Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 25(20): 5718-5725, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28917449

ABSTRACT

Continuous administration of a 14-amino acid peptide YY (PYY) analog, Ac-[d-Pro24,Pya(4)26,Cha27,36,Aib28,31,Lys30]PYY(23-36) (4), which has a high binding affinity and agonist activity for the neuropeptide Y2 receptor (Y2R), has previously shown an antiobesity effect in a 2-week diet-induced obesity (DIO) study in mice. However, there remained a possibility to obtain more potent analogs by further improving its pharmacokinetic profile. A combination of the N-terminal 4-imidazolecarbonyl moiety and three amino acid substitutions, trans-4-hydroxy-d-proline (d-Hyp)24, isovaline (Iva)25, and γ-methylleucine (γMeLeu)28, not only improved the binding affinity of the peptide for Y2R but also increased its anorectic activity in lean mice. In a 2-week DIO study in mice, continuous administration of 4-imidazolecarbonyl-[d-Hyp24,Iva25,Pya(4)26,Cha27,36,γMeLeu28,Lys30,Aib31]PYY(23-36) (31, PYY-1119) at a dose of 0.03mg/kg/day showed a highly potent antiobesity effect, with more than 10% body weight reduction.


Subject(s)
Body Weight/drug effects , Peptide YY/chemistry , Peptide YY/pharmacology , Amino Acid Sequence , Animals , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/pharmacology , Diet , Inhibitory Concentration 50 , Male , Mice , Mice, Knockout , Molecular Structure , Peptide YY/agonists
2.
Arch Toxicol ; 91(1): 495-507, 2017 Jan.
Article in English | MEDLINE | ID: mdl-26979077

ABSTRACT

Food contamination by the trichothecene mycotoxin deoxynivalenol (DON, vomitoxin) has the potential to adversely affect animal and human health by suppressing food intake and impairing growth. In mice, the DON-induced anorectic response results from aberrant satiety hormone secretion by enteroendocrine cells (EECs) of the gastrointestinal tract. Recent in vitro studies in the murine STC-1 EEC model have linked DON-induced satiety hormone secretion to activation of calcium-sensing receptor (CaSR), a G-coupled protein receptor, and transient receptor potential ankyrin-1 (TRPA1), a TRP channel. However, it is unknown whether similar mechanisms mediate DON's anorectic effects in vivo. Here, we tested the hypothesis that DON-induced food refusal and satiety hormone release in the mouse are linked to activation of CaSR and TRPA1. Oral treatment with selective agonists for CaSR (R-568) or TRPA1 (allyl isothiocyanate (AITC)) suppressed food intake in mice, and the agonist's effects were suppressed by pretreatment with corresponding antagonists NPS-2143 or ruthenium red (RR), respectively. Importantly, NPS-2143 or RR inhibited both DON-induced food refusal and plasma elevations of the satiety hormones cholecystokinin (CCK) and peptide YY3-36 (PYY3-36); cotreatment with both antagonists additively suppressed both anorectic and hormone responses to DON. Taken together, these in vivo data along with prior in vitro findings support the contention that activation of CaSR and TRPA1 contributes to DON-induced food refusal by mediating satiety hormone exocytosis from EEC.


Subject(s)
Anorexia/chemically induced , Appetite Depressants/toxicity , Environmental Pollutants/toxicity , Models, Biological , Receptors, G-Protein-Coupled/agonists , Transient Receptor Potential Channels/agonists , Trichothecenes/toxicity , Animals , Anorexia/metabolism , Anorexia/prevention & control , Appetite Depressants/chemistry , Appetite Stimulants/therapeutic use , Behavior, Animal/drug effects , Cholecystokinin/agonists , Cholecystokinin/antagonists & inhibitors , Cholecystokinin/blood , Drug Therapy, Combination , Energy Intake/drug effects , Environmental Pollutants/antagonists & inhibitors , Female , Peptide Fragments/agonists , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/blood , Peptide YY/agonists , Peptide YY/antagonists & inhibitors , Peptide YY/blood , Random Allocation , Receptors, Calcium-Sensing , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/metabolism , Satiety Response/drug effects , TRPA1 Cation Channel , Transient Receptor Potential Channels/antagonists & inhibitors , Transient Receptor Potential Channels/metabolism , Trichothecenes/antagonists & inhibitors
3.
Diabetes Obes Metab ; 18(5): 508-18, 2016 May.
Article in English | MEDLINE | ID: mdl-26863991

