Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.410
Filter
1.
AAPS PharmSciTech ; 25(5): 108, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730090

ABSTRACT

Wound healing presents a complex physiological process that involves a sequence of events orchestrated by various cellular and molecular mechanisms. In recent years, there has been growing interest in leveraging nanomaterials and peptides to enhance wound healing outcomes. Nanocarriers offer unique properties such as high surface area-to-volume ratio, tunable physicochemical characteristics, and the ability to deliver therapeutic agents in a controlled manner. Similarly, peptides, with their diverse biological activities and low immunogenicity, hold great promise as therapeutics in wound healing applications. In this review, authors explore the potential of peptides as bioactive components in wound healing formulations, focusing on their antimicrobial, anti-inflammatory, and pro-regenerative properties. Despite the significant progress made in this field, several challenges remain, including the need for standardized characterization methods, optimization of biocompatibility and safety profiles, and translation from bench to bedside. Furthermore, developing multifunctional nanomaterial-peptide hybrid systems represents promising avenues for future research. Overall, the integration of nanomaterials made up of natural or synthetic polymers with peptide-based formulations holds tremendous therapeutic potential in advancing the field of wound healing and improving clinical outcomes for patients with acute and chronic wounds.


Subject(s)
Drug Carriers , Peptides , Wound Healing , Wound Healing/drug effects , Humans , Peptides/chemistry , Peptides/administration & dosage , Peptides/pharmacology , Drug Carriers/chemistry , Animals , Drug Delivery Systems/methods , Nanostructures/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Nanoparticles/chemistry , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry
2.
Int J Nanomedicine ; 19: 4429-4449, 2024.
Article in English | MEDLINE | ID: mdl-38784761

ABSTRACT

Background: Therapeutic proteins and peptides offer great advantages compared to traditional synthetic molecular drugs. However, stable protein loading and precise control of protein release pose significant challenges due to the extensive range of physicochemical properties inherent to proteins. The development of a comprehensive protein delivery strategy becomes imperative accounting for the diverse nature of therapeutic proteins. Methods: Biodynamers are amphiphilic proteoid dynamic polymers consisting of amino acid derivatives connected through pH-responsive dynamic covalent chemistry. Taking advantage of the amphiphilic nature of the biodynamers, PNCs and DEs were possible to be prepared and investigated to compare the delivery efficiency in drug loading, stability, and cell uptake. Results: As a result, the optimized PNCs showed 3-fold encapsulation (<90%) and 5-fold loading capacity (30%) compared to DE-NPs. PNCs enhanced the delivery efficiency into the cells but aggregated easily on the cell membrane due to the limited stability. Although DE-NPs were limited in loading capacity compared to PNCs, they exhibit superior adaptability in stability and capacity for delivering a wider range of proteins compared to PNCs. Conclusion: Our study highlights the potential of formulating both PNCs and DE-NPs using the same biodynamers, providing a comparative view on protein delivery efficacy using formulation methods.


Subject(s)
Emulsions , Peptides , Peptides/chemistry , Peptides/administration & dosage , Peptides/pharmacokinetics , Emulsions/chemistry , Humans , Proteins/chemistry , Proteins/administration & dosage , Proteins/pharmacokinetics , Drug Delivery Systems/methods , Polymers/chemistry , Nanoparticles/chemistry , Hydrogen-Ion Concentration , Amino Acids/chemistry , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Liberation , Cell Survival/drug effects
4.
J Agric Food Chem ; 72(19): 11140-11152, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38703140

ABSTRACT

Recently, oral deliverable strategies of multiple nutraceuticals for ulcerative colitis (UC) mitigation have attracted increasing attention. This study aimed to fabricate facile oral assemblies loaded with egg-white-derived peptides (EWDP) and curcumin based on carboxymethyl chitosan (CMCS) and an γ-cyclodextrin metal-organic framework (MOF). Herein, outer CMCS could coassemble with EWDP (both nutraceuticals and building blocks) into cobweb-like fibrils to promote bridging with inner MOF via coordinative noncovalent interactions (hydrogen bonding, hydrophobic interaction, and electrostatic interaction). Compared with conventional γ-cyclodextrin/MOF-based composites, the above coassembly could also endow the biocompatible assemblies with superior nanoscale colloidal properties, processing applicability (curcumin storage stability, bioaccessibility, and aqueous solubility), and bioactivity. Moreover, the oral synergism of EWDP and curcumin (initially nonsynergistic) for UC mitigation was achieved by alleviating inflammatory damage and gut microbiota imbalance. Overall, the novel assemblies could be a promising amplifier and platform to facilitate oral formulations of various nutraceuticals for food processing and UC relief.


