Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.899
Filter
1.
Int J Nanomedicine ; 19: 4429-4449, 2024.
Article in English | MEDLINE | ID: mdl-38784761

ABSTRACT

Background: Therapeutic proteins and peptides offer great advantages compared to traditional synthetic molecular drugs. However, stable protein loading and precise control of protein release pose significant challenges due to the extensive range of physicochemical properties inherent to proteins. The development of a comprehensive protein delivery strategy becomes imperative accounting for the diverse nature of therapeutic proteins. Methods: Biodynamers are amphiphilic proteoid dynamic polymers consisting of amino acid derivatives connected through pH-responsive dynamic covalent chemistry. Taking advantage of the amphiphilic nature of the biodynamers, PNCs and DEs were possible to be prepared and investigated to compare the delivery efficiency in drug loading, stability, and cell uptake. Results: As a result, the optimized PNCs showed 3-fold encapsulation (<90%) and 5-fold loading capacity (30%) compared to DE-NPs. PNCs enhanced the delivery efficiency into the cells but aggregated easily on the cell membrane due to the limited stability. Although DE-NPs were limited in loading capacity compared to PNCs, they exhibit superior adaptability in stability and capacity for delivering a wider range of proteins compared to PNCs. Conclusion: Our study highlights the potential of formulating both PNCs and DE-NPs using the same biodynamers, providing a comparative view on protein delivery efficacy using formulation methods.


Subject(s)
Emulsions , Peptides , Peptides/chemistry , Peptides/administration & dosage , Peptides/pharmacokinetics , Emulsions/chemistry , Humans , Proteins/chemistry , Proteins/administration & dosage , Proteins/pharmacokinetics , Drug Delivery Systems/methods , Polymers/chemistry , Nanoparticles/chemistry , Hydrogen-Ion Concentration , Amino Acids/chemistry , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Liberation , Cell Survival/drug effects
2.
Viruses ; 16(4)2024 04 07.
Article in English | MEDLINE | ID: mdl-38675913

ABSTRACT

Phage display is a versatile method often used in the discovery of peptides that targets disease-related biomarkers. A major advantage of this technology is the ease and cost efficiency of affinity selection, also known as biopanning, to identify novel peptides. While it is relatively straightforward to identify peptides with optimal binding affinity, the pharmacokinetics of the selected peptides often prove to be suboptimal. Therefore, careful consideration of the experimental conditions, including the choice of using in vitro, in situ, or in vivo affinity selections, is essential in generating peptides with high affinity and specificity that also demonstrate desirable pharmacokinetics. Specifically, in vivo biopanning, or the combination of in vitro, in situ, and in vivo affinity selections, has been proven to influence the biodistribution and clearance of peptides and peptide-conjugated nanoparticles. Additionally, the marked difference in properties between peptides and nanoparticles must be considered. While peptide biodistribution depends primarily on physiochemical properties and can be modified by amino acid modifications, the size and shape of nanoparticles also affect both absorption and distribution. Thus, optimization of the desired pharmacokinetic properties should be an important consideration in biopanning strategies to enable the selection of peptides and peptide-conjugated nanoparticles that effectively target biomarkers in vivo.


Subject(s)
Cell Surface Display Techniques , Peptides , Peptides/pharmacokinetics , Peptides/chemistry , Animals , Cell Surface Display Techniques/methods , Humans , Tissue Distribution , Nanoparticles/chemistry , Peptide Library
3.
J Control Release ; 369: 63-74, 2024 May.
Article in English | MEDLINE | ID: mdl-38513729

