations provide unique opportunities to understand the evolution of biodiversity. One such radiation is the pepper plant family Piperaceae, an early-diverging and mega-diverse lineage that could serve as a model to study the diversification of angiosperms. However, traditional genetic markers lack sufficient variation for such studies, and testing hypotheses on poorly resolved phylogenetic frameworks becomes challenging. Limited genomic data is available for Piperaceae, which contains two of the largest genera of angiosperms, Piper (>2100 species) and Peperomia (>1300 species). To address this gap, we used genome skimming to assemble and annotate whole plastomes (152-161kbp) and >5kbp nuclear ribosomal DNA region from representatives of Piper and Peperomia. We conducted phylogenetic and comparative genomic analyses to study plastome evolution and investigate the role of hybridization in this group. Plastome phylogenetic trees were well resolved and highly supported, with a hard incongruence observed between plastome and nuclear phylogenetic trees suggesting hybridization in Piper. While all plastomes of Piper and Peperomia had the same gene content and order, there were informative structural differences between them. First, ycf1 was more variable and longer in Piper than Peperomia, extending well into the small single copy region by thousands of base pairs. We also discovered previously unknown structural variation in 14 out of 25 Piper taxa, tandem duplication of the trnH-GUG gene resulting in an expanded large single copy region. Other early-diverging angiosperms have a duplicated trnH-GUG, but the specific rearrangement we found is unique to Piper and serves to refine knowledge of relationships among early-diverging angiosperms. Our study demonstrates that genome skimming is an efficient approach to produce plastome assemblies for comparative genomics and robust phylogenies of species-rich plant genera.


Subject(s)
Magnoliopsida , Peperomia , Piper , Evolution, Molecular , Genomics , Magnoliopsida/genetics , Peperomia/genetics , Phylogeny , Piper/genetics
2.
BMC Evol Biol ; 11: 357, 2011 Dec 12.
Article in English | MEDLINE | ID: mdl-22151585

ABSTRACT

BACKGROUND: The rapidly increasing number of available plant genomes opens up almost unlimited prospects for biology in general and molecular phylogenetics in particular. A recent study took advantage of this data and identified a set of nuclear genes that occur in single copy in multiple sequenced angiosperms. The present study is the first to apply genomic sequence of one of these low copy genes, agt1, as a phylogenetic marker for species-level phylogenetics. Its utility is compared to the performance of several coding and non-coding chloroplast loci that have been suggested as most applicable for this taxonomic level. As a model group, we chose Tildenia, a subgenus of Peperomia (Piperaceae), one of the largest plant genera. Relationships are particularly difficult to resolve within these species rich groups due to low levels of polymorphisms and fast or recent radiation. Therefore, Tildenia is a perfect test case for applying new phylogenetic tools. RESULTS: We show that the nuclear marker agt1, and in particular the agt1 introns, provide a significantly increased phylogenetic signal compared to chloroplast markers commonly used for low level phylogenetics. 25% of aligned characters from agt1 intron sequence are parsimony informative. In comparison, the introns and spacer of several common chloroplast markers (trnK intron, trnK-psbA spacer, ndhF-rpl32 spacer, rpl32-trnL spacer, psbA-trnH spacer) provide less than 10% parsimony informative characters. The agt1 dataset provides a deeper resolution than the chloroplast markers in Tildenia. CONCLUSIONS: Single (or very low) copy nuclear genes are of immense value in plant phylogenetics. Compared to other nuclear genes that are members of gene families of all sizes, lab effort, such as cloning, can be kept to a minimum. They also provide regions with different phylogenetic content deriving from coding and non-coding parts of different length. Thus, they can be applied to a wide range of taxonomic levels from family down to population level. As more plant genomes are sequenced, we will obtain increasingly precise information about which genes return to single copy most rapidly following gene duplication and may be most useful across a wide range of plant groups.


Subject(s)
Peperomia/genetics , Phylogeny , Chloroplasts/genetics , Genetic Speciation , Genome, Plant , Peperomia/classification , Transaminases/genetics
3.
Protein Expr Purif ; 72(1): 82-6, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20176109

ABSTRACT

The B subunit of Escherichia coli heat-labile enterotoxin (LTB), a non-toxic molecule with potent biological properties, is a powerful mucosal and parenteral adjuvant that induces a strong immune response against co-administered or coupled antigens. We synthesized a gene encoding the LTB adapted to the optimized coding sequences in plants and fused to the endoplasmic reticulum retention signal SEKDEL to enhance its expression level and protein assembly in plants. The synthetic LTB gene was located into a plant expression vector under the control of CaMV 35S promoter and was introduced into Peperomia pellucida by biolistic transformation method. The integration of synthetic LTB gene into genomic DNA of transgenic plants was confirmed by genomic DNA PCR amplification method. The assembly of plant-produced LTB was detected by western blot analysis. The amount of LTB protein produced in transgenic P. pellucida leaves was approximately 0.75% of the total soluble plant protein. Enzyme-linked immunosorbent assay indicated that plant-synthesized LTB protein bound specifically to GM1-ganglioside, which is receptor for LTB on the cell surface, suggesting that the LTB subunits formed biological active pentamers.


Subject(s)
Bacterial Toxins/genetics , Enterotoxins/genetics , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Gene Expression , Peperomia/genetics , Plants, Genetically Modified/genetics , Tissue Culture Techniques , Bacterial Toxins/analysis , Bacterial Toxins/metabolism , Enterotoxins/analysis , Enterotoxins/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/analysis , Escherichia coli Proteins/metabolism , G(M1) Ganglioside/metabolism , Genes, Bacterial , Peperomia/metabolism , Plants, Genetically Modified/metabolism , Protein Binding , Transformation, Genetic
4.
Plant Biol (Stuttg) ; 8(1): 93-102, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16435273

ABSTRACT

The genus Peperomia is one of the largest genera of basal angiosperms, comprising about 1500-1700 pantropically distributed species. The currently accepted infrageneric classification divides Peperomia into nine subgenera and seven sections. This classification is based on some 200 species, primarily using fruit morphology. The monophyly of these infrageneric taxa has never been tested and molecular phylogenetic studies of a representative sampling within Peperomia do not exist. This paper provides the first molecular phylogeny for the genus Peperomia. Monophyletic clades within Peperomia are identified and previously used morphological characters are critically reviewed. We show that the importance of some morphological characters has been overestimated and that some of these characters presumably have evolved several times independently. Only one previously described subgenus has been confirmed to be monophyletic.


Subject(s)
DNA, Chloroplast , Peperomia/classification , Genes, Plant/genetics , Introns , Peperomia/enzymology , Peperomia/genetics , Phylogeny , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...