Subject(s)
Colitis, Ulcerative , Curcumin , Metal-Organic Frameworks , Peptides , Curcumin/chemistry , Curcumin/administration & dosage , Metal-Organic Frameworks/chemistry , Animals , Humans , Peptides/chemistry , Peptides/administration & dosage , Colitis, Ulcerative/drug therapy , Mice , Chitosan/chemistry , Egg White/chemistry , Polysaccharides/chemistry , Male , Administration, Oral , Drug Synergism , gamma-Cyclodextrins/chemistry , Drug Carriers/chemistry , Egg Proteins/chemistry
5.
Expert Opin Drug Discov ; 19(6): 699-723, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38753534

ABSTRACT

INTRODUCTION: Peptide foldamers play a critical role in pharmaceutical research and biomedical applications. This review highlights recent (post-2020) advancements in novel foldamers, synthetic techniques, and their applications in pharmaceutical research. AREAS COVERED: The authors summarize the structures and applications of peptide foldamers such as α, ß, γ-peptides, hydrocarbon-stapled peptides, urea-type foldamers, sulfonic-γ-amino acid foldamers, aromatic foldamers, and peptoids, which tackle the challenges of traditional peptide drugs. Regarding antimicrobial use, foldamers have shown progress in their potential against drug-resistant bacteria. In drug development, peptide foldamers have been used as drug delivery systems (DDS) and protein-protein interaction (PPI) inhibitors. EXPERT OPINION: These structures exhibit resistance to enzymatic degradation, are promising for therapeutic delivery, and disrupt crucial PPIs associated with diseases such as cancer with specificity, versatility, and stability, which are useful therapeutic properties. However, the complexity and cost of their synthesis, along with the necessity for thorough safety and efficacy assessments, necessitate extensive research and cross-sector collaboration. Advances in synthesis methods, computational modeling, and targeted delivery systems are essential for fully realizing the therapeutic potential of foldamers and integrating them into mainstream medical treatments.


Subject(s)
Drug Delivery Systems , Drug Development , Drug Discovery , Peptides , Humans , Drug Discovery/methods , Peptides/pharmacology , Peptides/chemistry , Peptides/administration & dosage , Drug Development/methods , Animals , Drug Design , Protein Folding
6.
Biomed Pharmacother ; 175: 116737, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749176

ABSTRACT

Antisense oligonucleotide (ASO) has emerged as a promising therapeutic approach for treating central nervous system (CNS) disorders by modulating gene expression with high selectivity and specificity. However, the poor permeability of ASO across the blood-brain barrier (BBB) diminishes its therapeutic success. Here, we designed and synthesized a series of BBB-penetrating peptides (BPP) derived from either the receptor-binding domain of apolipoprotein E (ApoE) or a transferrin receptor-binding peptide (THR). The BPPs were conjugated to phosphorodiamidate morpholino oligomers (PMO) that are chemically analogous to the 2'-O-(2-methoxyethyl) (MOE)-modified ASO approved by the FDA for treating spinal muscular atrophy (SMA). The BPP-PMO conjugates significantly increased the level of full-length SMN2 in the patient-derived SMA fibroblasts in a concentration-dependent manner with minimal to no toxicity. Furthermore, the systemic administration of the most potent BPP-PMO conjugates significantly increased the expression of full-length SMN2 in the brain and spinal cord of SMN2 transgenic adult mice. Notably, BPP8-PMO conjugate showed a 1.25-fold increase in the expression of full-length functional SMN2 in the brain. Fluorescence imaging studies confirmed that 78% of the fluorescently (Cy7)-labelled BPP8-PMO reached brain parenchyma, with 11% uptake in neuronal cells. Additionally, the BPP-PMO conjugates containing retro-inverso (RI) D-BPPs were found to possess extended half-lives compared to their L-counterparts, indicating increased stability against protease degradation while preserving the bioactivity. This delivery platform based on BPP enhances the CNS bioavailability of PMO targeting the SMN2 gene, paving the way for the development of systemically administered neurotherapeutics for CNS disorders.


