Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 176.996
Filter
1.
Food Res Int ; 188: 114473, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823837

ABSTRACT

Oral delivery of larger bioactive peptides (>20 amino acids) to the small intestine remains a challenge due to their sensitivity to proteolytic degradation and chemical denaturation during gastrointestinal transit. In this study, we investigated the capacity of crosslinked alginate microcapsules (CLAMs) formed by spray drying to protect Plantaricin EF (PlnEF) (C-EF) in gastric conditions and to dissolve and release PlnEF in the small intestine. PlnEF is an unmodified, two-peptide (PlnE: 33 amino acids; PlnF: 34 amino acids) bacteriocin produced by Lactiplantibacillus plantarum with antimicrobial and gut barrier protective properties. After 2 h incubation in simulated gastric fluid (SGF) (pH 1.5), 43.39 % ± 8.27 % intact PlnEF was liberated from the CLAMs encapsulates, as determined by an antimicrobial activity assay. Transfer of the undissolved fraction to simulated intestinal fluid (SIF) (pH 7) for another 2 h incubation resulted in an additional release of 16.13 % ± 4.33 %. No active PlnEF was found during SGF or sequential SIF incubations when pepsin (2,000 U/ml) was added to the SGF. To test PlnEF release in C-EF contained in a food matrix, C-EF was mixed in peanut butter (PB) (0.15 g C-EF in 1.5 g PB). A total of 12.52 % ± 9.09 % active PlnEF was detected after incubation of PB + C-EF in SGF without pepsin, whereas no activity was found when pepsin was included. Transfer of the remaining PB + C-EF fractions to SIF yielded the recovery of 46.67 % ± 13.09 % and 39.42 % ± 11.53 % active PlnEF in the SIF following exposure to SGF and to SGF with pepsin, respectively. Upon accounting for the undissolved fraction after SIF incubation, PlnEF was fully protected in the CLAMs-PB mixture and there was not a significant reduction in active PlnEF when pepsin was present. These results show that CLAMs alone do not guard PlnEF bacteriocin peptides from gastric conditions, however, mixing them in PB protected against proteolysis and improved intestinal release.


Subject(s)
Alginates , Bacteriocins , Capsules , Alginates/chemistry , Peptides/chemistry , Intestine, Small/metabolism , Lactobacillus plantarum/metabolism , Hydrogen-Ion Concentration , Cross-Linking Reagents/chemistry , Pepsin A/metabolism
2.
Food Res Int ; 188: 114433, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823827

ABSTRACT

Whey derived peptides have shown potential activity improving brain function in pathological condition. However, there is little information about their mechanism of action on glial cells, which have important immune functions in brain. Astrocytes and microglia are essential in inflammatory and oxidative defense that take place in neurodegenerative disease. In this work we evaluate antioxidant and anti-inflammatory potential bioactivity of whey peptide in glial cells. Peptides were formed during simulated gastrointestinal digestion (Infogest protocol), and low molecular weight (<5kDA) peptides (WPHf) attenuated reactive oxygen species (ROS) production induced by hydrogen peroxide stimulus in both cells in dose-dependent manner. WPHf induced an increase in the antioxidant glutathione (GSH) content and prevented GSH reduction induced by lipopolysaccharides (LPS) stimulus in astrocytes cells in a cell specific form. An increase in cytokine mRNA expression (TNFα and IL6) and nitric oxide secretion induced by LPS was attenuated by WPHf pre-treatment in both cells. The inflammatory pathway was dependent on NFκB activation. Bioactive peptide ranking analysis showed positive correlation with hydrophobicity and negative correlation with high molecular weights. The sequence identification revealed 19 peptides cross-referred with bioactive database. Whey peptides were rich in leucine, valine and tyrosine in the C-terminal region and lysine in the N-terminal region. The anti-inflammatory and antioxidant potential of whey peptides were assessed in glia cells and its mechanisms of action were related, such as modulation of antioxidant enzymes and anti-inflammatory pathways. Features of the peptide structure, such as molecular size, hydrophobicity and types of amino acids present in the terminal region are associated to bioactivity.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Neuroglia , Whey Proteins , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology , Whey Proteins/pharmacology , Whey Proteins/chemistry , Whey Proteins/metabolism , Neuroglia/drug effects , Neuroglia/metabolism , Animals , Reactive Oxygen Species/metabolism , Lipopolysaccharides/pharmacology , Glutathione/metabolism , Peptides/pharmacology , Nitric Oxide/metabolism , Astrocytes/drug effects , Astrocytes/metabolism
3.
Biol Pharm Bull ; 47(6): 1072-1078, 2024.
Article in English | MEDLINE | ID: mdl-38825460

