Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37.474
Filter
1.
Nat Commun ; 15(1): 4687, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824166

ABSTRACT

Ligand-induced activation of G protein-coupled receptors (GPCRs) can initiate signaling through multiple distinct pathways with differing biological and physiological outcomes. There is intense interest in understanding how variation in GPCR ligand structure can be used to promote pathway selective signaling ("biased agonism") with the goal of promoting desirable responses and avoiding deleterious side effects. Here we present an approach in which a conventional peptide ligand for the type 1 parathyroid hormone receptor (PTHR1) is converted from an agonist which induces signaling through all relevant pathways to a compound that is highly selective for a single pathway. This is achieved not through variation in the core structure of the agonist, but rather by linking it to a nanobody tethering agent that binds with high affinity to a separate site on the receptor not involved in signal transduction. The resulting conjugate represents the most biased agonist of PTHR1 reported to date. This approach holds promise for facile generation of pathway selective ligands for other GPCRs.


Subject(s)
Receptor, Parathyroid Hormone, Type 1 , Receptors, G-Protein-Coupled , Signal Transduction , Single-Domain Antibodies , Ligands , Humans , Receptor, Parathyroid Hormone, Type 1/metabolism , Receptor, Parathyroid Hormone, Type 1/agonists , Single-Domain Antibodies/metabolism , Single-Domain Antibodies/pharmacology , HEK293 Cells , Signal Transduction/drug effects , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Protein Binding , Animals , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism
2.
Structure ; 32(5): 520-522, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701750

ABSTRACT

In a recent issue of Nature Chemical Biology, Folger et al. demonstrated a high-throughput approach for engineering peptide bond forming domains from non-ribosomal peptide synthesis. A non-ribosomal peptide synthetase module from surfactin biosynthesis was reprogrammed to accept a fatty acid substrate into peptide biosynthesis, thus illustrating the potential of this approach for generating novel bioactive peptides.


Subject(s)
Peptide Synthases , Protein Engineering , Peptide Synthases/metabolism , Peptide Synthases/chemistry , Peptide Synthases/genetics , Protein Engineering/methods , Peptides/metabolism , Peptides/chemistry
3.
Methods Mol Biol ; 2800: 147-165, 2024.
Article in English | MEDLINE | ID: mdl-38709483

ABSTRACT

Molecular forces are increasingly recognized as an important parameter to understand cellular signaling processes. In the recent years, evidence accumulated that also T-cells exert tensile forces via their T-cell receptor during the antigen recognition process. To measure such intercellular pulling forces, one can make use of the elastic properties of spider silk peptides, which act similar to Hookean springs: increased strain corresponds to increased stress applied to the peptide. Combined with Förster resonance energy transfer (FRET) to read out the strain, such peptides represent powerful and versatile nanoscopic force sensing tools. In this paper, we provide a detailed protocol how to synthesize a molecular force sensor for application in T-cell antigen recognition and hands-on guidelines on experiments and analysis of obtained single molecule FRET data.


Subject(s)
Fluorescence Resonance Energy Transfer , Receptors, Antigen, T-Cell , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Fluorescence Resonance Energy Transfer/methods , Humans , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Single Molecule Imaging/methods , Animals , Peptides/chemistry , Peptides/immunology , Peptides/metabolism , Silk/chemistry
4.
J Microbiol Biotechnol ; 34(5): 1082-1091, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38719776

ABSTRACT

The antioxidant capacity and protective effect of peptides from protein hydrolysate of Cordyceps militaris cultivated with tussah pupa (ECPs) on H2O2-injured HepG2 cells were studied. Results indicated ECP1 (<3 kDa) presented the strongest antioxidant activity compared with other molecular weight peptides. Pretreated with ECPs observably enhanced survival rates and reduced apoptosis rates of HepG2 cells. ECPs treatment decreased the ROS level, MDA content and increased CAT and GSH-Px activities of HepG2 cells. Besides, the morphologies of natural peptides from C. militaris cultivated with tussah pupa (NCP1) and ECP1 were observed by scanning electron microscopy (SEM). Characterization results suggested the structure of NCP1 was changed by enzymatic hydrolysis treatment. Most of hydrophobic and acidic amino acids contents (ACC) in ECP1 were also observably improved by enzymatic hydrolysis. In conclusion, low molecular weight peptides had potential value in the development of cosmetics and health food.


