Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.336
Filter
1.
Org Lett ; 26(20): 4246-4250, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38738629

ABSTRACT

An oxidant-free approach to the synthesis of N-glyoxylyl peptides has been developed that utilizes the Lossen rearrangement of the N-terminal glycyl hydroxamic acid residue. The synthesis proceeds via an intramolecular redox mechanism to yield the glyoxylyl peptides, which are then subjected to various peptide cyclization procedures. The reaction scheme is suitable for oxidation-sensitive moieties including amino acids.


Subject(s)
Hydroxamic Acids , Oxidation-Reduction , Peptides , Hydroxamic Acids/chemistry , Hydroxamic Acids/chemical synthesis , Peptides/chemistry , Peptides/chemical synthesis , Molecular Structure , Cyclization
2.
Biomacromolecules ; 25(5): 3122-3130, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38696355

ABSTRACT

Synthesis of polysaccharide-b-polypeptide block copolymers represents an attractive goal because of their promising potential in delivery applications. Inspired by recent breakthroughs in N-carboxyanhydride (NCA) ring-opening polymerization (ROP), we present an efficient approach for preparation of a dextran-based macroinitiator and the subsequent synthesis of dextran-b-polypeptides via NCA ROP. This is an original approach to creating and employing a native polysaccharide macroinitiator for block copolymer synthesis. In this strategy, regioselective (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) oxidation of the sole primary alcohol located at the C-6 position of the monosaccharide at the nonreducing end of linear dextran results in a carboxylic acid. This motif is then transformed into a tetraalkylammonium carboxylate, thereby generating the dextran macroinitiator. This macroinitiator initiates a wide range of NCA monomers and produces dextran-b-polypeptides with a degree of polymerization (DP) of the polypeptide up to 70 in a controlled manner (D < 1.3). This strategy offers several distinct advantages, including preservation of the original dextran backbone structure, relatively rapid polymerization, and moisture tolerance. The dextran-b-polypeptides exhibit interesting self-assembly behavior. Their nanostructures have been investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM), and adjustment of the structure of block copolymers allows self-assembly of spherical micelles and worm-like micelles with varied diameters and aspect ratios, revealing a range of diameters from 60 to 160 nm. Moreover, these nanostructures exhibit diverse morphologies, including spherical micelles and worm-like micelles, enabling delivery applications.


Subject(s)
Dextrans , Peptides , Polymerization , Dextrans/chemistry , Peptides/chemistry , Peptides/chemical synthesis , Polymers/chemistry , Polymers/chemical synthesis , Cyclic N-Oxides/chemistry , Anhydrides/chemistry , Polysaccharides/chemistry , Micelles
3.
Org Lett ; 26(21): 4497-4501, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38768369

ABSTRACT

Despite numerous optimizations in peptide synthesis, the formation of aspartimide remains a significant side reaction that needs to be addressed. Herein, we introduce an approach that utilizes hydrazide as a carboxylic-acid-protecting group to reduce the formation of aspartimide. The aspartic acid hydrazide effectively suppressed the formation of aspartimide, even under microwave conditions, and was readily converted to native aspartic acid using CuSO4 in an aqueous medium.


Subject(s)
Aspartic Acid , Carboxylic Acids , Peptides , Solid-Phase Synthesis Techniques , Carboxylic Acids/chemistry , Peptides/chemistry , Peptides/chemical synthesis , Peptides/pharmacology , Molecular Structure , Aspartic Acid/chemistry , Aspartic Acid/analogs & derivatives , Microwaves , Hydrazines/chemistry
4.
J Chem Inf Model ; 64(10): 4277-4285, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38743449

