Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.289
Filter
1.
J Agric Food Chem ; 72(20): 11577-11586, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38721818

ABSTRACT

Iturin A biosynthesis has garnered considerable interest, yet bottlenecks persist in its low productivity in wild strains and the ability to engineer Bacillus amyloliquefaciens producers. This study reveals that deleting the endogenous plasmid, plas1, from the wild-type B. amyloliquefaciens HM618 notably enhances iturin A synthesis, likely related to the effect of the Rap phosphatase gene within plas1. Furthermore, inactivating Rap phosphatase-related genes (rapC, rapF, and rapH) in the genome of the strain also improved the iturin A level and specific productivity while reducing cell growth. Strategic rap genes and plasmid elimination achieved a synergistic balance between cell growth and iturin A production. Engineered strain HM-DR13 exhibited an increase in iturin A level to 849.9 mg/L within 48 h, significantly shortening the production period. These insights underscore the critical roles of endogenous plasmids and Rap phosphatases in iturin A biosynthesis, presenting a novel engineering strategy to optimize iturin A production in B. amyloliquefaciens.


Subject(s)
Bacillus amyloliquefaciens , Bacterial Proteins , Metabolic Engineering , Phosphoric Monoester Hydrolases , Plasmids , Bacillus amyloliquefaciens/genetics , Bacillus amyloliquefaciens/metabolism , Bacillus amyloliquefaciens/enzymology , Plasmids/genetics , Plasmids/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Peptides, Cyclic/biosynthesis , Peptides, Cyclic/genetics , Peptides, Cyclic/metabolism , Gene Knockout Techniques
2.
J Chem Inf Model ; 64(10): 4158-4167, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38751042

ABSTRACT

The cyclic peptide OS1 (amino acid sequence: CTERMALHNLC), which has a disulfide bond between both termini cysteine residues, inhibits complex formation between the platelet glycoprotein Ibα (GPIbα) and the von Willebrand factor (vWF) by forming a complex with GPIbα. To study the binding mechanism between GPIbα and OS1 and, therefore, the inhibition mechanism of the protein-protein GPIbα-vWF complex, we have applied our multicanonical molecular dynamics (McMD)-based dynamic docking protocol starting from the unbound state of the peptide. Our simulations have reproduced the experimental complex structure, although the top-ranking structure was an intermediary one, where the peptide was bound in the same location as in the experimental structure; however, the ß-switch of GPIbα attained a different conformation. Our analysis showed that subsequent refolding of the ß-switch results in a more stable binding configuration, although the transition to the native configuration appears to take some time, during which OS1 could dissociate. Our results show that conformational changes in the ß-switch are crucial for successful binding of OS1. Furthermore, we identified several allosteric binding sites of GPIbα that might also interfere with vWF binding, and optimization of the peptide to target these allosteric sites might lead to a more effective inhibitor, as these are not dependent on the ß-switch conformation.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , Peptides, Cyclic , Platelet Glycoprotein GPIb-IX Complex , Protein Binding , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/metabolism , Platelet Glycoprotein GPIb-IX Complex/chemistry , Platelet Glycoprotein GPIb-IX Complex/metabolism , Protein Conformation , von Willebrand Factor/chemistry , von Willebrand Factor/metabolism , Humans , Binding Sites
3.
Nat Commun ; 15(1): 4486, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802389

ABSTRACT

Bacterial-fungal interactions influence microbial community performance of most ecosystems and elicit specific microbial behaviours, including stimulating specialised metabolite production. Here, we use a co-culture experimental evolution approach to investigate bacterial adaptation to the presence of a fungus, using a simple model of bacterial-fungal interactions encompassing the bacterium Bacillus subtilis and the fungus Aspergillus niger. We find in one evolving population that B. subtilis was selected for enhanced production of the lipopeptide surfactin and accelerated surface spreading ability, leading to inhibition of fungal expansion and acidification of the environment. These phenotypes were explained by specific mutations in the DegS-DegU two-component system. In the presence of surfactin, fungal hyphae exhibited bulging cells with delocalised secretory vesicles possibly provoking an RlmA-dependent cell wall stress. Thus, our results indicate that the presence of the fungus selects for increased surfactin production, which inhibits fungal growth and facilitates the competitive success of the bacterium.