ABSTRACT

Recent studies in colorectal cancer patients (CRC) have shown that increased resistance to thymidylate synthase (TS) inhibitors such as 5-fluorouracil (5-FU), reduce the efficacy of standard of care (SoC) treatment regimens. The nucleotide pool cleanser dUTPase is highly expressed in CRC and is an attractive target for potentiating anticancer activity of chemotherapy. The purpose of the current work was to investigate the activity of P1, P4-di(2',5'-dideoxy-5'-selenouridinyl)-tetraphosphate (P4-SedU2), a selenium-modified symmetrically capped dinucleoside with prodrug capabilities that is specifically activated by dUTPase. Using mechanochemistry, P4-SedU2 and the corresponding selenothymidine analogue P4-SeT2 were prepared with a yield of 19% and 30% respectively. The phosphate functionality facilitated complexation with the amphipathic cell-penetrating peptide RALA to produce nanoparticles (NPs). These NPs were designed to deliver P4-SedU2 intracellularly and thereby maximise in vivo activity. The NPs demonstrated effective anti-cancer activity and selectivity in the HCT116 CRC cell line, a cell line that overexpresses dUTPase; compared to HT29 CRC cells and NCTC-929 fibroblast cells which have reduced levels of dUTPase expression. In vivo studies in BALB/c SCID mice revealed no significant toxicity with respect to weight or organ histology. Pharmacokinetic analysis of blood serum showed that RALA facilitates effective delivery and rapid internalisation into surrounding tissues with NPs eliciting lower plasma Cmax than the equivalent injection of free P4-SedU2, translating the in vitro findings. Tumour growth delay studies have demonstrated significant inhibition of growth dynamics with the tumour doubling time extended by >2weeks. These studies demonstrate the functionality and action of a new pro-drug nucleotide for CRC.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Nanoparticles , Prodrugs , Animals , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Prodrugs/administration & dosage , Prodrugs/pharmacokinetics , Prodrugs/therapeutic use , Prodrugs/chemistry , Prodrugs/pharmacology , Humans , Nanoparticles/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Pyrophosphatases/antagonists & inhibitors , Female , Cell Line, Tumor , Peptides/chemistry , Peptides/administration & dosage , Peptides/pharmacokinetics , Peptides/pharmacology , Mice, Inbred BALB C , Mice , Nucleotides/administration & dosage , Nucleotides/chemistry , Nucleotides/pharmacokinetics , HCT116 Cells
4.
Nucl Med Biol ; 132-133: 108906, 2024.
Article in English | MEDLINE | ID: mdl-38518400

ABSTRACT

BACKGROUND: The C-X-C chemokine receptor type 4 (CXCR4) is overexpressed in many cancers, e.g. multiple myeloma and acute leukemia, yet solely [68Ga]PentixaFor is used for clinical PET imaging. The aim of this study was to develop and assess a second generation Al18F-labeled D-amino acid peptide based on the viral macrophage inflammatory protein II for CXCR4 targeted molecular imaging. METHODS: We designed a library of monomer and multimer constructs and evaluated their binding affinity for human and mouse CXCR4. Based on these results, we selected the best vector molecule for development of an Al18F-labeled ligand, [18F]AlF-NOTA-2xDV1(c11sc12s), which was further evaluated in a cell-based binding assay to assess its binding properties and specificity for CXCR4. Next, pharmacokinetics and tumor uptake of [18F]AlF-NOTA-2xDV1(c11sc12s) were evaluated in naïve mice and mice with xenografts derived from U87.CXCR4 cells. Finally, we performed an imaging study in a non-human primate to assess the in vivo distribution of this novel radioligand in a species closely related to humans. RESULTS: The lead ligand AlF-NOTA-2xDV1(c11sc12s) showed six-fold higher affinity for human CXCR4 compared to Ga-Pentixafor. The corresponding radiotracer was obtained in a good radiochemical yield of 40.1 ± 13.5 % (n = 4) and apparent molar activity of 20.4 ± 3.3 MBq/nmol (n = 4) after optimization. In U87.CD4.CXCR4 cell binding assays, the total bound fraction of [18F]AlF-NOTA-(2×)DV1(c11sc12s) was 32.4 ± 1.8 %. This fraction could be reduced by 82.5 % in the presence of 75 µM AMD3100. In naïve mice, [18F]AlF-NOTA-2xDV1(c11sc12s) accumulated in organs expressing mouse CXCR4, e.g. the liver (SUVmean (mean standardized uptake value) 75 min p.i. 11.7 ± 0.6), which was blockable by co-injecting AMD3100 (5 mg/kg). In U87.CXCR4 xenografted tumor mice, the tumor uptake of [18F]AlF-NOTA-2xDV1(c11sc12s) remained low (SUVmean 0.5 ± 0.1), but was reduced by co-administration of AMD3100. Surprisingly, [18F]AlF-NOTA-2xDV1(c11sc12s) exhibited a similar biodistribution in a non-human primate as in mice indicating off-target binding of [18F]AlF-NOTA-2xDV1(c11sc12s) in liver tissue. We confirmed that [18F]AlF-NOTA-2xDV1(c11sc12s) is taken up by hepatocytes using in vitro studies and that the uptake can be blocked with AMD3100 and rifampicin, a potent organic anion-transporting-polypeptide (OATP)1B1 and OATP1B3 inhibitor. CONCLUSION: The second generation D-peptide AlF-NOTA-2xDV1(c11sc12s) showed high affinity for human CXCR4 and the corresponding radiotracer was produced in good radiochemical yields. However, [18F]AlF-NOTA-2xDV1(c11sc12s) is not specific for CXCR4 and is also a substrate for OATP1B1 and/or OATP1B3, known to mediate hepatic uptake. Therefore, D-amino acid peptides, based on the viral macrophage inflammatory protein II, are not the prefered vector molecule for the development of CXCR4 targeting molecular imaging tools.