ABSTRACT

Antifungal peptides (AFPs) are emerging as promising candidates for advanced antifungal therapies because of their broad-spectrum efficacy and reduced resistance development. In silico design of AFPs, however, remains challenging, due to the lack of an efficient and well-validated quantitative assessment of antifungal activity. This study introduced an AFP design approach that leverages an innovative quantitative metric, named the antifungal index (AFI), through a three-step process, i.e., segmentation, single-point mutation, and global multipoint optimization. An exhaustive search of 100 putative AFP sequences indicated that random modifications without guidance only have a 5.97-20.24% chance of enhancing antifungal activity. Analysis of the search results revealed that (1) N-terminus truncation is more effective in enhancing antifungal activity than the modifications at the C-terminus or both ends, (2) introducing the amino acids within the 10-60% sequence region that enhance aromaticity and hydrophobicity are more effective in increasing antifungal efficacy, and (3) incorporating alanine, cysteine, and phenylalanine during multiple point mutations has a synergistic effect on enhancing antifungal activity. Subsequently, 28 designed peptides were synthesized and tested against four typical fungal strains. The success rate for developing promising AFPs, with a minimal inhibitory concentration of ≤5.00 µM, was an impressive 82.14%. The predictive and design tool is accessible at https://antifungipept.chemoinfolab.com.


Subject(s)
Antifungal Agents , Computer Simulation , Drug Design , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Amino Acid Sequence , Peptides/pharmacology , Peptides/chemistry , Peptides/chemical synthesis , Fungi/drug effects
5.
Anal Chem ; 96(22): 9007-9015, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38778775

ABSTRACT

This study explores the synthesis and characterization of aggregation-induced emission enhancement (AIEE)-active gold nanoclusters (AuNCs), focusing on their near-infrared luminescence properties and potential applications in biological imaging. These AIEE-active AuNCs were synthesized via the NaBH4-mediated reduction of HAuCl4 in the presence of peptides. We systematically investigated the influence of the peptide sequence on the optical features of the AuNCs, highlighting the role of glutamic acid in enhancing their quantum yield (QY). Among the synthesized peptide-stabilized AuNCs, EECEE-stabilized AuNCs exhibited the maximum QY and a pronounced AIEE effect at pH 5.0, making them suitable for the luminescence imaging of intracellular lysosomes. The AIEE characteristic of the EECEE-stabilized AuNCs was demonstrated through examinations using transmission electron microscopy, dynamic light scattering, zeta potential analysis, and single-particle imaging. The formation of the EECEE-stabilized AuNCs was confirmed by size-exclusion chromatography and mass spectrometry. Spectroscopic and electrochemical examinations uncover the formation process of EECEE-stabilized AuNCs, comprising EECEE-mediated reduction, NaBH4-induced nucleation, complex aggregation, and subsequent cluster growth. Furthermore, we demonstrated the utility of these AuNCs as luminescent probes for intracellular lysosomal imaging, leveraging their pH-responsive AIEE behavior. Additionally, cyclic arginylglycylaspartic acid (RGD)-modified AIEE dots, derived from cyclic RGD-linked peptide-induced aggregation of EECEE-stabilized AuNCs, were developed for single- and two-photon luminescence imaging of αvß3 integrin receptor-positive cancer cells.


Subject(s)
Gold , Integrin alphaVbeta3 , Lysosomes , Metal Nanoparticles , Gold/chemistry , Lysosomes/chemistry , Lysosomes/metabolism , Integrin alphaVbeta3/metabolism , Integrin alphaVbeta3/analysis , Humans , Metal Nanoparticles/chemistry , Peptides/chemistry , Peptides/chemical synthesis , Photons , Optical Imaging
6.
Org Biomol Chem ; 22(22): 4420-4435, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38775347

ABSTRACT

Over past decades, chiral amides and peptides have emerged as powerful and versatile compounds due to their various biological activities and interesting molecular architectures. Although some chiral condensation reagents have been applied successfully for their synthesis, the introduction of racemization-free methods of amino acid activation have shown lots of advantages in terms of their low cost and low toxicity. In this review, advancements in amide and peptide synthesis using racemization-free coupling reagents over the last 10 years are summarized. Various racemization-free coupling reagents have been applied in the synthesis of enantioselective amides and peptides, including ynamides, allenones, HSi[OCH(CF3)2]3, Ta(OMe)5, Nb(OEt)5, Ta(OEt)5, TCFH-NMI, water-removable ynamides, DBAA, DATB, o-NosylOXY, TCBOXY, Boc-Oxyma, NDTP, 9-silafluorenyl dichlorides, the Mukaiyama reagent, EDC and T3P. The racemization-free reagents described in this review provide an alternative greener option for the asymmetric synthesis of chiral amides and peptides. We hope that this review will inspire further studies and developments in this field.