Subject(s)
Adaptation, Physiological , Aspergillus niger , Bacillus subtilis , Lipopeptides , Bacillus subtilis/physiology , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/growth & development , Aspergillus niger/metabolism , Aspergillus niger/physiology , Aspergillus niger/growth & development , Lipopeptides/metabolism , Peptides, Cyclic/metabolism , Hyphae/growth & development , Hyphae/metabolism , Microbial Interactions/physiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Coculture Techniques , Mutation , Cell Wall/metabolism
4.
PLoS One ; 19(4): e0300688, 2024.
Article in English | MEDLINE | ID: mdl-38652734

ABSTRACT

Despite their widespread use as therapeutics, clinical development of small molecule drugs remains challenging. Among the many parameters that undergo optimization during the drug development process, increasing passive cell permeability (i.e., log(P)) can have some of the largest impact on potency. Cyclic peptides (CPs) have emerged as a viable alternative to small molecules, as they retain many of the advantages of small molecules (oral availability, target specificity) while being highly effective at traversing the plasma membrane. However, the relationship between the dominant conformations that typify CPs in an aqueous versus a membrane environment and cell permeability remain poorly characterized. In this study, we have used Gaussian accelerated molecular dynamics (GaMD) simulations to characterize the effect of solvent on the free energy landscape of lariat peptides, a subset of CPs that have recently shown potential for drug development (Kelly et al., JACS 2021). Differences in the free energy of lariat peptides as a function of solvent can be used to predict permeability of these molecules, and our results show that permeability is most greatly influenced by N-methylation and exposure to solvent. Our approach lays the groundwork for using GaMD as a way to virtually screen large libraries of CPs and drive forward development of CP-based therapeutics.


Subject(s)
Molecular Dynamics Simulation , Peptides, Cyclic , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Solvents/chemistry , Cell Membrane Permeability , Permeability , Thermodynamics , Normal Distribution
5.
Appl Microbiol Biotechnol ; 108(1): 311, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676716

ABSTRACT

As a kind of biosurfactants, iturin A has attracted people's wide attentions due to their features of biodegradability, environmentally friendly, etc.; however, high production cost limited its extensive application, and the aim of this research wants to improve iturin A production in Bacillus amyloliquefaciens. Firstly, dual promoter was applied to strengthen iturin A synthetase expression, and its yield was increased to 1.25 g/L. Subsequently, original 5'-UTRs of downstream genes (ituA, ituB, and ituC) in iturin A synthetase cluster were optimized, which significantly increased mRNA secondary stability, and iturin A yield produced by resultant strain HZ-T3 reached 2.32 g/L. Secondly, synthetic pathway of α-glucosidase inhibitor 1-deoxynojirimycin was blocked to improve substrate corn starch utilization, and iturin A yield was increased by 34.91% to 3.13 g/L. Thirdly, efficient precursor (fatty acids, Ser, and Pro) supplies were proven as the critical role in iturin A synthesis, and 5.52 g/L iturin A was attained by resultant strain, through overexpressing yngH, serC, and introducing ocD. Meanwhile, genes responsible for poly-γ-glutamic acid, extracellular polysaccharide, and surfactin syntheses were deleted, which led to a 30.98% increase of iturin A yield. Finally, lipopeptide transporters were screened, and iturin A yield was increased by 17.98% in SwrC overexpression strain, reached 8.53 g/L, which is the highest yield of iturin A ever reported. This study laid a foundation for industrial production and application development of iturin A, and provided the guidance of metabolic engineering breeding for efficient production of other metabolites synthesized by non-ribosomal peptide synthetase. KEY POINTS: • Optimizing 5'-UTR is an effective tactics to regulate synthetase cluster expression. • Blocking 1-DNJ synthesis benefited corn starch utilization and iturin A production. • The iturin A yield attained in this work was the highest yield reported so far.