ABSTRACT

In previous studies, my group developed cell-adhesive peptide-polysaccharide complexes as biomaterials for tissue engineering. Having a wide variety of cell-adhesive peptides is important as the biological functions of peptide-polysaccharide complexes are highly dependent on the biological activity of peptides. This paper reviews the biological activities of two types of recently characterized cell-adhesive peptides. The first is peptides rich in basic amino acids originating from octaarginine. We analyzed the relationships between the amino acid composition of basic peptides and cell adhesion, elongation, and proliferation and identified the most suitable peptide for cell culture. The second was arginine-glycine-aspartic acid (RGD)-containing peptides that promote the adhesion of induced pluripotent stem cells (iPSCs). We identified the RGD-surrounding sequences necessary for iPSC adhesion, clarified the underlying mechanism, and improved cell adhesion by modifying the structure-activity relationships. The novel cell-adhesive peptides identified in our previous studies may aid in the development of novel peptide-based biomaterials.


Subject(s)
Biocompatible Materials , Cell Adhesion , Peptides , Cell Adhesion/drug effects , Biocompatible Materials/chemistry , Humans , Peptides/pharmacology , Peptides/chemistry , Animals , Oligopeptides/chemistry , Oligopeptides/pharmacology , Tissue Engineering/methods , Induced Pluripotent Stem Cells/cytology
4.
Nat Commun ; 15(1): 4687, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824166

ABSTRACT

Ligand-induced activation of G protein-coupled receptors (GPCRs) can initiate signaling through multiple distinct pathways with differing biological and physiological outcomes. There is intense interest in understanding how variation in GPCR ligand structure can be used to promote pathway selective signaling ("biased agonism") with the goal of promoting desirable responses and avoiding deleterious side effects. Here we present an approach in which a conventional peptide ligand for the type 1 parathyroid hormone receptor (PTHR1) is converted from an agonist which induces signaling through all relevant pathways to a compound that is highly selective for a single pathway. This is achieved not through variation in the core structure of the agonist, but rather by linking it to a nanobody tethering agent that binds with high affinity to a separate site on the receptor not involved in signal transduction. The resulting conjugate represents the most biased agonist of PTHR1 reported to date. This approach holds promise for facile generation of pathway selective ligands for other GPCRs.


Subject(s)
Receptor, Parathyroid Hormone, Type 1 , Receptors, G-Protein-Coupled , Signal Transduction , Single-Domain Antibodies , Ligands , Humans , Receptor, Parathyroid Hormone, Type 1/metabolism , Receptor, Parathyroid Hormone, Type 1/agonists , Single-Domain Antibodies/metabolism , Single-Domain Antibodies/pharmacology , HEK293 Cells , Signal Transduction/drug effects , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Protein Binding , Animals , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism
5.
Yakugaku Zasshi ; 144(5): 511-519, 2024.
Article in Japanese | MEDLINE | ID: mdl-38692926

ABSTRACT

Nanoparticles, including liposomes and lipid nanoparticles, have garnered global attention due to their potential applications in pharmaceuticals, vaccines, and gene therapies. These particles enable targeted delivery of new drug modalities such as highly active small molecules and nucleic acids. However, for widespread use of nanoparticle-based formulations, it is crucial to comprehensively analyze their characteristics to ensure both efficacy and safety, as well as enable consistent production. In this context, this review focuses on our research using atomic force microscopy (AFM) to study liposomes and lipid nanoparticles. Our work significantly contributes to the capability of AFM to measure various types of liposomes in an aqueous medium, providing valuable insights into the mechanical properties of these nanoparticles. We discuss the applications of this AFM technique in assessing the quality of nanoparticle-based pharmaceuticals and developing membrane-active peptides.