Subject(s)
Amides , Peptides , Amides/chemistry , Amides/chemical synthesis , Peptides/chemistry , Peptides/chemical synthesis , Stereoisomerism , Chemistry Techniques, Synthetic/methods , Indicators and Reagents/chemistry , Molecular Structure
7.
Bioorg Med Chem ; 107: 117760, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38762978

ABSTRACT

Oncolytic peptides represented potential novel candidates for anticancer treatments especially drug-resistant cancer cell lines. One of the most promising and extensively studied is LTX-315, which is considered as the first in class oncolytic peptide and has entered phase I/II clinical trials. Nevertheless, the shortcomings including poor proteolytic stability, moderate anticancer durability and high synthesis costs may hinder the widespread clinical applications of LTX-315. In order to reduce the synthesis costs, as well as develop derivatives possessing both high protease-stability and durable anticancer efficiency, twenty LTX-315-based derived-peptides were designed and efficiently synthesized. Especially, through solid-phase S-alkylation, as well as the optimized peptide cleavage condition, the derived peptides could be prepared with drastically reduced synthesis cost. The in vitro anticancer efficiency, serum stability, anticancer durability, anti-migration activity, and hemolysis effect were systematically investigated. It was found that derived peptide MS-13 exhibited comparable anticancer efficiency and durability to those of LTX-315. Strikingly, the D-type peptide MS-20, which is the enantiomer of MS-13, was demonstrated to possess significantly high proteolytic stability and sustained anticancer durability. In general, the cost-effective synthesis and stability-guided structural optimizations were conducted on LTX-315, affording the highly hydrolysis resistant MS-20 which possessed durable anticancer activity. Meanwhile, this study also provided a reliable reference for the future optimization of anticancer peptides through the solid-phase S-alkylation and L-type to D-type amino acid substitutions.


Subject(s)
Antineoplastic Agents , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Cell Proliferation/drug effects , Molecular Structure , Cell Line, Tumor , Dose-Response Relationship, Drug , Cell Movement/drug effects , Peptides/chemistry , Peptides/pharmacology , Peptides/chemical synthesis , Hemolysis/drug effects , Oligopeptides
8.
Int J Biol Macromol ; 270(Pt 1): 132127, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718991

ABSTRACT

Femoral head necrosis is a debilitating disorder that typically caused by impaired blood supply to the hip joint. In this study, a novel injectable hydrogel based on Oxidized Carboxymethyl Cellulose (OCMC)-Carboxymethyl Chitosan (CMCS) polymers containing an angiogenesis stimulator peptide (QK) with a non-toxic crosslinking interaction (Schiff based reaction) was synthesized to enhance angiogenesis following femoral head necrosis in an animal model. The physicochemical features of fabricated injectable hydrogel were analyzed by FTIR, swelling and degradation rate, rheometry, and peptide release. Also, the safety and efficacy were evaluated following an in vitro hydrogel injection study and an avascular necrosis (AVN) animal model. According to the results, the hydrogel exhibited an appropriate swelling ratio and water uptake (>90 %, 24 h) as well as a suitable degradation rate over 21 days accompanied by a continuous peptide release. Also, data showed that hydrogels containing QK peptide boosted the proliferation, differentiation, angiogenesis, and osteogenic potential of both Bone Marrow mesenchymal Stem Cells (BM-MSCs) and human umbilical vein endothelial cells (HUVECs) (****p < 0.0001 and ***p < 0.001, respectively). Furthermore, molecular and histological evaluations significantly demonstrated the overexpression of Runx2, Osteocalcin, Collagen I, VEGF and CD34 genes (**p < 0.01 and ***p < 0.001, respectively), and also femoral head necrosis was effectively prohibited, and more blood vessels were detected in defect area by OCMC-CMCS hydrogel containing QK peptide (bone trabeculae >9000, ***p < 0.001). In conclusion, the findings demonstrate that OCMC-CMCS-QK injectable hydrogel could be considered as an impressive therapeutic construct for femoral head AVN healing.