Subject(s)
Antioxidants , Apoptosis , Cordyceps , Oxidative Stress , Peptides , Reactive Oxygen Species , Cordyceps/chemistry , Cordyceps/metabolism , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Hep G2 Cells , Peptides/pharmacology , Peptides/chemistry , Peptides/metabolism , Oxidative Stress/drug effects , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/pharmacology , Cell Survival/drug effects , Hydrolysis , Protein Hydrolysates/pharmacology , Protein Hydrolysates/chemistry , Protein Hydrolysates/metabolism , Protective Agents/pharmacology , Molecular Weight , Fungal Proteins/metabolism , Fungal Proteins/pharmacology
5.
Gac Med Mex ; 160(1): 1-8, 2024.
Article in English | MEDLINE | ID: mdl-38753562

ABSTRACT

BACKGROUND: Protein interactions participate in many molecular mechanisms involved in cellular processes. The human TATA box binding protein (hTBP) interacts with Antennapedia (Antp) through its N-terminal region, specifically via its glutamine homopeptides. This PolyQ region acts as a binding site for other transcription factors under normal conditions, but when it expands, it generates spinocerebellar ataxia 17 (SCA17), whose protein aggregates in the brain prevent its correct functioning. OBJECTIVE: To determine whether the hTBP glutamine-rich region is involved in its interaction with homeoproteins and the role it plays in the formation of protein aggregates in SCA17. MATERIAL AND METHODS: We characterized hTBP interaction with other homeoproteins using BiFC, and modeled SCA17 in Drosophila melanogaster by targeting hTBPQ80 to the fly brain using UAS/GAL4. RESULTS: There was hTBP interaction with homeoproteins through its glutamine-rich region, and hTBP protein aggregates with expanded glutamines were found to affect the locomotor capacity of flies. CONCLUSIONS: The study of hTBP interactions opens the possibility for the search for new therapeutic strategies in neurodegenerative pathologies such as SCA17.


ANTECEDENTES: Las interacciones proteicas participan en una gran cantidad de mecanismos moleculares que rigen los procesos celulares. La proteína de unión a la caja TATA humana (hTBP) interacciona con Antennapedia (Antp) a través de su extremo N-terminal, específicamente a través de sus homopéptidos de glutaminas. Esta región PolyQ sirve como sitio de unión a factores de transcripción en condiciones normales, pero cuando se expande genera la ataxia espinal cerebelosa 17 (SCA17), cuyos agregados proteicos en el cerebro impiden su funcionamiento correcto. OBJETIVO: Determinar si la región rica en glutaminas de hTBP interviene en su interacción con homeoproteínas y el papel que tiene en la formación de agregados proteicos en SCA17. MATERIAL Y MÉTODOS: Se caracterizó la interacción de hTBP con otras homeoproteínas usando BiFC y se modeló SCA17 en Drosophila melanogaster dirigiendo hTBPQ80 al cerebro de las moscas usando UAS/GAL4. RESULTADOS: Existió interacción de hTBP con homeoproteínas a través de su región rica en glutaminas. Los agregados proteicos de hTBP con las glutaminas expandidas afectaron la capacidad locomotriz de las moscas. CONCLUSIONES: El estudio de las interacciones de hTBP abre la posibilidad para la búsqueda de nuevas estrategias terapéuticas en patologías neurodegenerativas como SCA17.