Subject(s)
Fluorine Radioisotopes , Receptors, CXCR4 , Receptors, CXCR4/metabolism , Animals , Mice , Humans , Fluorine Radioisotopes/chemistry , Peptides/chemistry , Peptides/pharmacokinetics , Cell Line, Tumor , Tissue Distribution , Isotope Labeling , Molecular Imaging/methods , Positron-Emission Tomography/methods , Radiochemistry
5.
Eur J Drug Metab Pharmacokinet ; 48(6): 723-731, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37833493

ABSTRACT

BACKGROUND AND OBJECTIVE: HSK21542, a synthetic short-chain polypeptide, is a selective peripheral kappa opioid receptor (KOR) agonist. In this single-centre, non-randomized, open-label study, the pharmacokinetics, mass balance, metabolism and excretion of HSK21542 were investigated. METHODS: A single intravenous dose of 2 µg/0.212 µCi/kg [14C]HSK21542 was administered to six healthy male subjects. Samples of blood, urine and faeces were collected for quantitative determination of total radioactivity and unchanged HSK21542, and identification of metabolites. RESULTS: The mean total recovery was 81.89% of the radiolabelled dose over 240 h post-dose, with 35.60% and 46.30% excreted in faeces and urine, respectively. The mean maximum concentration (Cmax), the half-life (t1/2) and the area under the concentration-time curve (AUC0-t) of total radioactivity (TRA) in plasma were 20.4 ±4.16 ng Eq./g, 1.93 ± 0.322 h and 21.8 ± 2.93 h·ng Eq./g, respectively, while the Cmax, t1/2 and the AUC0-t of unchanged HSK21542 were 18.3 ± 3.36 ng/mL, 1.66 ± 0.185 h and 18.4 ± 2.24 h·ng/mL, respectively. The blood-to-plasma ratios of TRA at several times ranged from 0.46 to 0.54. [14C]HSK21542 was detected as the main circulating substance in plasma, accounting for 92.17% of the AUC of TRA. The unchanged parent compound was the only major radioactive chemical in urine (100.00% of TRA) and faeces (93.53% of TRA). Metabolites were very minor components. CONCLUSIONS: HSK21542 was barely metabolized in vivo and mainly excreted with unchanged HSK21542 as its main circulating component in plasma. It was speculated that renal excretion was the principal excretion pathway, and faecal excretion was the secondary pathway. CLINICAL TRIAL REGISTRATION NUMBER: NCT05835934.


Subject(s)
Peptides , Receptors, Opioid, kappa , Humans , Male , Administration, Oral , Feces/chemistry , Receptors, Opioid, kappa/agonists , Receptors, Opioid, kappa/analysis , Peptides/pharmacokinetics , Peptides/pharmacology
6.
AAPS J ; 25(4): 54, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37231199

ABSTRACT

The kidneys and liver are major organs involved in eliminating small-molecule drugs from the body. Characterization of the effects of renal impairment (RI) and hepatic impairment (HI) on pharmacokinetics (PK) have informed dosing in patients with these organ impairments. However, the knowledge about the impact of organ impairment on therapeutic peptides and proteins is still evolving. In this study, we reviewed how often therapeutic peptides and proteins were assessed for the effect of RI and HI on PK, the findings, and the resulting labeling recommendations. RI effects were reported in labeling for 30 (57%) peptides and 98 (39%) proteins and HI effects for 20 (38%) peptides and 55 (22%) proteins. Dose adjustments were recommended for RI in 11 of the 30 (37%) peptides and 10 of the 98 (10%) proteins and for HI in 7 of the 20 (35%) peptides and 3 of the 55 (5%) proteins. Additional actionable labeling includes risk mitigation strategies; for example, some product labels have recommended avoid use or monitor toxicities in patients with HI. Over time, there is an increasing structural diversity of therapeutic peptides and proteins, including the use of non-natural amino acids and conjugation technologies, which suggests a potential need for reassessing the need to evaluate the effect of RI and HI. Herein, we discuss scientific considerations for weighing the risk of PK alteration due to RI or HI for peptide and protein products. We briefly discuss other organs that may affect the PK of peptides and proteins administered via other delivery routes.