Subject(s)
Carboxymethylcellulose Sodium , Chitosan , Femur Head Necrosis , Human Umbilical Vein Endothelial Cells , Hydrogels , Chitosan/chemistry , Chitosan/analogs & derivatives , Chitosan/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Carboxymethylcellulose Sodium/chemistry , Carboxymethylcellulose Sodium/pharmacology , Animals , Humans , Femur Head Necrosis/drug therapy , Femur Head Necrosis/pathology , Human Umbilical Vein Endothelial Cells/drug effects , Peptides/chemistry , Peptides/pharmacology , Peptides/chemical synthesis , Osteogenesis/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Cell Proliferation/drug effects , Wound Healing/drug effects , Injections , Neovascularization, Physiologic/drug effects , Cell Differentiation/drug effects , Male , Rabbits , Disease Models, Animal
9.
Eur J Med Chem ; 271: 116456, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38691890

ABSTRACT

Since last century, peptides have emerged as potential drugs with >90 FDA approvals for various targets with several in the pipeline. Sulphur, in peptides is present either as thiol (-SH) from Cys or thioether from Met. In this review, all the peptides approved by FDA since 2000 containing sulphur have been included. Among them ∼50 % contains disulphide bridges. This clearly demonstrates the significance of disulphide bonds in peptide drugs. This can be achieved synthetically by using orthogonal protecting groups (PGs) for -SH. These PGs are compatible with Solid Phase Peptide Synthesis (SPPS), which is still the method of choice for peptide synthesis. The orthogonal PGs used for Cys thiol side chain protecting for disulphide bond formation have been included which are currently in use both by academia and industry from small scale to large scale synthesis. In addition, the details of the FDA approved drugs containing Cys and Met (or both) have also been discussed.


Subject(s)
Cysteine , Methionine , Peptides , Cysteine/chemistry , Cysteine/pharmacology , Peptides/chemistry , Peptides/pharmacology , Peptides/chemical synthesis , Methionine/chemistry , Methionine/pharmacology , Humans , Animals , Molecular Structure
10.
Org Biomol Chem ; 22(18): 3544-3558, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38624091

ABSTRACT

Chemical tools and principles have become central to biological and medical research/applications by leveraging a range of classical organic chemistry reactions. Friedel-Crafts alkylation and acylation are arguably some of the most well-known and used synthetic methods for the preparation of small molecules but their use in biological and medical fields is relatively less frequent than the other reactions, possibly owing to the notion of their plausible incompatibility with biological systems. This review demonstrates advances in Friedel-Crafts alkylation and acylation reactions in a variety of biomolecular chemistry fields. With the discoveries and applications of numerous biomolecule-catalyzed or -assisted processes, these reactions have garnered considerable interest in biochemistry, enzymology, and biocatalysis. Despite the challenges of reactivity and selectivity of biomolecular reactions, the alkylation and acylation reactions demonstrated their utility for the construction and functionalization of all the four major biomolecules (i.e., nucleosides, carbohydrates/saccharides, lipids/fatty acids, and amino acids/peptides/proteins), and their diverse applications in biological, medical, and material fields are discussed. As the alkylation and acylation reactions are often fundamental educational components of organic chemistry courses, this review is intended for both experts and nonexperts by discussing their basic reaction patterns (with the depiction of each reaction mechanism in the ESI) and relevant real-world impacts in order to enrich chemical research and education. The significant growth of biomolecular Friedel-Crafts reactions described here is a testament to their broad importance and utility, and further development and investigations of the reactions will surely be the focus in the organic biomolecular chemistry fields.