Subject(s)
Bacillus amyloliquefaciens , Metabolic Engineering , Surface-Active Agents , Bacillus amyloliquefaciens/genetics , Bacillus amyloliquefaciens/metabolism , Metabolic Engineering/methods , Surface-Active Agents/metabolism , Peptides, Cyclic/biosynthesis , Peptides, Cyclic/genetics , Peptides, Cyclic/metabolism , Promoter Regions, Genetic , Ligases/genetics , Ligases/metabolism
6.
J Am Chem Soc ; 146(17): 11605-11609, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38634647

ABSTRACT

The ribosomally synthesized and post-translationally modified peptide (RiPP) superfamily of natural products includes many examples of cyclic peptides with diverse macrocyclization chemistries. The graspetides, one family of macrocyclized RiPPs, harbor side chain-side chain ester or amide linkages. We recently reported the structure and biosynthesis of the graspetide pre-fuscimiditide, a 22-amino-acid (aa) peptide with two ester cross-links forming a stem-loop structure. These cross-links are introduced by a single graspetide synthetase, the ATP-grasp enzyme ThfB. Here we show that ThfB can also catalyze the formation of amide or thioester cross-links in prefuscimiditide, with thioester formation being especially efficient. We further show that upon proteolysis to reveal an N-terminal cysteine residue, the thioester-linked peptide rapidly and quantitatively rearranges via native chemical ligation into an isopeptide-bonded head-to-tail cyclic peptide. The solution structure of this rearranged peptide was determined by using 2D NMR spectroscopy experiments. Our methodology offers a straightforward recombinant route to head-to-tail cyclic peptides.


Subject(s)
Peptides, Cyclic , Peptides, Cyclic/chemistry , Peptides, Cyclic/biosynthesis , Peptides, Cyclic/metabolism
7.
J Nat Prod ; 87(4): 1171-1178, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38557026

ABSTRACT

The potential of natural products as pharmaceutical and agricultural agents is based on their large structural diversity, resulting in part from modifications of the backbone structure by tailoring enzymes during biosynthesis. Flavin-dependent monooxygenases (FMOs), as one such group of enzymes, play an important role in the biosynthesis of diverse natural products, including cyclodipeptide (CDP) derivatives. The FMO PboD was shown to catalyze C-3 hydroxylation at the indole ring of cyclo-l-Trp-l-Leu in the biosynthesis of protubonines, accompanied by pyrrolidine ring formation. PboD substrate promiscuity was investigated in this study by testing its catalytic activity toward additional tryptophan-containing CDPs in vitro and biotransformation in Aspergillus nidulans transformants bearing a truncated protubonine gene cluster with pboD and two acetyltransferase genes. High acceptance of five CDPs was detected for PboD, especially of those with a second aromatic moiety. Isolation and structure elucidation of five pyrrolidine diketopiperazine products, with two new structures, proved the expected stereospecific hydroxylation and pyrrolidine ring formation. Determination of kinetic parameters revealed higher catalytic efficiency of PboD toward three CDPs consisting of aromatic amino acids than of its natural substrate cyclo-l-Trp-l-Leu. In the biotransformation experiments with the A. nidulans transformant, modest formation of hydroxylated and acetylated products was also detected.


Subject(s)
Aspergillus , Diketopiperazines , Aspergillus/enzymology , Aspergillus/chemistry , Aspergillus nidulans/enzymology , Aspergillus nidulans/metabolism , Diketopiperazines/chemistry , Diketopiperazines/metabolism , Flavins/metabolism , Hydroxylation , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/chemistry , Molecular Structure , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Substrate Specificity
8.
Nat Commun ; 15(1): 3574, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678027

ABSTRACT

Modified cyclic dipeptides represent a widespread class of secondary metabolites with diverse pharmacological activities, including antibacterial, antifungal, and antitumor. Here, we report the structural characterization of the Streptomyces noursei enzyme AlbAB, a cyclodipeptide oxidase (CDO) carrying out α,ß-dehydrogenations during the biosynthesis of the antibiotic albonoursin. We show that AlbAB is a megadalton heterooligomeric enzyme filament containing covalently bound flavin mononucleotide cofactors. We highlight that AlbAB filaments consist of alternating dimers of AlbA and AlbB and that enzyme activity is crucially dependent on filament formation. We show that AlbA-AlbB interactions are highly conserved suggesting that other CDO-like enzymes are likely enzyme filaments. As CDOs have been employed in the structural diversification of cyclic dipeptides, our results will be useful for future applications of CDOs in biocatalysis and chemoenzymatic synthesis.