Subject(s)
Disease Models, Animal , Drosophila melanogaster , Spinocerebellar Ataxias , TATA-Box Binding Protein , Animals , Drosophila melanogaster/metabolism , Spinocerebellar Ataxias/metabolism , Spinocerebellar Ataxias/genetics , TATA-Box Binding Protein/metabolism , TATA-Box Binding Protein/genetics , Humans , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Glutamine/metabolism , Protein Aggregates/physiology , Peptides/metabolism , Brain/metabolism
6.
Mol Cell ; 84(10): 1980-1994.e8, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38759629

ABSTRACT

Aggregation of proteins containing expanded polyglutamine (polyQ) repeats is the cytopathologic hallmark of a group of dominantly inherited neurodegenerative diseases, including Huntington's disease (HD). Huntingtin (Htt), the disease protein of HD, forms amyloid-like fibrils by liquid-to-solid phase transition. Macroautophagy has been proposed to clear polyQ aggregates, but the efficiency of aggrephagy is limited. Here, we used cryo-electron tomography to visualize the interactions of autophagosomes with polyQ aggregates in cultured cells in situ. We found that an amorphous aggregate phase exists next to the radially organized polyQ fibrils. Autophagosomes preferentially engulfed this amorphous material, mediated by interactions between the autophagy receptor p62/SQSTM1 and the non-fibrillar aggregate surface. In contrast, amyloid fibrils excluded p62 and evaded clearance, resulting in trapping of autophagic structures. These results suggest that the limited efficiency of autophagy in clearing polyQ aggregates is due to the inability of autophagosomes to interact productively with the non-deformable, fibrillar disease aggregates.


Subject(s)
Amyloid , Autophagosomes , Autophagy , Huntingtin Protein , Huntington Disease , Peptides , Protein Aggregates , Sequestosome-1 Protein , Peptides/metabolism , Peptides/chemistry , Peptides/genetics , Humans , Huntingtin Protein/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/chemistry , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Amyloid/metabolism , Amyloid/chemistry , Amyloid/genetics , Huntington Disease/metabolism , Huntington Disease/genetics , Huntington Disease/pathology , Cryoelectron Microscopy , Animals , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/genetics
7.
J Am Chem Soc ; 146(19): 13676-13688, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38693710

ABSTRACT

Peptide-receptor interactions play critical roles in a wide variety of physiological processes. Methods to link bioactive peptides covalently to unmodified receptors on the surfaces of living cells are valuable for studying receptor signaling, dynamics, and trafficking and for identifying novel peptide-receptor interactions. Here, we utilize peptide analogues bearing deactivated aryl diazonium groups for the affinity-driven labeling of unmodified receptors. We demonstrate that aryl diazonium-bearing peptide analogues can covalently label receptors on the surface of living cells using both the neurotensin and the glucagon-like peptide 1 receptor systems. Receptor labeling occurs in the complex environment of the cell surface in a sequence-specific manner. We further demonstrate the utility of this covalent labeling approach for the visualization of peptide receptors by confocal fluorescence microscopy and for the enrichment and identification of labeled receptors by mass spectrometry-based proteomics. Aryl diazonium-based affinity-driven receptor labeling is attractive due to the high abundance of tyrosine and histidine residues susceptible to azo coupling in the peptide binding sites of receptors, the ease of incorporation of aryl diazonium groups into peptides, and the relatively small size of the aryl diazonium group. This approach should prove to be a powerful and relatively general method to study peptide-receptor interactions in cellular contexts.


Subject(s)
Diazonium Compounds , Diazonium Compounds/chemistry , Humans , Receptors, Peptide/metabolism , Receptors, Peptide/chemistry , Peptides/chemistry , Peptides/metabolism , Animals
9.
Commun Biol ; 7(1): 586, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755285

ABSTRACT

Bats serve as reservoirs for numerous zoonotic viruses, yet they typically remain asymptomatic owing to their unique immune system. Of particular significance is the MHC-I in bats, which plays crucial role in anti-viral response and exhibits polymorphic amino acid (AA) insertions. This study demonstrated that both 5AA and 3AA insertions enhance the thermal stability of the bat MHC-I complex and enrich the diversity of bound peptides in terms of quantity and length distribution, by stabilizing the 310 helix, a region prone to conformational changes during peptide loading. However, the mismatched insertion could diminish the stability of bat pMHC-I. We proposed that a suitable insertion may help bat MHC-I adapt to high body temperatures during flight while enhancing antiviral responses. Moreover, this site-specific insertions may represent a strategy of evolutionary adaptation of MHC-I molecules to fluctuations in body temperature, as similar insertions have been found in other lower vertebrates.