Subject(s)
Proteins , Alkylation , Acylation , Proteins/chemistry , Amino Acids/chemistry , Amino Acids/chemical synthesis , Carbohydrates/chemistry , Carbohydrates/chemical synthesis , Fatty Acids/chemistry , Lipids/chemistry , Nucleosides/chemistry , Nucleosides/chemical synthesis , Peptides/chemistry , Peptides/chemical synthesis
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124306, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38640624

ABSTRACT

In this work, a new ratiometric fluorescent probe DKA was synthesized based on the double sides of lysine backbone conjugated with alanine and dansyl groups. DKA exhibited fluorescence ratiometric response for Hg2+ with high sensitivity (13.4 nM), specific selectivity (only Hg2+), strong anti-interference ability (no interference), fast recognition (within 60 s) and wide pH range (5-10). The stoichiometry of binding of DKA and Hg2+ was determined to be 1:1 via Job's plot, ESI-HRMS and 1HNMR titration analysis. Subsequently, the in situ formation of DKA-Hg2+ complex was used for highly selective detection of S2- as a novel fluorescence "on-off" probe, and the lowest detection limit for S2- was 12.9 nM. In addition, DKA possessed excellent cells permeation and low toxicity, and fluorescence imaging of Hg2+ and S2- was performed in living Hacat cells. Most importantly, the digital imaging using a smartphone color recognition APP indicated that DKA could semi-quantitatively and visually detected Hg2+ and S2- without expensive equipment.


Subject(s)
Fluorescent Dyes , Mercury , Smartphone , Spectrometry, Fluorescence , Mercury/analysis , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Peptides/chemistry , Peptides/chemical synthesis , Limit of Detection , Cell Line , Optical Imaging , Hydrogen-Ion Concentration
12.
J Mater Chem B ; 12(18): 4289-4306, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38595070

ABSTRACT

The past few decades have witnessed substantial progress in biomedical materials for addressing health concerns and improving disease therapeutic and diagnostic efficacy. Conventional biomedical materials are typically created through an ex vivo approach and are usually utilized under physiological environments via transfer from preparative media. This transfer potentially gives rise to challenges for the efficient preservation of the bioactivity and implementation of theranostic goals on site. To overcome these issues, the in situ synthesis of biomedical materials on site has attracted great attention in the past few years. Peptides, which exhibit remarkable biocompability and reliable noncovalent interactions, can be tailored via tunable assembly to precisely create biomedical materials. In this review, we summarize the progress in the self-assembly of peptides in living cells for disease diagnosis and therapy. After a brief introduction to the basic design principles of peptide assembly systems in living cells, the applications of peptide assemblies for bioimaging and disease treatment are highlighted. The challenges in the field of peptide self-assembly in living cells and the prospects for novel peptide assembly systems towards next-generation biomaterials are also discussed, which will hopefully help elucidate the great potential of peptide assembly in living cells for future healthcare applications.


Subject(s)
Biocompatible Materials , Peptides , Theranostic Nanomedicine , Humans , Peptides/chemistry , Peptides/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/pharmacology , Animals
13.
Bioorg Med Chem ; 105: 117717, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38614014

ABSTRACT

Near-infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that involves photoimmunotherapy drug injection and NIR light exposure. In NIR-PIT, antibodies are commonly used as target-directed molecules carrying IRDye700DX (IR700). However, antibodies have disadvantages, such as high cost, complex development strategies, and poor tumor penetration. In contrast, peptides have lower production costs, can be easy to chemically synthesize and modify, and can also be used for tumor-targeting like antibodies. In this study, we developed a novel PIT drug using a peptide as the target-directed molecule. Epidermal growth factor receptor (EGFR) was selected as the target, and monovalent and bivalent EGFR-binding peptides were synthesized. The bivalent peptide showed sufficient binding to EGFR-positive cells, and a bivalent peptide-IR700 conjugate with a long linker induced morphological changes in EGFR-positive cells. Additionally, the drug significantly reduced cell viability in vitro in an NIR light-dose- and drug-concentration-dependent manner. These results indicate the feasibility of NIR-PIT in treating cancer using peptide-based drugs.