ABSTRACT

AIMS: To investigate the anorectic effect of L-arginine (L-Arg) in rodents. METHODS: We investigated the effects of L-Arg on food intake, and the role of the anorectic gut hormones glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), the G-protein-coupled receptor family C group 6 member A (GPRC6A) and the vagus nerve in mediating these effects in rodents. RESULTS: Oral gavage of L-Arg reduced food intake in rodents, and chronically reduced cumulative food intake in diet-induced obese mice. Lack of the GPRC6A in mice and subdiaphragmatic vagal deafferentation in rats did not influence these anorectic effects. L-Arg stimulated GLP-1 and PYY release in vitro and in vivo. Pharmacological blockade of GLP-1 and PYY receptors did not influence the anorectic effect of L-Arg. L-Arg-mediated PYY release modulated net ion transport across the gut mucosa. Intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) administration of L-Arg suppressed food intake in rats. CONCLUSIONS: L-Arg reduced food intake and stimulated gut hormone release in rodents. The anorectic effect of L-Arg is unlikely to be mediated by GLP-1 and PYY, does not require GPRC6A signalling and is not mediated via the vagus. I.c.v. and i.p. administration of L-Arg suppressed food intake in rats, suggesting that L-Arg may act on the brain to influence food intake. Further work is required to determine the mechanisms by which L-Arg suppresses food intake and its utility in the treatment of obesity.


Subject(s)
Appetite Depressants/therapeutic use , Arginine/therapeutic use , Dietary Supplements , Gastrointestinal Agents/therapeutic use , Glucagon-Like Peptide 1/agonists , Obesity/diet therapy , Peptide YY/agonists , Animals , Appetite Depressants/administration & dosage , Appetite Depressants/adverse effects , Appetite Depressants/pharmacology , Arginine/administration & dosage , Arginine/adverse effects , Cells, Cultured , Dietary Supplements/adverse effects , Energy Intake/drug effects , Energy Metabolism/drug effects , Gastrointestinal Agents/administration & dosage , Gastrointestinal Agents/adverse effects , Gastrointestinal Agents/pharmacology , Glucagon-Like Peptide 1/blood , Glucagon-Like Peptide 1/metabolism , In Vitro Techniques , Injections, Intraperitoneal , Injections, Intraventricular , Intestinal Mucosa/cytology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Obesity/drug therapy , Obesity/metabolism , Obesity/pathology , Peptide YY/blood , Peptide YY/metabolism , Random Allocation , Rats, Wistar , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Weight Loss/drug effects
4.
Nutr Res ; 35(5): 393-400, 2015 May.
Article in English | MEDLINE | ID: mdl-25823991

ABSTRACT

We hypothesized that a digestion-resistant maltodextrin, Fibersol-2 (Archer Daniels Midland/Matsutani LLC, Decatur, IL, USA) may impact satiety by decreasing hunger, prolonging satiation, and/or increasing peripheral satiety signals. In a randomized, double-blind, placebo-controlled crossover study, healthy subjects (9 men and 10 women) underwent 3 treatments in which they consumed a standardized meal with a tea containing 0, 5, or 10 g of Fibersol-2. A visual analog scale questionnaire was given in 30-minute intervals to measure subjective appetite and satiety. Blood was drawn just before the meal (time 0) and at 30, 60, 90, 120, 180, and 240 minutes after meal for measurements of plasma ghrelin, cholecystokinin, gastrin, peptide YY, gastric inhibitory polypeptide, and glucagon-like peptide-1, all by enzyme-linked immunosorbent assay. There were significant delays in hunger and increased satiety for 1.5 to 2 hours after treatment with 10 g of Fibersol-2. These delays did not occur after ingesting 0 or 5 g Fibersol-2 at any time. Control and 5 g Fibersol-2 treatments did not suppress increases in hunger postmeal; hunger scores increased and satiety scores decreased significantly (P < .05) at all time points relative to the first postmeal assessment. Plasma peptide YY and glucagon-like peptide-1 were significantly increased by the ingestion of meal with tea containing 10 g Fibersol-2 compared with 0 or 5 g Fibersol-2 (P < .05). This study demonstrated that 10 g Fibersol-2 with a meal stimulated production of satiety hormones and enhanced satiety.


Subject(s)
Appetite Depressants/therapeutic use , Glucagon-Like Peptide 1/agonists , Overweight/diet therapy , Peptide YY/agonists , Polysaccharides/therapeutic use , Prebiotics , Satiety Response , Adult , Appetite Depressants/administration & dosage , Appetite Depressants/chemistry , Body Mass Index , Cross-Over Studies , Double-Blind Method , Enteroendocrine Cells/metabolism , Female , Glucagon-Like Peptide 1/blood , Glucagon-Like Peptide 1/metabolism , Humans , Lunch , Male , Middle Aged , Overweight/blood , Overweight/metabolism , Peptide YY/blood , Peptide YY/metabolism , Polysaccharides/administration & dosage , Polysaccharides/chemistry , Prebiotics/administration & dosage , Solubility , Tea , Viscosity , Young Adult
5.
Obesity (Silver Spring) ; 22(2): 344-8, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23630079