Subject(s)
Apolipoproteins E , Blood-Brain Barrier , Mice, Transgenic , Oligonucleotides, Antisense , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/pharmacokinetics , Humans , Apolipoproteins E/metabolism , Mice , Morpholinos/administration & dosage , Morpholinos/pharmacokinetics , Morpholinos/pharmacology , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/metabolism , Muscular Atrophy, Spinal/drug therapy , Drug Delivery Systems/methods , Fibroblasts/metabolism , Fibroblasts/drug effects , Brain/metabolism , Brain/drug effects , Peptides/administration & dosage , Peptides/pharmacology , Peptides/chemistry , Peptides/pharmacokinetics , Cell-Penetrating Peptides/chemistry
7.
J Agric Food Chem ; 72(21): 12083-12099, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38757561

ABSTRACT

The development of food-derived antihyperuricemic substances is important for alleviating hyperuricemia (HUA) and associated inflammation. Here, novel peptides fromThunnus albacares (TAP) with strong antihyperuricemic activity were prepared. TAP was prepared by alkaline protease (molecular weight <1000 Da), with an IC50 value of xanthine oxidase inhibitory activity of 2.498 mg/mL, and 5 mg/mL TAP could reduce uric acid (UA) by 33.62% in human kidney-2 (HK-2) cells (P < 0.01). Mice were fed a high-purine diet and injected with potassium oxonate to induce HUA. Oral administration of TAP (600 mg/kg/d) reduced serum UA significantly by 42.22% and increased urine UA by 79.02% (P < 0.01) via regulating urate transporters GLUT9, organic anion transporter 1, and ATP-binding cassette subfamily G2. Meantime, TAP exhibited hepatoprotective and nephroprotective effects, according to histological analysis. Besides, HUA mice treated with TAP showed anti-inflammatory activity by decreasing the levels of toll-like receptor 4, nuclear factors-κB p65, NLRP3, ASC, and Caspase-1 in the kidneys (P < 0.01). According to serum non-targeted metabolomics, 91 differential metabolites between the MC and TAP groups were identified, and purine metabolism was considered to be the main pathway for TAP alleviating HUA. In a word, TAP exhibited strong antihyperuricemic activity both in vitro and in vivo.


Subject(s)
Hyperuricemia , Peptides , Tuna , Uric Acid , Animals , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Mice , Humans , Uric Acid/metabolism , Uric Acid/blood , Peptides/administration & dosage , Peptides/chemistry , Peptides/pharmacology , Male , Fish Proteins/chemistry , Xanthine Oxidase/metabolism , Organic Anion Transporters/metabolism , Organic Anion Transporters/genetics , Cell Line , Kidney/drug effects , Kidney/metabolism
8.
N Engl J Med ; 390(13): 1176-1185, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38598572

ABSTRACT

BACKGROUND: Lixisenatide, a glucagon-like peptide-1 receptor agonist used for the treatment of diabetes, has shown neuroprotective properties in a mouse model of Parkinson's disease. METHODS: In this phase 2, double-blind, randomized, placebo-controlled trial, we assessed the effect of lixisenatide on the progression of motor disability in persons with Parkinson's disease. Participants in whom Parkinson's disease was diagnosed less than 3 years earlier, who were receiving a stable dose of medications to treat symptoms, and who did not have motor complications were randomly assigned in a 1:1 ratio to daily subcutaneous lixisenatide or placebo for 12 months, followed by a 2-month washout period. The primary end point was the change from baseline in scores on the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III (range, 0 to 132, with higher scores indicating greater motor disability), which was assessed in patients in the on-medication state at 12 months. Secondary end points included other MDS-UPDRS subscores at 6, 12, and 14 months and doses of levodopa equivalent. RESULTS: A total of 156 persons were enrolled, with 78 assigned to each group. MDS-UPDRS part III scores at baseline were approximately 15 in both groups. At 12 months, scores on the MDS-UPDRS part III had changed by -0.04 points (indicating improvement) in the lixisenatide group and 3.04 points (indicating worsening disability) in the placebo group (difference, 3.08; 95% confidence interval, 0.86 to 5.30; P = 0.007). At 14 months, after a 2-month washout period, the mean MDS-UPDRS motor scores in the off-medication state were 17.7 (95% CI, 15.7 to 19.7) with lixisenatide and 20.6 (95% CI, 18.5 to 22.8) with placebo. Other results relative to the secondary end points did not differ substantially between the groups. Nausea occurred in 46% of participants receiving lixisenatide, and vomiting occurred in 13%. CONCLUSIONS: In participants with early Parkinson's disease, lixisenatide therapy resulted in less progression of motor disability than placebo at 12 months in a phase 2 trial but was associated with gastrointestinal side effects. Longer and larger trials are needed to determine the effects and safety of lixisenatide in persons with Parkinson's disease. (Funded by the French Ministry of Health and others; LIXIPARK ClinicalTrials.gov number, NCT03439943.).