Subject(s)
Cell Survival , ErbB Receptors , Immunotherapy , Infrared Rays , Peptides , Phototherapy , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Humans , Peptides/chemistry , Peptides/pharmacology , Peptides/chemical synthesis , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Drug Screening Assays, Antitumor , Cell Proliferation/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Structure-Activity Relationship , Cell Line, Tumor , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis
14.
Acc Chem Res ; 57(9): 1287-1297, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38626119

ABSTRACT

ConspectusThe growing list of physiologically important protein-protein interactions (PPIs) has amplified the need for compounds to target topologically complex biomolecular surfaces. In contrast to small molecules, peptide and protein mimics can exhibit three-dimensional shape complementarity across a large area and thus have the potential to significantly expand the "druggable" proteome. Strategies to stabilize canonical protein secondary structures without sacrificing side-chain content are particularly useful in the design of peptide-based chemical probes and therapeutics.Substitution of the backbone amide in peptides represents a subtle chemical modification with profound effects on conformation and stability. Studies focused on N-alkylation have already led to broad-ranging applications in peptidomimetic design. Inspired by nonribosomal peptide natural products harboring amide N-oxidations, we envisioned that main-chain hydrazide and hydroxamate bonds would impose distinct conformational preferences and offer unique opportunities for backbone diversification. This Account describes our exploration of peptide N-amination as a strategy for stabilizing canonical protein folds and for the structure-based design of soluble amyloid mimics.We developed a general synthetic protocol to access N-amino peptides (NAPs) on solid support. In an effort to stabilize ß-strand conformation, we designed stitched peptidomimetics featuring covalent tethering of the backbone N-amino substituent to the preceding residue side chain. Using a combination of NMR, X-ray crystallography, and molecular dynamics simulations, we discovered that backbone N-amination alone could significantly stabilize ß-hairpin conformation in multiple models of folding. Our studies revealed that the amide NH2 substituent in NAPs participates in cooperative noncovalent interactions that promote ß-sheet secondary structure. In contrast to Cα-substituted α-hydrazino acids, we found that N-aminoglycine and its N'-alkylated derivatives instead stabilize polyproline II (PPII) conformation. The reactivity of hydrazides also allows for late-stage peptide macrocyclization, affording novel covalent surrogates of side-chain-backbone H-bonds.The pronounced ß-sheet propensity of Cα-substituted α-hydrazino acids prompted us to target amyloidogenic proteins using NAP-based ß-strand mimics. Backbone N-amination was found to render aggregation-prone lead sequences soluble and resistant to proteolysis. Inhibitors of Aß and tau identified through N-amino scanning blocked protein aggregation and the formation of mature fibrils in vitro. We further identified NAP-based single-strand and cross-ß tau mimics capable of inhibiting the prion-like cellular seeding activity of recombinant and patient-derived tau fibrils.Our studies establish backbone N-amination as a valuable addition to the peptido- and proteomimetic tool kit. α-Hydrazino acids show particular promise as minimalist ß-strand mimics that retain side-chain information. Late-stage derivatization of hydrazides also provides facile entry into libraries of backbone-edited peptides. We anticipate that NAPs will thus find applications in the development of optimally constrained folds and modulators of PPIs.


Subject(s)
Peptides , Alkylation , Peptides/chemistry , Peptides/chemical synthesis
15.
J Phys Chem B ; 128(19): 4631-4645, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38657271

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a novel coronavirus, is the causative agent responsible for the spread of the COVID19 pandemic across the globe. The global impact of the COVID19 pandemic, the successful approval of vaccines for controlling the pandemic, and the further resurgence of COVID19 necessitate the exploration and validation of alternative therapeutic avenues targeting SARS-CoV-2. The initial entry and further invasion by SARS-CoV-2 require strong protein-protein interactions (PPIs) between the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptors expressed on the cell surfaces of various tissues. In principle, disruption of the PPIs between the RBD of SARS-CoV-2 and the ACE2 receptor by designer peptides with optimized pharmacology appears to be an ideal choice for potentially preventing viral entry with minimal immunogenicity. In this context, the current study describes a short, synthetic designer peptide (codenamed SR16, ≤18 aa, molecular weight ≤2.5 kDa), which has a few noncoded amino acids, demonstrates a helical conformation in solution, and also engages the RBD of SARS-CoV-2 through a high-affinity interaction, as judged from a battery of biophysical studies. Further, the designer peptide demonstrates resistance to trypsin degradation, appears to be nontoxic to mammalian cells, and also does not induce hemolysis in freshly isolated human erythrocytes. In summary, SR16 appears to be an ideal peptide binder targeting the RBD of SARS-CoV-2, which has the potential for further optimization and development as an antiviral agent targeting SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents , Peptides , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Peptides/chemistry , Peptides/pharmacology , Peptides/chemical synthesis , Protein Domains , Binding Sites , Drug Design , COVID-19/virology , COVID-19 Drug Treatment
16.
Bioorg Chem ; 147: 107356, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604021