ABSTRACT

OBJECTIVE: Obesity is a health concern. Resistant starch (RS) type 2 from high-amylose maize (HAM-RS2) and dietary sodium butyrate (SB) reduce abdominal fat in rodents. RS treatment is associated with increased gut hormones peptide YY (PYY) and glucagon-like peptide 1 (GLP-1), but it is not known if SB increases these hormones. DESIGN AND METHODS: This was investigated in a 2 × 2 rat study with HAM-RS2 (0 or 28% weight) and dietary sodium butyrate (0 and 3.2%) resulting in isocaloric treatments: energy control (EC), sodium butyrate (SB), HAM-RS2 (RS), and the combination (SBRS). RESULTS: RS and SB reduced abdominal fat and the combination reduced abdominal fat compared to SB and RS. RS was associated with increased fermentation in the cecum. Serum PYY and GLP-1 total were increased with RS treatment. RS treatment was associated with increased cecal butyrate produced from fermentation of RS, but there was no cecal increase for dietary SB. CONCLUSIONS: SB after its absorption into the blood appears to not affect production of PYY and GLP-1, while butyrate from fermentation in the cecum promotes increased PYY and GLP-1. Future studies with lower doses of RS and SB are warranted and the combination may be beneficial for human health.


Subject(s)
Abdominal Fat/pathology , Anti-Obesity Agents/therapeutic use , Butyric Acid/therapeutic use , Obesity/prevention & control , Prebiotics , Starch/therapeutic use , Zea mays/chemistry , Adiposity , Amylose/genetics , Amylose/metabolism , Animals , Anti-Obesity Agents/metabolism , Bifidobacterium/growth & development , Bifidobacterium/isolation & purification , Bifidobacterium/metabolism , Butyric Acid/metabolism , Cecum/metabolism , Cecum/microbiology , Fermentation , Glucagon-Like Peptide 1/agonists , Glucagon-Like Peptide 1/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Lactobacillales/growth & development , Lactobacillales/isolation & purification , Lactobacillales/metabolism , Male , Obesity/metabolism , Obesity/microbiology , Obesity/pathology , Peptide YY/agonists , Peptide YY/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/chemistry , Plants, Genetically Modified/enzymology , Rats , Rats, Sprague-Dawley , Seeds/chemistry , Seeds/enzymology , Seeds/genetics , Starch/metabolism , Zea mays/enzymology , Zea mays/genetics
6.
Ann Clin Biochem ; 45(Pt 1): 93-5, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18275682

ABSTRACT

BACKGROUND: Peptide YY (PYY(3-36)) infused to levels within the physiological range reduces appetite and food intake in humans without nausea. However, PYY(3-36) has previously been shown to cause nausea at higher doses. METHODS: We studied the relationship of PYY(3-36), nausea and food intake in six volunteers, using three different PYY(3-36) preparations infused to achieve supraphysiological PYY plasma levels. RESULTS: Supraphysiological levels of PYY caused nausea in five subjects (P < 0.05). Although PYY(3-36) increased satiety (P < 0.05) and reduced food intake (P < 0.05), no greater enhancement of satiety or inhibition of food intake was observed compared with previous reports. CONCLUSIONS: This study cautions against the use of supraphysiological doses of PYY(3-36) as it may increase nausea with no benefit in food reduction.


Subject(s)
Nausea/chemically induced , Peptide YY/administration & dosage , Peptide YY/agonists , Eating/drug effects , Humans , Injections, Intravenous , Male , Peptide Fragments
7.
Peptides ; 22(3): 493-9, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11287106

ABSTRACT

Neuropeptide Y (NPY) and peptide YY (PYY) stimulate food intake after injection into the fourth cerebral ventricle, suggesting that NPY receptors in the hindbrain are targets for the stimulatory effect of these peptides on food intake. However, the NPY/PYY receptor subtype mediating the feeding response in the hindbrain is not known. To approach to this question we compared dose-effect of several NPY receptor agonists to stimulate food intake in freely-feeding rats 60- and 120-min after injection into the fourth cerebral ventricle. At the 120-min time point, PYY was 2- to 10-times as potent as NPY over the dose-response range and stimulated twice the total intake at the maximally effective dose (2-fold greater efficacy). NPY was 2-times as potent as the Y1, Y5 receptor agonist, [Leu(31)Pro(34)]NPY but acted with comparable efficacy. The Y5-, Y2-differentiating receptor agonist, NPY 2-36, was comparable in potency to PYY at low doses but equal in efficacy NPY and [Leu(31)Pro(34)]NPY. The Y2 receptor agonist, NPY 13-36, produced only a marginal effect on total food intake. The profile of agonist potency after fourth cerebral ventricle administration is similar to the profile obtained when these or related agonists are injected in the region of the hypothalamus. Agonists at both Y1 and Y5 receptors stimulated food intake with a rank order of potency that does not conclusively favor the exclusive involvement of a single known NPY receptor subtype. Thus it is possible that the ingestive effects of NPY and PYY are mediated by multiple or novel receptor subtypes in the hindbrain. And the relatively greater potency and efficacy of PYY raises the possibility that a novel PYY-preferring receptor in the hindbrain is involved in the stimulation of food intake.


Subject(s)
Eating/drug effects , Neuropeptide Y/agonists , Neuropeptide Y/pharmacology , Animals , Dose-Response Relationship, Drug , Hypothalamus/metabolism , Male , Peptide YY/agonists , Peptide YY/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Neuropeptide Y/metabolism , Rhombencephalon/drug effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...