Subject(s)
Streptomyces , Streptomyces/enzymology , Streptomyces/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Dipeptides/chemistry , Dipeptides/metabolism , Oxidoreductases/metabolism , Oxidoreductases/chemistry , Flavin Mononucleotide/metabolism , Flavin Mononucleotide/chemistry , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Crystallography, X-Ray , Models, Molecular , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/biosynthesis
9.
J Am Chem Soc ; 146(13): 8877-8886, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38503564

ABSTRACT

Hypoxia inducible factor (HIF) is a heterodimeric transcription factor composed of an oxygen-regulated α subunit and a constitutively expressed ß subunit that serves as the master regulator of the cellular response to low oxygen concentrations. The HIF transcription factor senses and responds to hypoxia by significantly altering transcription and reprogramming cells to enable adaptation to a hypoxic microenvironment. Given the central role played by HIF in the survival and growth of tumors in hypoxia, inhibition of this transcription factor serves as a potential therapeutic approach for treating a variety of cancers. Here, we report the identification, optimization, and characterization of a series of cyclic peptides that disrupt the function of HIF-1 and HIF-2 transcription factors by inhibiting the interaction of both HIF-1α and HIF-2α with HIF-1ß. These compounds are shown to bind to HIF-α and disrupt the protein-protein interaction between the α and ß subunits of the transcription factor, resulting in disruption of hypoxia-response signaling by our lead molecule in several cancer cell lines.


Subject(s)
Hypoxia-Inducible Factor 1 , Neoplasms , Humans , Hypoxia-Inducible Factor 1/metabolism , Peptides, Cyclic/pharmacology , Peptides, Cyclic/metabolism , Hypoxia , Signal Transduction , Oxygen/metabolism , Cell Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neoplasms/drug therapy
10.
J Agric Food Chem ; 72(12): 6402-6413, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38491989

ABSTRACT

Bacterial diseases could severely harm agricultural production. To develop new antibacterial agents, the secondary metabolites of a deep-sea-derived fungus Simplicillium obclavatum EIODSF 020 with antibacterial activities against plant and fish pathogens were investigated by a bioassay-guided approach, which led to the isolation of 11 new peptaibiotics, simplicpeptaibs A-K (1-11). They contain 16-19 residues, including ß-alanine, tyrosine, or tyrosine O-sulfate, that were rarely present in peptaibiotics. Their structures were elucidated by spectroscopic analyses (NMR, HRMS, HRMS2, and ECD) and Marfey's method. The primary and secondary structures of novel sulfated peptaibiotic 9 were reconfirmed by single-crystal X-ray diffraction analysis. Genome sequencing of S. obclavatum EIODSF 020 allowed the detection of a gene cluster encoding two individual NRPSs (totally containing 19 modules) that was closely related to simplicpeptaib biosynthesis. Antibacterial investigations of 1-11 together with the previously isolated linear and cyclic peptides from this strain suggested the antibacterial property of this fungus was attributed to the peptaibiotics and cyclic lipopeptides. Among them, compounds 4, 6, 7, and 9 showed significant activity against the tobacco pathogen Ralstonia solanacearum or tilapia pathogens Streptococcus iniae and Streptococcus agalactiae. The antibacterial activity of 6 against R. solanacearum could be enhanced by the addition of 1% NaCl. The structure-bioactivity relationship of simplicpeptaibs was discussed.


Subject(s)
Anti-Bacterial Agents , Hypocreales , Animals , Anti-Bacterial Agents/chemistry , Hypocreales/metabolism , Peptides, Cyclic/metabolism , Fishes/metabolism
11.
J Chem Inf Model ; 64(6): 2112-2124, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38483249