ABSTRACT

Developing "turn on" fluorescent probes was desirable for the detection of the effective anticoagulant agent heparin in clinical applications. Through combining the aggregation induced emission (AIE) fluorogen tetraphenylethene (TPE) and heparin specific binding peptide AG73, the promising "turn on" fluorescent probe TPE-1 has been developed. Nevertheless, although TPE-1 could achieve the sensitive and selective detection of heparin, the low proteolytic stability and undesirable poor solubility may limit its widespread applications. In this study, seven TPE-1 derived fluorescent probes were rationally designed, efficiently synthesized and evaluated. The stability and water solubility were systematically estimated. Especially, to achieve real-time monitoring of proteolytic stability, the novel Abz/Dnp-based "turn on" probes that employ the internally quenched fluorescent (IQF) mechanism were designed and synthesized. Moreover, the detection ability of synthetic fluorescent probes for heparin were systematically evaluated. Importantly, the performance of d-type peptide fluorescent probe XH-6 indicated that d-type amino acid substitutions could significantly improve the proteolytic stability without compromising its ability of heparin sensing, and attaching solubilizing tag 2-(2-aminoethoxy) ethoxy) acid (AEEA) could greatly enhance the solubility. Collectively, this study not only established practical strategies to improve both the water solubility and proteolytic stability of "turn on" fluorescent probes for heparin sensing, but also provided valuable references for the subsequent development of enzymatic hydrolysis-resistant d-type peptides based fluorescent probes.


Subject(s)
Fluorescent Dyes , Heparin , Peptides , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Heparin/analysis , Heparin/chemistry , Peptides/chemistry , Peptides/chemical synthesis , Molecular Structure , Humans , Spectrometry, Fluorescence
17.
J Org Chem ; 89(10): 6639-6650, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38651358

ABSTRACT

We describe an optimization and scale-up of the 45-membered macrocyclic thioether peptide BMS-986189 utilizing solid-phase peptide synthesis (SPPS). Improvements to linear peptide isolation, macrocyclization, and peptide purification were demonstrated to increase the throughput and purification of material on scale and enabled the synthesis and purification of >60 g of target peptide. Taken together, not only these improvements resulted in a 28-fold yield increase from the original SPPS approach, but also the generality of this newly developed SPPS purification sequence has found application in the synthesis and purification of other macrocyclic thioether peptides.


Subject(s)
Macrocyclic Compounds , Peptides , Solid-Phase Synthesis Techniques , Sulfides , Sulfides/chemistry , Sulfides/chemical synthesis , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/chemical synthesis , Peptides/chemistry , Peptides/chemical synthesis , Peptides, Cyclic/chemistry , Peptides, Cyclic/chemical synthesis , Molecular Structure , Cyclization
18.
J Org Chem ; 89(10): 6651-6663, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38663026

ABSTRACT

This article outlines the process development leading to the manufacture of 800 g of BMS-986189, a macrocyclic peptide active pharmaceutical ingredient. Multiple N-methylated unnatural amino acids posed challenges to manufacturing due to the lability of the peptide to cleavage during global side chain deprotection and precipitation steps. These issues were exacerbated upon scale-up, resulting in severe yield loss and necessitating careful impurity identification, understanding the root cause of impurity formation, and process optimization to deliver a scalable synthesis. A systematic study of macrocyclization with its dependence on concentration and pH is presented. In addition, a side chain protected peptide synthesis is discussed where the macrocyclic protected peptide is extremely labile to hydrolysis. A computational study explains the root cause of the increased lability of macrocyclic peptide over linear peptide to hydrolysis. A process solution involving the use of labile protecting groups is discussed. Overall, the article highlights the advancements achieved to enable scalable synthesis of an unusually labile macrocyclic peptide by solid-phase peptide synthesis. The sustainability metric indicates the final preparative chromatography drives a significant fraction of a high process mass intensity (PMI).