Subject(s)
Chiroptera , Histocompatibility Antigens Class I , Animals , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/genetics , Protein Stability , Peptides/chemistry , Peptides/metabolism , Amino Acids/chemistry , Amino Acids/metabolism , Antigen Presentation , Mutagenesis, Insertional
10.
Protein Sci ; 33(6): e4976, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38757374

ABSTRACT

G-protein coupled receptors (GPCRs) are the largest class of membrane proteins encoded in the human genome with high pharmaceutical relevance and implications to human health. These receptors share a prevalent architecture of seven transmembrane helices followed by an intracellular, amphipathic helix 8 (H8) and a disordered C-terminal tail (Ctail). Technological advancements have led to over 1000 receptor structures in the last two decades, yet frequently H8 and the Ctail are conformationally heterogeneous or altogether absent. Here we synthesize a peptide comprising the neurotensin receptor 1 (NTS1) H8 and Ctail (H8-Ctail) to investigate its structural stability, conformational dynamics, and orientation in the presence of detergent and phospholipid micelles, which mimic the membrane. Circular dichroism (CD) and nuclear magnetic resonance (NMR) measurements confirm that zwitterionic 1,2-diheptanoyl-sn-glycero-3-phosphocholine is a potent stabilizer of H8 structure, whereas the commonly-used branched detergent lauryl maltose neopentyl glycol (LMNG) is unable to completely stabilize the helix - even at amounts four orders of magnitude greater than its critical micellar concentration. We then used NMR spectroscopy to assign the backbone chemical shifts. A series of temperature and lipid titrations were used to define the H8 boundaries as F376-R392 from chemical shift perturbations, changes in resonance intensity, and chemical-shift-derived phi/psi angles. Finally, the H8 azimuthal and tilt angles, defining the helix orientation relative of the membrane normal were measured using paramagnetic relaxation enhancement NMR. Taken together, our studies reveal the H8-Ctail region is sensitive to membrane physicochemical properties and is capable of more adaptive behavior than previously suggested by static structural techniques.


Subject(s)
Receptors, Neurotensin , Receptors, Neurotensin/chemistry , Receptors, Neurotensin/metabolism , Receptors, Neurotensin/genetics , Humans , Micelles , Nuclear Magnetic Resonance, Biomolecular , Peptides/chemistry , Peptides/metabolism , Circular Dichroism , Protein Conformation, alpha-Helical , Detergents/chemistry , Models, Molecular
11.
Cell Mol Life Sci ; 81(1): 217, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748186

ABSTRACT

The vertebrate sense of taste allows rapid assessment of the nutritional quality and potential presence of harmful substances prior to ingestion. Among the five basic taste qualities, salty, sour, sweet, umami, and bitter, bitterness is associated with the presence of putative toxic substances and elicits rejection behaviors in a wide range of animals including humans. However, not all bitter substances are harmful, some are thought to be health-beneficial and nutritious. Among those compound classes that elicit a bitter taste although being non-toxic and partly even essential for humans are bitter peptides and L-amino acids. Using functional heterologous expression assays, we observed that the 5 dominant human bitter taste receptors responsive to bitter peptides and amino acids are activated by bile acids, which are notorious for their extreme bitterness. We further demonstrate that the cross-reactivity of bitter taste receptors for these two different compound classes is evolutionary conserved and can be traced back to the amphibian lineage. Moreover, we show that the cross-detection by some receptors relies on "structural mimicry" between the very bitter peptide L-Trp-Trp-Trp and bile acids, whereas other receptors exhibit a phylogenetic conservation of this trait. As some bile acid-sensitive bitter taste receptor genes fulfill dual-roles in gustatory and non-gustatory systems, we suggest that the phylogenetic conservation of the rather surprising cross-detection of the two substance classes could rely on a gene-sharing-like mechanism in which the non-gustatory function accounts for the bitter taste response to amino acids and peptides.