Subject(s)
Antiparkinson Agents , Glucagon-Like Peptide-1 Receptor Agonists , Parkinson Disease , Peptides , Humans , Antiparkinson Agents/administration & dosage , Antiparkinson Agents/adverse effects , Antiparkinson Agents/therapeutic use , Disabled Persons , Double-Blind Method , Motor Disorders/drug therapy , Parkinson Disease/drug therapy , Peptides/administration & dosage , Peptides/adverse effects , Peptides/therapeutic use , Treatment Outcome , Glucagon-Like Peptide-1 Receptor Agonists/administration & dosage , Glucagon-Like Peptide-1 Receptor Agonists/adverse effects , Glucagon-Like Peptide-1 Receptor Agonists/therapeutic use , Disease Progression , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/adverse effects , Neuroprotective Agents/therapeutic use , Injections, Subcutaneous
9.
Theranostics ; 14(6): 2637-2655, 2024.
Article in English | MEDLINE | ID: mdl-38646642

ABSTRACT

Rationale: To meet the need of long-acting analgesia in postoperative pain management, slow-releasing formulations of local anesthetics (LAs) have been extensively investigated. However, challenges still remain in obtaining such formulations in a facile and cost-effective way, and a mechanism for controlling the release rate to achieve an optimal duration is still missing. Methods: In this study, nanosheets formed by a self-assembling peptide were used to encapsulate ropivacaine in a soft-coating manner. By adjusting the ratio between the peptide and ropivacaine, ropivacaine particles with different size were prepared. Releasing profile of particles with different size were studied in vitro and in vivo. The influence of particle size and ropivacaine concentration on effective duration and toxicity were evaluated in rat models. Results: Our results showed that drug release rate became slower as the particle size increased, with particles of medium size (2.96 ± 0.04 µm) exhibiting a moderate release rate and generating an optimal anesthetic duration. Based on this size, formulations at different ropivacaine concentrations generated anesthetic effect with different durations in rat sciatic nerve block model, with the 6% formulation generated anesthetic duration of over 35 h. Long-acting analgesia up to 48 h of this formulation was also confirmed in a rat total knee arthroplasty model. Conclusion: This study provided a facile strategy to prepare LA particles of different size and revealed the relationship between particle size, release rate and anesthetic duration, which provided both technical and theoretical supports for developing long-acting LA formulations with promising clinical application.


Subject(s)
Anesthetics, Local , Nanoparticles , Particle Size , Peptides , Ropivacaine , Ropivacaine/administration & dosage , Ropivacaine/chemistry , Ropivacaine/pharmacokinetics , Animals , Anesthetics, Local/administration & dosage , Anesthetics, Local/chemistry , Rats , Nanoparticles/chemistry , Peptides/chemistry , Peptides/administration & dosage , Pain, Postoperative/drug therapy , Rats, Sprague-Dawley , Male , Analgesia/methods , Delayed-Action Preparations/chemistry , Drug Liberation , Amides/chemistry , Amides/administration & dosage , Sciatic Nerve/drug effects , Disease Models, Animal
10.
Biomater Adv ; 160: 213852, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636118