ABSTRACT

Cyclic peptides have emerged as a highly promising class of therapeutic molecules owing to their favorable pharmacokinetic properties, including stability and permeability. Currently, many clinically approved cyclic peptides are derived from natural products or their derivatives, and the development of molecular docking techniques for cyclic peptide discovery holds great promise for expanding the applications and potential of this class of molecules. Given the availability of numerous docking programs, there is a pressing need for a systematic evaluation of their performance, specifically on protein-cyclic peptide systems. In this study, we constructed an extensive benchmark data set called CPSet, consisting of 493 protein-cyclic peptide complexes. Based on this data set, we conducted a comprehensive evaluation of 10 docking programs, including Rosetta, AutoDock CrankPep, and eight protein-small molecule docking programs (i.e., AutoDock, AudoDock Vina, Glide, GOLD, LeDock, rDock, MOE, and Surflex). The evaluation encompassed the assessment of the sampling power, docking power, and scoring power of these programs. The results revealed that all of the tested protein-small molecule docking programs successfully sampled the binding conformations when using the crystal conformations as the initial structures. Among them, rDock exhibited outstanding performance, achieving a remarkable 94.3% top-100 sampling success rate. However, few programs achieved successful predictions of the binding conformations using tLEaP-generated conformations as the initial structures. Within this scheme, AutoDock CrankPep yielded the highest top-100 sampling success rate of 29.6%. Rosetta's scoring function outperformed the others in selecting optimal conformations, resulting in an impressive top-1 docking success rate of 87.6%. Nevertheless, all the tested scoring functions displayed limited performance in predicting binding affinity, with MOE@Affinity dG exhibiting the highest Pearson's correlation coefficient of 0.378. It is therefore suggested to use an appropriate combination of different docking programs for given tasks in real applications. We expect that this work will offer valuable insights into selecting the appropriate docking programs for protein-cyclic peptide complexes.


Subject(s)
Peptides, Cyclic , Proteins , Peptides, Cyclic/metabolism , Molecular Docking Simulation , Protein Binding , Proteins/chemistry , Molecular Conformation , Ligands
12.
Chembiochem ; 25(9): e202400072, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38466139

ABSTRACT

Peptide therapeutics have gained great interest due to their multiple advantages over small molecule and antibody-based drugs. Peptide drugs are easier to synthesize, have the potential for oral bioavailability, and are large enough to target protein-protein interactions that are undruggable by small molecules. However, two major limitations have made it difficult to develop novel peptide therapeutics not derived from natural products, including the metabolic instability of peptides and the difficulty of reaching antibody-like potencies and specificities. Compared to linear and disulfide-monocyclized peptides, multicyclic peptides can provide increased conformational rigidity, enhanced metabolic stability, and higher potency in inhibiting protein-protein interactions. The identification of novel multicyclic peptide binders can be difficult, however, recent advancements in the construction of multicyclic phage libraries have greatly advanced the process of identifying novel multicyclic peptide binders for therapeutically relevant protein targets. This review will describe the current approaches used to create multicyclic peptide libraries, highlighting the novel chemistries developed and the proof-of-concept work done on validating these libraries against different protein targets.


Subject(s)
Peptide Library , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Humans , Peptides/chemistry , Peptides/metabolism
13.
J Med Chem ; 67(6): 4889-4903, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38485922

ABSTRACT

Directly blocking the Keap1-Nrf2 pathway is a promising strategy for the mitigation of acute lung injury (ALI). Peptide Keap1-Nrf2 inhibitors have been reported to have a high Keap1 binding affinity. However, these inhibitors showed weak activity in cells and/or animals. In this study, we designed a series of linear peptides from an Nrf2-based 9-mer Ac-LDEETGEFL-NH2. To improve the cellular activity, we further designed cyclic peptides based on the crystal complex of Keap1 with a linear peptide. Among them, cyclic 9-mer ZC9 targeting Keap1 showed a better affinity (KD2 = 51 nM). Specifically, it exhibited an acceptable water solubility (>38 mg/mL), better cell permeability, cell activity, and metabolic stability (serum t1/2 > 24 h). In the in vitro LPS-induced oxidative damages and ALI model, ZC9 showed significant dose-response reversal activity without apparent toxicity. In conclusion, our results suggested ZC9 as a lead cyclic peptide targeting the Keap1-Nrf2 pathway for ALI clinical treatment.


Subject(s)
Acute Lung Injury , Peptides, Cyclic , Animals , Peptides, Cyclic/pharmacology , Peptides, Cyclic/therapeutic use , Peptides, Cyclic/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Peptides/pharmacology , Peptides/therapeutic use , Peptides/chemistry , Acute Lung Injury/drug therapy
14.
Bioresour Technol ; 397: 130499, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417461

ABSTRACT

Surfactin biosynthesis in Bacillus subtilis is intricately regulated by environmental conditions. In the present study, addition of nitrate, a nitrogen source, increased the production of surfactin in B. subtilis ATCC 21332, whereas its absence resulted in minimal or no surfactin production. Proteomics revealed the mechanism underlying nitrate-induced surfactin overproduction, identifying three key differential proteins (preprotein translocase subunit SecA, signal recognition particle receptor FtsY, and cell division adenosine triphosphate-binding protein FtsE) relevant to surfactin transport and regulation. Combinatorial metabolic engineering strategies (enhanced nitrate reduction, fatty acid hydroxylation, rational transporter engineering, and feeding) led to a 41.4-fold increase in surfactin production compared with the initial production in the wild-type strain. This study provides insights into the molecular mechanism of nitrate-induced surfactin overproduction and strategies to enhance the performance of surfactin-producing strains.