Subject(s)
Liposomes , Microscopy, Atomic Force , Nanoparticles , Microscopy, Atomic Force/methods , Lipids/chemistry , Drug Delivery Systems , Nanoparticle Drug Delivery System/chemistry , Peptides/chemistry
6.
Sci Adv ; 10(18): eadl2991, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38691615

ABSTRACT

Amyloid fibrils of tau are increasingly accepted as a cause of neuronal death and brain atrophy in Alzheimer's disease (AD). Diminishing tau aggregation is a promising strategy in the search for efficacious AD therapeutics. Previously, our laboratory designed a six-residue, nonnatural amino acid inhibitor D-TLKIVW peptide (6-DP), which can prevent tau aggregation in vitro. However, it cannot block cell-to-cell transmission of tau aggregation. Here, we find D-TLKIVWC (7-DP), a d-cysteine extension of 6-DP, not only prevents tau aggregation but also fragments tau fibrils extracted from AD brains to neutralize their seeding ability and protect neuronal cells from tau-induced toxicity. To facilitate the transport of 7-DP across the blood-brain barrier, we conjugated it to magnetic nanoparticles (MNPs). The MNPs-DP complex retains the inhibition and fragmentation properties of 7-DP alone. Ten weeks of MNPs-DP treatment appear to reverse neurological deficits in the PS19 mouse model of AD. This work offers a direction for development of therapies to target tau fibrils.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Magnetite Nanoparticles , tau Proteins , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , tau Proteins/metabolism , tau Proteins/chemistry , Mice , Humans , Magnetite Nanoparticles/chemistry , Amyloid/metabolism , Amyloid/chemistry , Mice, Transgenic , Behavior, Animal/drug effects , Peptides/chemistry , Peptides/pharmacology , Protein Aggregation, Pathological/metabolism , Brain/metabolism , Brain/pathology , Brain/drug effects
7.
Structure ; 32(5): 520-522, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701750

ABSTRACT

In a recent issue of Nature Chemical Biology, Folger et al. demonstrated a high-throughput approach for engineering peptide bond forming domains from non-ribosomal peptide synthesis. A non-ribosomal peptide synthetase module from surfactin biosynthesis was reprogrammed to accept a fatty acid substrate into peptide biosynthesis, thus illustrating the potential of this approach for generating novel bioactive peptides.


Subject(s)
Peptide Synthases , Protein Engineering , Peptide Synthases/metabolism , Peptide Synthases/chemistry , Peptide Synthases/genetics , Protein Engineering/methods , Peptides/metabolism , Peptides/chemistry
8.
Front Cell Infect Microbiol ; 14: 1384393, 2024.
Article in English | MEDLINE | ID: mdl-38720960

ABSTRACT

The clinical consequences of toxoplasmosis are greatly dependent on the Toxoplasma gondii strain causing the infection. To better understand its epidemiology and design appropriate control strategies, it is important to determine the strain present in infected animals. Serotyping methods are based on the detection of antibodies that react against segments of antigenic proteins presenting strain-specific polymorphic variations, offering a cost-effective, sensitive, and non-invasive alternative to genotyping techniques. Herein, we evaluated the applicability of a panel of peptides previously characterized in mice and humans to serotype sheep and pigs. To this end, we used 51 serum samples from experimentally infected ewes (32 type II and 19 type III), 20 sheep samples from naturally infected sheep where the causative strain was genotyped (18 type II and 2 type III), and 40 serum samples from experimentally infected pigs (22 type II and 18 type III). Our ELISA test results showed that a combination of GRA peptide homologous pairs can discriminate infections caused by type II and III strains of T. gondii in sheep and pigs. Namely, the GRA3-I/III-43 vs. GRA3-II-43, GRA6-I/III-213 vs. GRA6-II-214 and GRA6-III-44 vs. GRA6-II-44 ratios showed a statistically significant predominance of the respective strain-type peptide in sheep, while in pigs, in addition to these three peptide pairs, GRA7-II-224 vs. GRA7-III-224 also showed promising results. Notably, the GRA6-44 pair, which was previously deemed inefficient in mice and humans, showed a high prediction capacity, especially in sheep. By contrast, GRA5-38 peptides failed to correctly predict the strain type in most sheep and pig samples, underpinning the notion that individual standardization is needed for each animal species. Finally, we recommend analyzing for each animal at least 2 samples taken at different time points to confirm the obtained results.