Subject(s)
Bile Acids and Salts , Peptides , Receptors, G-Protein-Coupled , Taste , Bile Acids and Salts/metabolism , Humans , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Animals , Taste/physiology , Peptides/metabolism , Phylogeny , HEK293 Cells , Amino Acids/metabolism , Cell Membrane/metabolism
12.
Sci Adv ; 10(20): eadl0161, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38748791

ABSTRACT

Reliable prediction of T cell specificity against antigenic signatures is a formidable task, complicated by the immense diversity of T cell receptor and antigen sequence space and the resulting limited availability of training sets for inferential models. Recent modeling efforts have demonstrated the advantage of incorporating structural information to overcome the need for extensive training sequence data, yet disentangling the heterogeneous TCR-antigen interface to accurately predict MHC-allele-restricted TCR-peptide interactions has remained challenging. Here, we present RACER-m, a coarse-grained structural model leveraging key biophysical information from the diversity of publicly available TCR-antigen crystal structures. Explicit inclusion of structural content substantially reduces the required number of training examples and maintains reliable predictions of TCR-recognition specificity and sensitivity across diverse biological contexts. Our model capably identifies biophysically meaningful point-mutant peptides that affect binding affinity, distinguishing its ability in predicting TCR specificity of point-mutants from alternative sequence-based methods. Its application is broadly applicable to studies involving both closely related and structurally diverse TCR-peptide pairs.


Subject(s)
Receptors, Antigen, T-Cell , T-Lymphocytes , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Humans , Protein Binding , Models, Molecular , Peptides/chemistry , Peptides/metabolism , T-Cell Antigen Receptor Specificity , Protein Conformation
13.
PeerJ ; 12: e17258, 2024.
Article in English | MEDLINE | ID: mdl-38770097

ABSTRACT

Background: Physical activity is an important factor in modelling the remodelling and metabolism of bone tissue. The aim of the study was to evaluate the changes in indices demonstrating bone turnover in men under the influence of maximum-intensity exercise. Methods: The study involved 33 men aged 20-25, divided into two groups: experimental (n = 15) and control (n = 18). People training medium- and long-distance running were assigned to the experimental group, and non-training individuals to the control. Selected somatic, physiological and biochemical indices were measured. The level of aerobic fitness was determined using a progressively increasing graded test (treadmill test for subjective fatigue). Blood samples for determinations were taken before the test and 60 minutes after its completion. The concentration of selected bone turnover markers was assessed: bone fraction of alkaline phosphatase (b-ALP), osteoclacin (OC), N-terminal cross-linked telopeptide of the alpha chain of type I collagen (NTx1), N-terminal propeptide of type I progolagen (PINP), osteoprotegerin (OPG). In addition, the concentration of 25(OH)D3 prior to the stress test was determined. Additionally, pre and post exercise, the concentration of lactates in the capillary blood was determined. Results: When comparing the two groups, significant statistical differences were found for the mean level of: 25(OH)D3 (p = 0.025), b-ALP (p < 0.001), OC (p = 0.004) and PINP (p = 0.029) prior to the test. On the other hand, within individual groups, between the values pre and post the stress test, there were statistically significant differences for the average level of: b-ALP (p < 0.001), NTx1 (p < 0.001), OPG (p = 0.001) and PINP (p = 0.002). Conclusion: A single-session maximum physical effort can become an effective tool to initiate positive changes in bone turnover markers.