ABSTRACT

Immunotherapy is an emerging approach for the treatment of solid tumors. Although chemotherapy is generally considered immunosuppressive, specific chemotherapeutic agents can induce tumor immunity. In this study, we developed a targeted, acid-sensitive peptide nanoparticle (DT/Pep1) to deliver doxorubicin (DOX) and triptolide (TPL) to breast cancer cells via the enhanced permeability and retention (EPR) effect and the breast cancer-targeting effect of peptide D8. Compared with administration of the free drugs, treatment with the DT/Pep1 system increased the accumulation of DOX and TPL at the tumor site and achieved deeper penetration into the tumor tissue. In an acidic environment, DT/Pep1 transformed from spherical nanoparticles to aggregates with a high aspect ratio, which successfully extended the retention of the drugs in the tumor cells and bolstered the anticancer effect. In both in vivo and in vitro experiments, DT/Pep1 effectively blocked the cell cycle and induced apoptosis. Importantly, the DT/Pep1 system efficiently suppressed tumor development in mice bearing 4T1 tumors while simultaneously promoting immune system activation. Thus, the results of this study provide a system for breast cancer therapy and offer a novel and promising platform for peptide nanocarrier-based drug delivery.


Subject(s)
Antineoplastic Agents , Apoptosis , Diterpenes , Doxorubicin , Peptides , Animals , Apoptosis/drug effects , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Female , Peptides/pharmacology , Peptides/chemistry , Peptides/administration & dosage , Mice , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/administration & dosage , Immunomodulation/drug effects , Epoxy Compounds/pharmacology , Epoxy Compounds/chemistry , Epoxy Compounds/administration & dosage , Nanoparticles/chemistry , Phenanthrenes/pharmacology , Phenanthrenes/chemistry , Phenanthrenes/administration & dosage , Phenanthrenes/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Drug Delivery Systems/methods , Mice, Inbred BALB C
11.
Food Funct ; 15(8): 3959-3979, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38568171

ABSTRACT

The majority of known peptides with high bioactivity (BAPs) such as antihypertensive, antidiabetic, antioxidant, hypocholesterolemic, anti-inflammatory and antimicrobial actions, are short-chain sequences of less than ten amino acids. These short-chain BAPs of varying natural and synthetic origin must be bioaccessible to be capable of being adsorbed systemically upon oral administration to show their full range of bioactivity. However, in general, in vitro and in vivo studies have shown that gastrointestinal digestion reduces BAPs bioactivity unless they are protected from degradation by encapsulation. This review gives a critical analysis of short-chain BAP encapsulation and performance with regard to the oral delivery route. In particular, it focuses on short-chain BAPs with antihypertensive and antidiabetic activity and encapsulation methods via nanoparticles and microparticles. Also addressed are the different wall materials used to form these particles and their associated payloads and release kinetics, along with the current challenges and a perspective of the future applications of these systems.


Subject(s)
Gastrointestinal Tract , Peptides , Humans , Peptides/chemistry , Peptides/administration & dosage , Gastrointestinal Tract/metabolism , Animals , Drug Delivery Systems/methods , Nanoparticles/chemistry , Administration, Oral , Drug Compounding , Digestion , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/chemistry
12.
J Control Release ; 369: 493-505, 2024 May.
Article in English | MEDLINE | ID: mdl-38582335

ABSTRACT

Osteoarthritis (OA) is the most prevalent degenerative cartilage disease, but no effective treatment is currently available to ameliorate the dysregulation of cartilage catabolism. Cartilage degeneration is closely related to the change in the physiology of chondrocytes: for example, chondrocytes of the OA patients overexpress matrix metallopeptidase 13 (MMP13), a.k.a. collagenase 3, which damages the extracellular matrix (ECM) of the cartilage and deteriorate the disease progression. Inhibiting MMP13 has shown to be beneficial for OA treatments, but delivering therapeutics to the chondrocytes embedded in the dense cartilage is a challenge. Here, we engineered the exosome surface with the cartilage affinity peptide (CAP) through lipid insertion to give chondrocyte-targeting exosomes, CAP-Exo, which was then loaded with siRNA against MMP13 (siMMP13) in the interior to give CAP-Exo/siMMP13. Intra-articular administration of CAP-Exo/siMMP13 reduced the MMP13 level and increased collagen COL2A1 and proteoglycan in cartilage in a rat model of anterior cruciate ligament transection (ACLT)-induced OA. Proteomic analysis showed that CAP-Exo/siMMP13 treatment restored the altered protein levels in the IL-1ß-treated chondrocytes. Taken together, a facile exosome engineering method enabled targeted delivery of siRNA to chondrocytes and chondrocyte-specific silencing of MMP13 to attenuate cartilage degeneration.