Subject(s)
Antigens, Protozoan , Enzyme-Linked Immunosorbent Assay , Protozoan Proteins , Serotyping , Sheep Diseases , Toxoplasma , Toxoplasmosis, Animal , Animals , Sheep , Toxoplasma/genetics , Toxoplasma/immunology , Toxoplasma/classification , Toxoplasmosis, Animal/diagnosis , Toxoplasmosis, Animal/parasitology , Swine , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Sheep Diseases/parasitology , Sheep Diseases/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Serotyping/methods , Antibodies, Protozoan/blood , Peptides/immunology , Swine Diseases/parasitology , Swine Diseases/diagnosis , Genotype
9.
Proc Natl Acad Sci U S A ; 121(23): e2309674121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38722806

ABSTRACT

The identification of immunogenic peptides has become essential in an increasing number of fields in immunology, ranging from tumor immunotherapy to vaccine development. The nature of the adaptive immune response is shaped by the similarity between foreign and self-protein sequences, a concept extensively applied in numerous studies. Can we precisely define the degree of similarity to self? Furthermore, do we accurately define immune self? In the current work, we aim to unravel the conceptual and mechanistic vagueness hindering the assessment of self-similarity. Accordingly, we demonstrate the remarkably low consistency among commonly employed measures and highlight potential avenues for future research.


Subject(s)
Peptides , Humans , Peptides/immunology , Peptides/chemistry , Adaptive Immunity/immunology , Immunotherapy/methods , Autoantigens/immunology , Animals
10.
Methods Mol Biol ; 2800: 147-165, 2024.
Article in English | MEDLINE | ID: mdl-38709483

ABSTRACT

Molecular forces are increasingly recognized as an important parameter to understand cellular signaling processes. In the recent years, evidence accumulated that also T-cells exert tensile forces via their T-cell receptor during the antigen recognition process. To measure such intercellular pulling forces, one can make use of the elastic properties of spider silk peptides, which act similar to Hookean springs: increased strain corresponds to increased stress applied to the peptide. Combined with Förster resonance energy transfer (FRET) to read out the strain, such peptides represent powerful and versatile nanoscopic force sensing tools. In this paper, we provide a detailed protocol how to synthesize a molecular force sensor for application in T-cell antigen recognition and hands-on guidelines on experiments and analysis of obtained single molecule FRET data.


Subject(s)
Fluorescence Resonance Energy Transfer , Receptors, Antigen, T-Cell , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Fluorescence Resonance Energy Transfer/methods , Humans , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Single Molecule Imaging/methods , Animals , Peptides/chemistry , Peptides/immunology , Peptides/metabolism , Silk/chemistry
11.
Sci Rep ; 14(1): 10157, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698072

ABSTRACT

Extraction of nucleic acids (NAs) is critical for many methods in molecular biology and bioanalytical chemistry. NA extraction has been extensively studied and optimized for a wide range of applications and its importance to society has significantly increased. The COVID-19 pandemic highlighted the importance of early and efficient NA testing, for which NA extraction is a critical analytical step prior to the detection by methods like polymerase chain reaction. This study explores simple, new approaches to extraction using engineered smart nanomaterials, namely NA-binding, intrinsically disordered proteins (IDPs), that undergo triggered liquid-liquid phase separation (LLPS). Two types of NA-binding IDPs are studied, both based on genetically engineered elastin-like polypeptides (ELPs), model IDPs that exhibit a lower critical solution temperature in water and can be designed to exhibit LLPS at desired temperatures in a variety of biological solutions. We show that ELP fusion proteins with natural NA-binding domains can be used to extract DNA and RNA from physiologically relevant solutions. We further show that LLPS of pH responsive ELPs that incorporate histidine in their sequences can be used for both binding, extraction and release of NAs from biological solutions, and can be used to detect SARS-CoV-2 RNA in samples from COVID-positive patients.