Subject(s)
Biomarkers , Bone Remodeling , Exercise , Humans , Male , Adult , Biomarkers/blood , Bone Remodeling/physiology , Exercise/physiology , Young Adult , Osteoprotegerin/blood , Alkaline Phosphatase/blood , Collagen Type I/blood , Collagen Type I/metabolism , Peptides/blood , Peptides/metabolism , Running/physiology , Exercise Test/methods , Procollagen/blood
14.
J Agric Food Chem ; 72(20): 11480-11492, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38733562

ABSTRACT

Food-derived peptides with an inhibitory effect on dipeptidyl peptidase IV (DPP-IV) can be used as an additive treatment for type 2 diabetes. The inhibitory potential of food depends on technological protein hydrolysis and gastrointestinal digestion, as the peptides only act after intestinal resorption. The effect of malting as a hydrolytic step on the availability of these peptides in grains has yet to be investigated. In this study, quinoa was malted under systematic temperature, moisture, and time variations. In the resulting malts, the DPP-IV inhibition reached a maximum of 45.02 (±10.28) %, whereas the highest overall concentration of literature-known inhibitory peptides was 4.07 µmol/L, depending on the malting parameters. After in vitro gastrointestinal digest, the inhibition of most malts, as well as the overall concentration of inhibitory peptides, could be increased significantly. Additionally, the digested malts showed higher values in both the inhibition and the peptide concentration than the unmalted quinoa. Concerning the malting parameters, germination time had the highest impact on the inhibition and the peptide concentration after digest. An analysis of the protein sizes before and after malting gave first hints toward the origin of these peptides, or their precursors, in quinoa.


Subject(s)
Chenopodium quinoa , Dipeptidyl-Peptidase IV Inhibitors , Peptides , Chenopodium quinoa/chemistry , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl Peptidase 4/chemistry , Food Handling , Germination , Plant Proteins/chemistry , Plant Proteins/metabolism , Hydrolysis , Seeds/chemistry , Seeds/metabolism , Humans , Digestion
15.
Biochemistry ; 63(10): 1297-1306, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38729622

ABSTRACT

The DNA damage binding protein 1 (DDB1) is an essential component of protein complexes involved in DNA damage repair and the ubiquitin-proteasome system (UPS) for protein degradation. As an adaptor protein specific to Cullin-RING E3 ligases, DDB1 binds different receptors that poise protein substrates for ubiquitination and subsequent degradation by the 26S proteasome. Examples of DDB1-binding protein receptors are Cereblon (CRBN) and the WD-repeat containing DDB1- and CUL4-associated factors (DCAFs). Cognate substrates of CRBN and DCAFs are involved in cancer-related cellular processes or are mimicked by viruses to reprogram E3 ligases for the ubiquitination of antiviral host factors. Thus, disrupting interactions of DDB1 with receptor proteins might be an effective strategy for anticancer and antiviral drug discovery. Here, we developed fluorescence polarization (FP)-based peptide displacement assays that utilize full-length DDB1 and fluorescein isothiocyanate (FITC)-labeled peptide probes derived from the specific binding motifs of DDB1 interactors. A general FP-based assay condition applicable to diverse peptide probes was determined and optimized. Mutagenesis and biophysical analyses were then employed to identify the most suitable peptide probe. The FITC-DCAF15 L49A peptide binds DDB1 with a dissociation constant of 68 nM and can be displaced competitively by unlabeled peptides at sub-µM to low nM concentrations. These peptide displacement assays can be used to screen small molecule libraries to identify novel modulators that could specifically antagonize DDB1 interactions toward development of antiviral and cancer therapeutics.