Subject(s)
Chondrocytes , Exosomes , Matrix Metalloproteinase 13 , Osteoarthritis , RNA, Small Interfering , Rats, Sprague-Dawley , Regeneration , Exosomes/metabolism , Animals , Chondrocytes/metabolism , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics , RNA, Small Interfering/administration & dosage , Osteoarthritis/therapy , Male , Cartilage, Articular/metabolism , Peptides/administration & dosage , Peptides/chemistry , Cells, Cultured , Humans , Rats , Cartilage/metabolism
13.
J Control Release ; 369: 722-733, 2024 May.
Article in English | MEDLINE | ID: mdl-38583575

ABSTRACT

The existence of the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) greatly limits the application of chemotherapy in glioma. To address this challenge, an optimal drug delivery system must efficiently cross the BBB/BBTB and specifically deliver therapeutic drugs into glioma cells while minimizing systemic toxicity. Here we demonstrated that glucose-regulated protein 78 (GRP78) and dopamine receptor D2 were highly expressed in patient-derived glioma tissues, and dopamine receptors were highly expressed on the BBB. Subsequently, we synthesized a novel "Y"-shaped peptide and compared the effects of different linkers on the receptor affinity and targeting ability of the peptide. A peptide-drug conjugate (pHA-AOHX-VAP-doxorubicin conjugate, pHA-AOHX-VAP-DOX) with a better affinity for glioma cells and higher solubility was derived for glioma treatment. pHA-AOHX-VAP-DOX could cross both BBB and BBTB via dopamine receptor and GRP78 receptor, and finally target glioma cells, significantly prolonging the survival time of nude mice bearing intracranial glioma. Furthermore, pHA-AOHX-VAP-DOX significantly reduced the toxicity of DOX and increased the maximum tolerated dose (MTD). Collectively, this work paves a new avenue for overcoming multiple barriers and effectively delivering chemotherapeutic agents to glioma cells while providing key evidence to identify potential receptors for glioma-targeted drug delivery.


Subject(s)
Blood-Brain Barrier , Brain Neoplasms , Doxorubicin , Drug Delivery Systems , Endoplasmic Reticulum Chaperone BiP , Glioma , Mice, Nude , Peptides , Animals , Glioma/drug therapy , Glioma/metabolism , Glioma/pathology , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Doxorubicin/pharmacokinetics , Humans , Cell Line, Tumor , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Peptides/chemistry , Peptides/administration & dosage , Blood-Brain Barrier/metabolism , Heat-Shock Proteins/metabolism , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/therapeutic use , Mice, Inbred BALB C , Receptors, Dopamine D2/metabolism , Mice , Male
14.
Food Chem ; 451: 139337, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38663243

ABSTRACT

Alcoholic liver disease (ALD) is a serious health threat. Soybean meal peptide (SMP) supplementation may protect against this damage; however, the potential mechanism underlying the specific sequence of SMPs is unclear. Protein-protein interaction and proteomic analyses are effective methods for studying functional ingredients in diseases. This study aimed to investigate the potential mechanism of action of the peptide Gly-Thr-Tyr-Trp (GTYW) on ALD using protein-protein interaction and proteomic analyses. These results demonstrate that GTYW influenced the targets of glutathione metabolism (glutathione-disulfide reductase, glutathione S-transferase pi 1, and glutathione S-transferase mu 2). It also regulated the expression of targets related to energy metabolism and amino acid conversion (trypsin-2, cysteine dioxygenase type-1, and F6SJM7). Amino acid and lipid metabolisms were identified based on Gene Ontology annotation. These results indicate that GTYW might affect alcohol-related liver disease signaling pathways. This study provides evidence of the protective and nutritional benefits of SMPs in ALD treatment.


Subject(s)
Glycine max , Liver Diseases, Alcoholic , Peptides , Proteomics , Animals , Mice , Glycine max/chemistry , Glycine max/metabolism , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/prevention & control , Liver Diseases, Alcoholic/genetics , Male , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism , Peptides/administration & dosage , Humans , Mice, Inbred C57BL , Protective Agents/pharmacology , Protective Agents/administration & dosage , Protective Agents/chemistry , Liver/metabolism
15.
Food Chem ; 451: 139444, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38678657