Subject(s)
COVID-19 , Elastin , Peptides , SARS-CoV-2 , Elastin/chemistry , Hydrogen-Ion Concentration , Peptides/chemistry , COVID-19/virology , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Humans , Intrinsically Disordered Proteins/chemistry , Liquid-Liquid Extraction/methods , Nucleic Acids/isolation & purification , Nucleic Acids/chemistry , DNA/chemistry , DNA/isolation & purification , Elastin-Like Polypeptides , Phase Separation
12.
Sci Rep ; 14(1): 10253, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704431

ABSTRACT

The tegument protein pp150 of Human Cytomegalovirus (HCMV) is known to be essential for the final stages of virus maturation and mediates its functions by interacting with capsid proteins. Our laboratory has previously identified the critical regions in pp150 important for pp150-capsid interactions and designed peptides similar in sequence to these regions, with a goal to competitively inhibit capsid maturation. Treatment with a specific peptide (PepCR2 or P10) targeted to pp150 conserved region 2 led to a significant reduction in murine CMV (MCMV) growth in cell culture, paving the way for in vivo testing in a mouse model of CMV infection. However, the general pharmacokinetic parameters of peptides, including rapid degradation and limited tissue and cell membrane permeability, pose a challenge to their successful use in vivo. Therefore, we designed a biopolymer-stabilized elastin-like polypeptide (ELP) fusion construct (ELP-P10) to enhance the bioavailability of P10. Antiviral efficacy and cytotoxic effects of ELP-P10 were studied in cell culture, and pharmacokinetics, biodistribution, and antiviral efficacy were studied in a mouse model of CMV infection. ELP-P10 maintained significant antiviral activity in cell culture, and this conjugation significantly enhanced P10 bioavailability in mouse tissues. The fluorescently labeled ELP-P10 accumulated to higher levels in mouse liver and kidneys as compared to the unconjugated P10. Moreover, viral titers from vital organs of MCMV-infected mice indicated a significant reduction of virus load upon ELP-P10 treatment. Therefore, ELP-P10 has the potential to be developed into an effective antiviral against CMV infection.


Subject(s)
Antiviral Agents , Cytomegalovirus Infections , Elastin , Muromegalovirus , Peptides , Phosphoproteins , Viral Matrix Proteins , Animals , Elastin/chemistry , Elastin/metabolism , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/virology , Mice , Antiviral Agents/pharmacology , Antiviral Agents/pharmacokinetics , Antiviral Agents/chemistry , Peptides/pharmacology , Peptides/chemistry , Muromegalovirus/drug effects , Humans , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Cytomegalovirus/drug effects , Capsid/metabolism , Capsid/drug effects , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/pharmacokinetics , Disease Models, Animal , Elastin-Like Polypeptides
13.
Sci Rep ; 14(1): 10389, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710718

ABSTRACT

It is believed that antivenoms play a crucial role in neutralizing venoms. However, uncontrolled clinical effects appear in patients stung by scorpions after the injection of antivenom. In this research, non-neutralized components of the venom of the Iranian scorpion Odonthobuthus doriae were analyzed after interacting with the commercial antivenom available in the market. The venom and antivenom interaction was performed, then centrifuged, and the supernatant was analyzed by high-performance liquid chromatography (HPLC). Two peaks of Odonthobuthus doriae venom were observed in the chromatogram of the supernatant. Two components were isolated by HPLC and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) instruments. Peptide sequencing was done by Liquid Chromatography Quadrupole Time-of-Flight Tandem Mass Spectrometry (LC-Q-TOF MS/MS). Results indicate that the components of scorpion venom mainly have a molecular weight below 10 kDa, consisting of toxic peptides that disrupt the function of sodium and potassium channels. The MALDI-TOF MS results show that two toxic peptides with molecular masses of 6941 Da and 6396 Da were not neutralized by the antivenom. According to the MS/MS sequencing data, the components have been related to peptides A0A5P8U2Q6_MESEU and A0A0U4FP89_ODODO, which belong to the sodium and potassium channels toxins family, respectively.