Subject(s)
Metabolic Engineering , Proteomics , Bacillus subtilis/metabolism , Nitrates/metabolism , Bacterial Proteins/metabolism , Lipopeptides , Peptides, Cyclic/metabolism
15.
Org Lett ; 26(9): 1828-1833, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38417822

ABSTRACT

Cytochrome-P450-mediated cross-linking of ribosomally encoded peptides (RiPPs) is rapidly expanding and displays great potential for biocatalysis. Here, we demonstrate that active site engineering of the biarylitide cross-linking enzyme P450Blt enables the formation of His-X-Tyr and Tyr-X-Tyr cross-linked peptides, thus showing how such P450s can be further exploited to produce alternate cyclic tripeptides with controlled cross-linking states.


Subject(s)
Peptides, Cyclic , Peptides , Peptides, Cyclic/metabolism , Peptides/chemistry , Cytochrome P-450 Enzyme System , Biocatalysis , Catalytic Domain
16.
J Med Chem ; 67(3): 2220-2235, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38284169

ABSTRACT

Thymic stromal lymphopoietin (TSLP) is an epithelial-derived pro-inflammatory cytokine involved in the development of asthma and other atopic diseases. We used Bicycle Therapeutics' proprietary phage display platform to identify bicyclic peptides (Bicycles) with high affinity for TSLP, a target that is difficult to drug with conventional small molecules due to the extended protein-protein interactions it forms with both receptors. The hit series was shown to bind to TSLP in a hotspot, that is also used by IL-7Rα. Guided by the first X-ray crystal structure of a small peptide binding to TSLP and the identification of key metabolites, we were able to improve the proteolytic stability of this series in lung S9 fractions without sacrificing binding affinity. This resulted in the potent Bicycle 46 with nanomolar affinity to TSLP (KD = 13 nM), low plasma clearance of 6.4 mL/min/kg, and an effective half-life of 46 min after intravenous dosing to rats.


Subject(s)
Asthma , Thymic Stromal Lymphopoietin , Animals , Rats , Asthma/drug therapy , Bicycling , Cytokines/metabolism , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism
17.
ACS Synth Biol ; 13(1): 394-401, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38194299

ABSTRACT

Peptide cyclization improves conformational rigidity, providing favorable pharmacological properties, such as proteolytic resistance, target specificity, and membrane permeability. Thus, many synthetic and biosynthetic peptide circularization strategies have been developed. PatG and related natural macrocyclases process diverse peptide sequences, generating millions of cyclic derivatives. However, the application of these cyclases is limited by low yields and the potential presence of unwanted intermediates. Here, we designed a covalently fused G macrocyclase with substrates that efficiently and spontaneously release cyclic peptides. To increase the fidelity of synthesis, we developed an orthogonal control mechanism enabling precision synthesis in Escherichia coli. As a result, a library comprising 4.8 million cyclic derivatives was constructed, producing an estimated 2.6 million distinct cyclic peptides with an improved yield and fidelity.


Subject(s)
Peptides, Cyclic , Peptides , Peptides, Cyclic/metabolism , Peptides/genetics , Peptides/chemistry , Amino Acid Sequence , Peptide Hydrolases/chemistry , Cyclization
18.
Nucl Med Commun ; 45(3): 229-235, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38165171