ABSTRACT

Hyperuricemia (HU) is a metabolic disorder caused by the overproduction or underexcretion of uric acid (UA) in the human body. Several approved drugs for the treatment of HU are available in the market; however, all these allopathic drugs exhibit multiple side effects. Therefore, the development of safe and effective anti-HU drugs is an urgent need. Natural compounds derived from foods and plants have the potential to decrease UA levels. Recently, food-derived bioactive peptides (FBPs) have gained attention as a functional ingredient owing to their biological activities. In the current review, we aim to explore the urate-lowering potential and the underlying mechanisms of FBPs. We found that FBPs mitigate HU by reducing blood UA levels through inhibiting key enzymes such as xanthine oxidase, increasing renal UA excretion, inhibiting renal UA reabsorption, increasing anti-oxidant activities, regulating inflammatory mediators, and addressing gut microbiota dysbiosis. In conclusion, FBPs exhibit strong potential to ameliorate HU.


Subject(s)
Hyperuricemia , Peptides , Uric Acid , Humans , Peptides/pharmacology , Peptides/chemistry , Peptides/administration & dosage , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Animals , Uric Acid/metabolism , Gastrointestinal Microbiome/drug effects , Antioxidants/chemistry , Antioxidants/pharmacology , Xanthine Oxidase/metabolism , Bioactive Peptides, Dietary
16.
ACS Appl Bio Mater ; 7(5): 3050-3060, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38598772

ABSTRACT

Peptides are a promising skincare ingredient, but due to their inherent instability and the barrier function of the skin's surface, they often have limited skin absorption and penetration, which can significantly hinder their skincare benefits. To address this, a novel technique called NanoGlow has been introduced for encapsulating peptide-based cosmetic raw materials into engineered nanosized plant-derived exosomes (pExo) to achieve the goal of a healthier and more radiant skin state. In this approach, pExo served as carriers for cosmetic peptides across the intact skin barrier, enhancing their biological effectiveness in skin beauty. The NanoGlow strategy combines chemical activation and physical proencapsulation, boasting a high success rate and straightforward and stable operation, making it suitable for large-scale production. Comprehensive analysis using in vitro cellular absorption and skin penetration models has demonstrated that the nanosized pExo carriers significantly improve peptide penetration into the skin compared to free peptides. Furthermore, in vivo tissue slice studies have shown that pExo carriers efficiently deliver acetyl hexapeptide-8 to the skin's dermis, surpassing the performance of free peptides. Cosmetic skincare effect analysis has also indicated that pExo-loaded cosmetic peptides deliver superior results. Therefore, the NanoGlow technique harnesses the natural size and properties of pExo to maximize the bioavailability of cosmetic peptides, holding great promise for developing advanced peptide delivery systems in both the cosmetic and medical drug industries.


Subject(s)
Biocompatible Materials , Cosmetics , Exosomes , Peptides , Exosomes/chemistry , Exosomes/metabolism , Cosmetics/chemistry , Peptides/chemistry , Peptides/administration & dosage , Biocompatible Materials/chemistry , Humans , Materials Testing , Particle Size , Skin/metabolism , Animals , Drug Delivery Systems , Plants/chemistry , Plants/metabolism , Skin Absorption , Drug Carriers/chemistry
18.
Diabetes Obes Metab ; 26(7): 2811-2819, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38637981

ABSTRACT

AIM: To assess the impact of insulin glargine (100 U/mL) and lixisenatide (iGlarLixi) fixed-ratio combination therapy on the overall management of glycaemia in patients with type 2 diabetes (T2D), previously inadequately controlled with oral antidiabetic drugs ± basal insulin or glucagon-like peptide-1 receptor agonists (GLP-1 RAs). MATERIALS AND METHODS: This 12-month, international, multicentre, prospective, observational study included patients (age ≥ 18 years) with T2D who had initiated iGlarLixi within 1 month prior to study inclusion. Data were collected at study inclusion, month 3, month 6 and month 12 from patient diaries, self-measured plasma glucose, and questionnaires. The primary endpoint was change in HbA1c from baseline to month 6. RESULTS: Of the 737 eligible participants (mean age: 57.8 [standard deviation: 11.2] years; male: 49%), 685 had baseline and post-baseline HbA1c data available. The least squares mean change in HbA1c from baseline to month 6 was -1.4% (standard error [95% confidence interval (CI)]: 0.05 [-1.5, -1.3]). The absolute change from baseline at month 12 was -1.7% ± 1.9% (95% CI: -1.9, -1.5). There were 72 hypoglycaemia events reported during the study period, with a very low incidence of severe hypoglycaemia (two participants [rate: 0.003 events per patient-year]). CONCLUSIONS: This real-world observational study shows that initiation of iGlarLixi in people with T2D inadequately controlled on oral antidiabetic drugs ± basal insulin or GLP-1 RAs improves glycaemic control with a low incidence of hypoglycaemia.