Subject(s)
Antivenins , Scorpion Venoms , Scorpions , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Scorpion Venoms/chemistry , Antivenins/chemistry , Animals , Scorpions/chemistry , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry/methods , Peptides/chemistry , Amino Acid Sequence
14.
Food Res Int ; 186: 114161, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729685

ABSTRACT

In this article, the synthesis of antioxidant peptides in the enzymatic hydrolysis of caprine casein was analyzed at three different time points (60 min, 90 min, and 120 min) using immobilized pepsin on activated and modified carbon (AC, ACF, ACG 50, ACG 100). The immobilization assays revealed a reduction in the biocatalysts' activity compared to the free enzyme. Among the modified ones, ACG 50 exhibited greater activity and better efficiency for reuse cycles, with superior values after 60 min and 90 min. Peptide synthesis was observed under all studied conditions. Analyses (DPPH, ß-carotene/linoleic acid, FRAP) confirmed the antioxidant potential of the peptides generated by the immobilized enzyme. However, the immobilized enzyme in ACG 50 and ACG 100, combined with longer hydrolysis times, allowed the formation of peptides with an antioxidant capacity greater than or equivalent to those generated by the free enzyme, despite reduced enzymatic activity.


Subject(s)
Antioxidants , Caseins , Enzymes, Immobilized , Glutaral , Goats , Iridoids , Pepsin A , Peptides , Antioxidants/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Caseins/chemistry , Animals , Pepsin A/metabolism , Pepsin A/chemistry , Glutaral/chemistry , Peptides/chemistry , Iridoids/chemistry , Hydrolysis , Charcoal/chemistry
15.
Food Res Int ; 186: 114348, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729721

ABSTRACT

During production of soy-based infant formula, soy protein undergoes heating processes. This study investigated the differential impact of heating modes on the immunogenic potential of peptides in soy protein digests. Wet or dry heating was applied, followed by in vitro gastrointestinal infant digestion. The released peptides were analyzed by LC-MS/MS. Bioinformatics tools were utilized to predict and identify potential linear B-cell and T-cell epitopes, as well as to explore cross-reactivity with other legumes. Subsequently, the peptide intensities of the same potential epitope across different experimental conditions were compared. As a result, we confirmed the previously observed enhancing effect of wet heating on infant digestion and inhibitory effect of dry heating. A total of 8,546 peptides were detected in the digests, and 6,684 peptides were with a score over 80. Among them, 29 potential T-cell epitopes and 27 potential B-cell epitopes were predicted. Cross-reactivity between soy and other legumes, including peanut, pea, chickpea, lentil, kidney bean, and lupine, was also detected. Overall, heating and digestion time could modulate the potential to trigger peptide-induced immune responses.


Subject(s)
Digestion , Hot Temperature , Peptides , Soybean Proteins , Tandem Mass Spectrometry , Humans , Soybean Proteins/immunology , Soybean Proteins/chemistry , Peptides/immunology , Peptides/chemistry , Infant , Infant Formula/chemistry , Epitopes, T-Lymphocyte/immunology , Epitopes, B-Lymphocyte/immunology , Cross Reactions , Heating , Chromatography, Liquid
16.
Food Res Int ; 186: 114367, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729727

ABSTRACT

Dry-cured hams contain abundant bioactive peptides with significant potential for the development of functional foods. However, the limited bioavailability of food-derived bioactive peptides has hindered their utilization in health food development. Moreover, there is insufficient regulatory information regarding bioactive peptides and related products globally. This review summarizes diverse bioactive peptides derived from dry-cured ham and by-products originating from various countries and regions. The bioactivity, preparation techniques, bioavailability, and metabolic stability of these bioactive peptides are described, as well as the legal and regulatory frameworks in various countries. The primary objectives of this review are to dig deeper into the functionality of dry-cured ham and provide theoretical support for the commercialization of bioactive peptides from food sources, especially the dry-cured ham.


Subject(s)
Food Handling , Meat Products , Peptides , Animals , Meat Products/analysis , Food Handling/methods , Biological Availability , Swine , Humans , Functional Food , Protein Stability
17.
AAPS PharmSciTech ; 25(5): 108, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730090

ABSTRACT

Wound healing presents a complex physiological process that involves a sequence of events orchestrated by various cellular and molecular mechanisms. In recent years, there has been growing interest in leveraging nanomaterials and peptides to enhance wound healing outcomes. Nanocarriers offer unique properties such as high surface area-to-volume ratio, tunable physicochemical characteristics, and the ability to deliver therapeutic agents in a controlled manner. Similarly, peptides, with their diverse biological activities and low immunogenicity, hold great promise as therapeutics in wound healing applications. In this review, authors explore the potential of peptides as bioactive components in wound healing formulations, focusing on their antimicrobial, anti-inflammatory, and pro-regenerative properties. Despite the significant progress made in this field, several challenges remain, including the need for standardized characterization methods, optimization of biocompatibility and safety profiles, and translation from bench to bedside. Furthermore, developing multifunctional nanomaterial-peptide hybrid systems represents promising avenues for future research. Overall, the integration of nanomaterials made up of natural or synthetic polymers with peptide-based formulations holds tremendous therapeutic potential in advancing the field of wound healing and improving clinical outcomes for patients with acute and chronic wounds.


