Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Biol (Stuttg) ; 9(1): 136-41, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17048142

ABSTRACT

Data on flowering phenology and pollination of Peperomia species are virtually non-existent. This study presents data on the pollination biology of eight Peperomia species from south-eastern Brazil, including the flowering phenology, pollination system, and reproductive success. Data on flowering phenology were recorded weekly and exclusion experiments on inflorescences provided data on autonomous self- and wind pollination. Direct visual observations were made and insect visits were recorded. Four Peperomia species showed continuous flowering, while the others were seasonal and flowered in the wet season. Pollination by wind and Syrphidae was confirmed for two self-incompatible Peperomia species. The remaining species are self-compatible and their high fruit set may be accounted for by autonomous self-pollination and perhaps agamospermy. Although the floral morphology of Peperomia species suggests wind- and/or insect pollination, most of the species studied exhibit autogamy and perhaps agamospermy as the main method of reproduction.


Subject(s)
Peperomia/physiology , Periodicity , Brazil , Flowers/growth & development , Peperomia/growth & development , Pollen/physiology , Reproduction/physiology , Species Specificity , Trees
2.
BMC Pharmacol ; 2: 12, 2002 May 09.
Article in English | MEDLINE | ID: mdl-12019026

ABSTRACT

BACKGROUND: Peperomia pellucida is popularly known as coraçãozinho in the Brazilian northeast and is used in the treatment of abscesses, furuncles, and conjunctivitis. Our work aimed to determine the term of the development stages and the species cycle in the four seasons of the year (complete development, beginning of bloom, complete bloom, and seed set), verifying the plant's therapeutic profile during the four distinct development phases in order to detect differences in its potency. Pharmacological tests were performed to observe the anti-inflammatory activity. RESULTS: Phenological observations were accessed for a 12 month-period, from the Brazilian summer of 1999/2000 to fall 2000. On average the plantules' emergence occurred 15 days after seeding. All plantules grew in a similar manner up to 25 days after transplantation in all seasons. Starting on the 25th day, we observed faster growth during spring, with plants reaching a height of about 60 cm after 100 days of transplantation, unlike other seasons, in which plants reached heights of 40, 40, and 35 cm during winter, summer, and fall, respectively. The P. pellucida aqueous extract showed significant anti-inflammatory activity during phenophases 1 and 2 of winter and spring. Depending on the plant's phenophase there was variation in the potency of edema inhibition. CONCLUSION: P. pellucida has a phenological cycle of approximately 100 days. It is recommended that the P. pellucida aqueous extract is used as an antiedematogenic only during phenophases 1 and 2 of winter and spring.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Edema/drug therapy , Peperomia/chemistry , Peperomia/physiology , Seasons , Animals , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal , Female , Germination/physiology , Male , Medicine, Traditional , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats , Rats, Wistar , Seeds/physiology
SELECTION OF CITATIONS
SEARCH DETAIL