ABSTRACT

OBJECTIVE: To evaluate the diagnostic utility of 68 Ga-Pentixafor PET/CT for in vivo imaging of CXCR4 receptors in soft tissue/bone sarcoma. METHODS: Ten (7M: 3F; mean age = 24.7 ± 14.2 years) consecutive patients with clinical and radiological evidence of bone/soft tissue sarcoma were recruited prospectively whole body 68 Ga-Pentixafor PET/CT imaging was performed at 60-min after tracer administration. After performing standard CT, PET acquisition from head to toe was done (3 min/bed position) in a caudocranial direction. PET/CT data was reconstructed and SUV max , SUV mean values, target-to-background ratio (TBR) and active tumor volume (cc) were computed for the tracer avid lesions. Histopathological and IHC analysis was performed on the surgically excised primary tumors. CXCR4 receptors' intensity was evaluated by visual scoring. RESULTS: The mean SUV max and SUV mean values in the primary tumors were 4.80 ±â€…1.0 (3.9-7.7) and 2.40 ±â€…0.60 (0.9-4.0). The mean TBR and tumor volume (cc) were 1.84 ±â€…1.3 and 312.2 ±â€…285. Diagnosis of osteosarcoma in 7, chondrosarcoma, leiomyosarcoma and synovial sarcoma in 1 patient each was confirmed on HP analysis. Distant metastatic lesions were seen in 3/10 patients. Nuclear CXCR4 receptors' positivity was seen in 5, cytoplasmic in 4 and both pattern seen in 1 patient. The mean CXCR4 receptors' intensity was found to be 7.6 ±â€…2. The highest SUV max value of 7.7 was observed in the patient having both cytoplasmic and nuclear CXCR4 expression. SUV max was found to be poorly correlated ( r  = 0.441) with CXCR4 expression. CONCLUSION: 68 Ga-Pentixafor PET/CT detects CXCR4 receptors over-expressed in sarcoma, its radio-theranostics potential needs detailed evaluation.


Subject(s)
Coordination Complexes , Gallium Radioisotopes , Osteosarcoma , Sarcoma , Adolescent , Adult , Child , Humans , Young Adult , Peptides, Cyclic/metabolism , Positron Emission Tomography Computed Tomography/methods , Receptors, CXCR4/metabolism , Male , Female
19.
J Med Chem ; 67(2): 1197-1208, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38174919

ABSTRACT

Peptides are promising drug modalities that can modulate protein-protein interactions, but their application is hampered by their limited ability to reach intracellular targets. Here, we improved the cytosolic delivery of a peptide blocking p53:MDM2/X interactions using a cyclotide as a stabilizing scaffold. We applied several design strategies to improve intracellular delivery and found that the conjugation of the lead cyclotide to the cyclic cell-penetrating peptide cR10 was the most effective. Conjugation allowed cell internalization at micromolar concentration and led to elevated intracellular p53 levels in A549, MCF7, and MCF10A cells, as well as inducing apoptosis in A549 cells without causing membrane disruption. The lead peptide had >35-fold improvement in inhibitory activity and increased cellular uptake compared to a previously reported cyclotide p53 activator. In summary, we demonstrated the delivery of a large polar cyclic peptide in the cytosol and confirmed its ability to modulate intracellular protein-protein interactions involved in cancer.


Subject(s)
Cell-Penetrating Peptides , Cyclotides , Neoplasms , Humans , Cyclotides/pharmacology , Cyclotides/metabolism , Cell-Penetrating Peptides/pharmacology , Cell-Penetrating Peptides/metabolism , Tumor Suppressor Protein p53/metabolism , Peptides, Cyclic/pharmacology , Peptides, Cyclic/metabolism
20.
Angew Chem Int Ed Engl ; 63(12): e202318784, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38291557

ABSTRACT

Plitidepsin (or dehydrodidemnin B), an approved anticancer drug, belongs to the didemnin family of cyclic depsipeptides, which are found in limited quantities in marine tunicate extracts. Herein, we introduce a new approach that integrates microbial and chemical synthesis to generate plitidepsin and its analogues. We screened a Tistrella strain library to identify a potent didemnin B producer, and then introduced a second copy of the didemnin biosynthetic gene cluster into its genome, resulting in a didemnin B titer of approximately 75 mg/L. Next, we developed two straightforward chemical strategies to convert didemnin B into plitidepsin, one of which involved a one-step synthetic route giving over 90 % overall yield. Furthermore, we synthesized 13 new didemnin derivatives and three didemnin probes, enabling research into structure-activity relationships and interactions between didemnin and proteins. Our study highlights the synergistic potential of biosynthesis and chemical synthesis in overcoming the challenge of producing complex natural products sustainably and at scale.


Subject(s)
Antineoplastic Agents , Depsipeptides , Peptides, Cyclic/pharmacology , Peptides, Cyclic/metabolism , Depsipeptides/pharmacology , Antineoplastic Agents/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...