Subject(s)
Macrocyclic Compounds , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/chemical synthesis , Peptides, Cyclic/chemistry , Peptides, Cyclic/chemical synthesis , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/chemistry , Peptides/chemistry , Peptides/chemical synthesis , Solid-Phase Synthesis Techniques , Molecular Structure
19.
Molecules ; 29(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675578

ABSTRACT

Poor selectivity to tumor cells is a major drawback in the clinical application of the antitumor drug doxorubicin (DOX). Peptide-drug conjugates (PDCs) constructed by modifying antitumor drugs with peptide ligands that have high affinity to certain overexpressed receptors in tumor cells are increasingly assessed for their possibility of tumor-selective drug delivery. However, peptide ligands composed of natural L-configuration amino acids have the defects of easy enzymatic degradation and insufficient biological stability. In this study, two new PDCs (LT7-SS-DOX and DT7-SS-DOX) were designed and synthesized by conjugating a transferrin receptor (TfR) peptide ligand LT7 (HAIYPRH) and its retro-inverso analog DT7 (hrpyiah), respectively, with DOX via a disulfide bond linker. Both conjugates exhibited targeted antiproliferative effects on TfR overexpressed tumor cells and little toxicity to TfR low-expressed normal cells compared with free DOX. Moreover, the DT7-SS-DOX conjugate possessed higher serum stability, more sustained reduction-triggered drug release characteristics, and stronger in vitro antiproliferative activity as compared to LT7-SS-DOX. In conclusion, the coupling of antitumor drugs with the DT7 peptide ligand can be used as a promising strategy for the further development of stable and efficient PDCs with the potential to facilitate TfR-targeted drug delivery.


Subject(s)
Antineoplastic Agents , Doxorubicin , Peptides , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Doxorubicin/pharmacology , Doxorubicin/chemistry , Drug Delivery Systems , Drug Liberation , Ligands , Peptides/chemistry , Peptides/pharmacology , Peptides/chemical synthesis , Receptors, Transferrin/metabolism
20.
Bioorg Chem ; 147: 107371, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643564

ABSTRACT

Due to the strong selectivity and permeability of tumor tissue, anti-cancer peptide-drug conjugates (PDCs) can accumulate high concentration of toxic payloads at the target, effectively killing tumor cells. This approach holds great promise for tumor-targeted treatment. In our previous study, we identified the optimal peptide P1 (NPNWGRSWYNQRFK) targeting HER2 from pertuzumab, a monoclonal antibody that blocks the HER2 signaling pathway. Here, a series of PDCs were constructed through connecting P1 and CPT with different linkers. Among these, Z8 emerged as the optimal compound, demonstrating good antitumor activity and targeting ability in biological activity tests. Z8 exhibited IC50 values of 1.04 ± 0.24 µM and 1.91 ± 0.71 µM against HER2-positive SK-BR-3 and NCI-N87 cells, respectively. Moreover, superior antitumor activity and higher biosafety of Z8 were observed compared to the positive control CPT in vivo, suggesting a novel idea for the construction of PDCs.


Subject(s)
Antineoplastic Agents , Camptothecin , Cell Proliferation , Drug Screening Assays, Antitumor , Peptides , Receptor, ErbB-2 , Humans , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Camptothecin/pharmacology , Camptothecin/chemistry , Structure-Activity Relationship , Animals , Cell Proliferation/drug effects , Peptides/chemistry , Peptides/pharmacology , Peptides/chemical synthesis , Molecular Structure , Dose-Response Relationship, Drug , Mice , Drug Discovery , Cell Line, Tumor , Female , Mice, Inbred BALB C , Mice, Nude
SELECTION OF CITATIONS
SEARCH DETAIL
...