Subject(s)
Drug Carriers , Peptides , Wound Healing , Wound Healing/drug effects , Humans , Peptides/chemistry , Peptides/administration & dosage , Peptides/pharmacology , Drug Carriers/chemistry , Animals , Drug Delivery Systems/methods , Nanostructures/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Nanoparticles/chemistry , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry
18.
Org Lett ; 26(18): 3991-3996, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38691578

ABSTRACT

Peptide modification by C(sp3)-H functionalization of residues at the internal positions remains underdeveloped due to the inhibitory effect of backbone amides. In this study, using histidine (His) as an endogenous directing group, we developed a novel method for the ß-C(sp3)-H functionalization of alanine (Ala) at diverse positions of peptides. Through this approach, a wide range of linear peptides were modified on the side-chain of Ala adjacent to His to afford the functionalized peptides in moderate to good yield and excellent position selectivity. Furthermore, conjugation of peptides with functional molecules such as glucuronide, oleanolic acid, dipeptide, and fluorophore derivatives was achieved.


Subject(s)
Alanine , Histidine , Peptides , Alanine/chemistry , Histidine/chemistry , Peptides/chemistry , Molecular Structure
19.
Nat Commun ; 15(1): 3708, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714662

ABSTRACT

Cheminformatics-based machine learning (ML) has been employed to determine optimal reaction conditions, including catalyst structures, in the field of synthetic chemistry. However, such ML-focused strategies have remained largely unexplored in the context of catalytic molecular transformations using Lewis-acidic main-group elements, probably due to the absence of a candidate library and effective guidelines (parameters) for the prediction of the activity of main-group elements. Here, the construction of a triarylborane library and its application to an ML-assisted approach for the catalytic reductive alkylation of aniline-derived amino acids and C-terminal-protected peptides with aldehydes and H2 is reported. A combined theoretical and experimental approach identified the optimal borane, i.e., B(2,3,5,6-Cl4-C6H)(2,6-F2-3,5-(CF3)2-C6H)2, which exhibits remarkable functional-group compatibility toward aniline derivatives in the presence of 4-methyltetrahydropyran. The present catalytic system generates H2O as the sole byproduct.


Subject(s)
Amino Acids , Aniline Compounds , Boranes , Peptides , Aniline Compounds/chemistry , Catalysis , Amino Acids/chemistry , Peptides/chemistry , Boranes/chemistry , Hydrogen/chemistry , Computer Simulation , Oxidation-Reduction , Alkylation , Machine Learning
20.
Eur J Med Chem ; 271: 116456, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38691890

ABSTRACT

Since last century, peptides have emerged as potential drugs with >90 FDA approvals for various targets with several in the pipeline. Sulphur, in peptides is present either as thiol (-SH) from Cys or thioether from Met. In this review, all the peptides approved by FDA since 2000 containing sulphur have been included. Among them ∼50 % contains disulphide bridges. This clearly demonstrates the significance of disulphide bonds in peptide drugs. This can be achieved synthetically by using orthogonal protecting groups (PGs) for -SH. These PGs are compatible with Solid Phase Peptide Synthesis (SPPS), which is still the method of choice for peptide synthesis. The orthogonal PGs used for Cys thiol side chain protecting for disulphide bond formation have been included which are currently in use both by academia and industry from small scale to large scale synthesis. In addition, the details of the FDA approved drugs containing Cys and Met (or both) have also been discussed.


Subject(s)
Cysteine , Methionine , Peptides , Cysteine/chemistry , Cysteine/pharmacology , Peptides/chemistry , Peptides/pharmacology , Peptides/chemical synthesis , Methionine/chemistry , Methionine/pharmacology , Humans , Animals , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...