Subject(s)
Diabetes Mellitus, Type 2 , Glycated Hemoglobin , Hypoglycemia , Hypoglycemic Agents , Insulin Glargine , Peptides , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Male , Female , Middle Aged , Insulin Glargine/administration & dosage , Insulin Glargine/therapeutic use , Insulin Glargine/adverse effects , Prospective Studies , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/adverse effects , Aged , Glycated Hemoglobin/analysis , Glycated Hemoglobin/drug effects , Glycated Hemoglobin/metabolism , Hypoglycemia/chemically induced , Hypoglycemia/epidemiology , Peptides/administration & dosage , Peptides/therapeutic use , Peptides/adverse effects , Blood Glucose/drug effects , Blood Glucose/metabolism , Treatment Outcome , Adult , Drug Therapy, Combination , Glucagon-Like Peptide-2 Receptor
19.
J Cosmet Dermatol ; 23(6): 2170-2180, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38572527

ABSTRACT

BACKGROUND: Eyelashes play a crucial role in self-image and ocular protection. Enhancements to their structure are of both cosmetic and clinical interest. AIMS: To assess the efficacy of a peptide and glycosaminoglycan-based eyelash enhancer serum in improving eyelash structure. PATIENTS/METHODS: This open-label clinical trial involved 30 females aged 25-65. Eyelashes were assessed at baseline (D0), 4 weeks (D28), and 12 weeks (D84) using specialized software and high-resolution imagery. Measurements included lash number, width, length, volume, arc, and angle. RESULTS: At 12 weeks, significant increases were observed in lash length (+8.3%), number (+5%), width (+10.1%), volume (+14.1%), arc (+13.4%), and angle (+28.3%) compared to baseline. Global Eyelash Assessment (GEA) scores significantly improved, and patient treatment satisfaction increased from 73.34% at D28 to 84.33% at D84. No adverse effects were reported. CONCLUSIONS: The eyelash growth enhancer serum demonstrated significant efficacy in improving eyelash structure by Week 12, with early signs of improvement evident by Week 4. The high patient satisfaction levels underscore the perceived effectiveness of the product.


Subject(s)
Eyelashes , Glycosaminoglycans , Patient Satisfaction , Humans , Female , Eyelashes/growth & development , Eyelashes/drug effects , Middle Aged , Adult , Aged , Peptides/administration & dosage , Treatment Outcome
20.
ACS Biomater Sci Eng ; 10(5): 3041-3056, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38623037

ABSTRACT

Oral immunization is a promising strategy for preventing and treating gastrointestinal (GI) infections and diseases, as it allows for direct access to the disease site. To elicit immune responses within the GI tract, however, there are many obstacles that oral vaccines must surmount, including proteolytic degradation and thick mucus barriers. Here, we employed a modular self-assembling peptide nanofiber platform to facilitate oral immunization against both peptide and small molecule epitopes. Synthesizing nanofibers with d-amino acids rendered them resistant to proteases in vitro, whereas l-amino acid nanofibers were rapidly degraded. Additionally, the inclusion of peptide sequences rich in proline, alanine, and serine (PAS), increased nanofiber muco-penetration, and accelerated nanofiber transport through the GI tract. Oral immunization with PASylated nanofibers and mucosal adjuvant generated local and systemic immune responses to a peptide epitope but only for l-amino acid nanofibers. Further, we were able to apply this design to also enable oral immunization against a small molecule epitope and illustrated the therapeutic and prophylactic effectiveness of these immunizations in mouse models of colitis. These findings demonstrate that supramolecular peptide self-assemblies have promise as oral vaccines and immunotherapies.


Subject(s)
Immunization , Nanofibers , Peptides , Animals , Administration, Oral , Nanofibers/chemistry , Peptides/immunology , Peptides/chemistry , Peptides/administration & dosage , Mice , Immunization/methods , Epitopes/immunology , Female , Mice, Inbred C57BL , Colitis/immunology , Colitis/prevention & control , Colitis/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...