Subject(s)
DNA-Binding Proteins , Fluorescence Polarization , Peptides , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/antagonists & inhibitors , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacology , Fluorescence Polarization/methods , Protein Binding , Ubiquitin-Protein Ligases/metabolism
16.
Food Chem ; 451: 139493, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38703728

ABSTRACT

Iron chelating peptides have been widely utilized as iron supplements due to their excellent absorption capacity, However, the high cost and cumbersome manufacturing process of these peptides significantly limit their industrial application. In this study, fermentation was used for the first time to prepare iron chelating peptides. Bacillus altitudinis 3*1-3 was selected as the most suitable strain from 50 strains. The hydrolysates of fermented scallop skirts showed excellent iron-chelating capacity (9.39 mg/g). Aspartic acid, glutamic acid, and histidine are crucial for the binding of peptides to ferrous ions. The heptapeptide (FEDPEFE) forms six binding bonds with ferrous irons. Compared with ferrous sulfate, peptide-ferrous chelate showed more stability in salt solution and simulated gastrointestinal juice (p < 0.05). Furthermore, the fermentation method could save >50% of the cost compared with the enzymatic method. The results can provide a theoretical basis for the preparation of ferrous-chelated peptides using the fermentation method.


Subject(s)
Bacillus , Fermentation , Iron Chelating Agents , Pectinidae , Peptides , Animals , Pectinidae/chemistry , Pectinidae/metabolism , Pectinidae/microbiology , Peptides/chemistry , Peptides/metabolism , Iron Chelating Agents/chemistry , Iron Chelating Agents/metabolism , Bacillus/metabolism , Bacillus/chemistry , Iron/chemistry , Iron/metabolism
17.
Nat Commun ; 15(1): 4243, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762540

ABSTRACT

Methionine plays a critical role in various biological and cell regulatory processes, making its chemoproteomic profiling indispensable for exploring its functions and potential in protein therapeutics. Building on the principle of rapid oxidation of methionine, we report Copper(I)-Nitrene Platform for robust, and selective labeling of methionine to generate stable sulfonyl sulfimide conjugates under physiological conditions. We demonstrate the versatility of this platform to label methionine in bioactive peptides, intact proteins (6.5-79.5 kDa), and proteins in complex cell lysate mixtures with varying payloads. We discover ligandable proteins and sites harboring hyperreactive methionine within the human proteome. Furthermore, this has been utilized to profile oxidation-sensitive methionine residues, which might increase our understanding of the protective role of methionine in diseases associated with elevated levels of reactive oxygen species. The Copper(I)-Nitrene Platform allows labeling methionine residues in live cancer cells, observing minimal cytotoxic effects and achieving dose-dependent labeling. Confocal imaging further reveals the spatial distribution of modified proteins within the cell membrane, cytoplasm, and nucleus, underscoring the platform's potential in profiling the cellular interactome.


Subject(s)
Copper , Methionine , Proteomics , Humans , Methionine/metabolism , Methionine/chemistry , Copper/metabolism , Copper/chemistry , Proteomics/methods , Oxidation-Reduction , Proteome/metabolism , Cell Line, Tumor , Peptides/metabolism , Peptides/chemistry , Imines
18.
Nat Commun ; 15(1): 4336, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773100

ABSTRACT

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a major class of natural products with diverse chemical structures and potent biological activities. A vast majority of RiPP gene clusters remain unexplored in microbial genomes, which is partially due to the lack of rapid and efficient heterologous expression systems for RiPP characterization and biosynthesis. Here, we report a unified biocatalysis (UniBioCat) system based on cell-free gene expression for rapid biosynthesis and engineering of RiPPs. We demonstrate UniBioCat by reconstituting a full biosynthetic pathway for de novo biosynthesis of salivaricin B, a lanthipeptide RiPP. Next, we delete several protease/peptidase genes from the source strain to enhance the performance of UniBioCat, which then can synthesize and screen salivaricin B variants with enhanced antimicrobial activity. Finally, we show that UniBioCat is generalizable by synthesizing and evaluating the bioactivity of ten uncharacterized lanthipeptides. We expect UniBioCat to accelerate the discovery, characterization, and synthesis of RiPPs.


Subject(s)
Cell-Free System , Protein Processing, Post-Translational , Ribosomes , Ribosomes/metabolism , Ribosomes/genetics , Peptides/metabolism , Peptides/genetics , Peptides/chemistry , Biosynthetic Pathways/genetics , Multigene Family , Biocatalysis
19.
Chem Senses ; 492024 Jan 01.
Article in English | MEDLINE | ID: mdl-38695158

ABSTRACT

Gymnema sylvestre (GS) is a traditional medicinal plant known for its hypoglycemic and hypolipidemic effects. Gurmarin (hereafter Gur-1) is the only known active peptide in GS. Gur-1 has a suppressive sweet taste effect in rodents but no or only a very weak effect in humans. Here, 8 gurmarin-like peptides (Gur-2 to Gur-9) and their isoforms are reported in the GS transcriptome. The molecular mechanism of sweet taste suppression by Gur-1 is still largely unknown. Therefore, the complete architecture of human and mouse sweet taste receptors T1R2/T1R3 and their interaction with Gur-1 to Gur-9 were predicted by AlphaFold-Multimer (AF-M) and validated. Only Gur-1 and Gur-2 interact with the T1R2/T1R3 receptor. Indeed, Gur-1 and Gur-2 bind to the region of the cysteine-rich domain (CRD) and the transmembrane domain (TMD) of the mouse T1R2 subunit. In contrast, only Gur-2 binds to the TMD of the human T1R2 subunit. This result suggests that Gur-2 may have a suppressive sweet taste effect in humans. Furthermore, AF-M predicted that Gα-gustducin, a protein involved in sweet taste transduction, interacts with the intracellular domain of the T1R2 subunit. These results highlight an unexpected diversity of gurmarin-like peptides in GS and provide the complete predicted architecture of the human and mouse sweet taste receptor with the putative binding sites of Gur-1, Gur-2, and Gα-gustducin. In addition, gurmarin-like peptides may serve as promising drug scaffolds for the development of antidiabetic molecules.


Subject(s)
Gymnema sylvestre , Receptors, G-Protein-Coupled , Humans , Gymnema sylvestre/metabolism , Gymnema sylvestre/chemistry , Animals , Mice , Receptors, G-Protein-Coupled/metabolism , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism , Plant Proteins/metabolism , Plant Proteins/chemistry , Taste/physiology , Protein Binding , Amino Acid Sequence , HEK293 Cells
20.
Biochem Biophys Res Commun ; 716: 149991, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38704888

ABSTRACT

Cholera toxin (Ctx) is a major virulence factor produced by Vibrio cholerae that can cause gastrointestinal diseases, including severe watery diarrhea and dehydration, in humans. Ctx binds to target cells through multivalent interactions between its B-subunit pentamer and the receptor ganglioside GM1 present on the cell surface. Here, we identified a series of tetravalent peptides that specifically bind to the receptor-binding region of the B-subunit pentamer using affinity-based screening of multivalent random-peptide libraries. These tetravalent peptides efficiently inhibited not only the cell-elongation phenotype but also the elevated cAMP levels, both of which are induced by Ctx treatment in CHO cells or a human colon carcinoma cell line (Caco-2 cells), respectively. Importantly, one of these peptides, NRR-tet, which was highly efficient in these two activities, markedly inhibited fluid accumulation in the mouse ileum caused by the direct injection of Ctx. In consistent, NRR-tet reduced the extensive Ctx-induced damage of the intestinal villi. After NRR-tet bound to Ctx, the complex was incorporated into the cultured epithelial cells and accumulated in the recycling endosome, affecting the retrograde transport of Ctx from the endosome to the Golgi, which is an essential process for Ctx to exert its toxicity in cells. Thus, NRR-tet may be a novel type of therapeutic agent against cholera, which induces the aberrant transport of Ctx in the intestinal epithelial cells, detoxifying the toxin.


Subject(s)
Cholera Toxin , Cricetulus , Cholera Toxin/metabolism , Humans , Animals , Mice , CHO Cells , Caco-2 Cells , Peptides/pharmacology , Peptides/metabolism , Peptides/chemistry , Protein Transport/drug effects , Cholera/drug therapy , Cholera/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...