Subject(s)
Kidney , Renal Insufficiency , Humans , Kidney/metabolism , Peptides/pharmacokinetics , Proteins/metabolism , Pharmaceutical Preparations/metabolism
7.
Clin Breast Cancer ; 23(2): 219-230, 2023 02.
Article in English | MEDLINE | ID: mdl-36581518

ABSTRACT

PURPOSE: The accurate determination of human epidermal growth factor receptor 2 (HER2) status can predict response to treatment with HER2-targeted therapy for HER2-positive breast cancer patients. [99mTc]Tc-HYNIC-(Ser)3-LTVPWY ([99mTc]Tc-HYNIC-LY) is a small synthetic peptide molecule targeting of the HER2 receptor. This clinical study evaluated the pharmacokinetic, dosimetry, and efficacy of [99mTc]Tc-HYNIC-LY for determining the HER2 status in primary breast cancer patients. MATERIALS AND METHODS: In total, 24 women with suspected primary breast cancer received an intravenous injection of approximately 20 µg (∼740 MBq) of [99mTc]Tc-HYNIC-LY. In the first 3 patients, blood levels of radioactivity were analyzed for pharmacokinetic evaluation and planar gamma camera imaging was conducted at 30 min and 1, 2, 4, and 24 hour after injection for dosimetry assessment. In the last 21 patients, planar imaging was performed at the baseline, as well as 1, 2, 3, and 4 hour, followed by single-photon emission computed tomography (SPECT) imaging after 4 hour to evaluate the tumor-targeting potential in primary lesions. RESULTS: Injection of [99mTc]Tc-HYNIC-LY was safe and well tolerated. Fast blood clearance provided high-contrast HER2 imaging within 1 to 4 hour. The highest absorbed radiation dose was found for kidneys (6.78E-03 ± 2.62E-04 mSv/MBq), followed by the heart (3.73E-03 ± 1.98E-04 mSv/MBq). The [99mTc]Tc-HYNIC-LY peptide was able to detect HER2 status in primary tumors at an acceptable level. CONCLUSION: The findings of this study indicated that [99mTc]Tc-HYNIC-LY SPECT is safe and feasible for the identification of HER2-positive lesions in primary breast cancer patients, and may provide an accurate and non-invasive modality for guiding HER2 targeted therapy.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Peptides/pharmacokinetics , Tomography, Emission-Computed, Single-Photon , Radionuclide Imaging , Molecular Imaging
8.
J Med Chem ; 66(6): 3656-3663, 2023 03 23.
Article in English | MEDLINE | ID: mdl-35961011

ABSTRACT

An increasing number of drugs that consist of a therapeutic peptide or protein linked to an albumin-binding structure are being approved. In this perspective, the pharmacokinetic data of currently marketed drugs of this type will be presented. Acylation with fatty acids or fatty α,ω-dicarboxylic acids has been used successfully to prepare long-acting analogs of insulin, GLP-1, and other peptides but not of larger proteins. With a tetrazole-sulfonylamide fatty acid bioisostere, it has now been possible to prepare a long-acting analog of human growth hormone (191 amino acids), which is suitable for once-weekly administration.


Subject(s)
Albumins , Peptides , Humans , Peptides/therapeutic use , Peptides/pharmacokinetics , Insulin/metabolism , Glucagon-Like Peptide 1
9.
Mol Pharm ; 19(7): 2279-2286, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35635006

ABSTRACT

The effectiveness of protein and peptide pharmaceuticals depends essentially on their intrinsic pharmacokinetics. Small-sized pharmaceuticals in particular often suffer from short serum half-lives due to rapid renal clearance. To improve the pharmacokinetics by association with serum albumin (SA) in vivo, we generated an SA-binding tag of a helix-loop-helix (HLH) peptide to be linked with protein pharmaceuticals. For use in future preclinical studies, screening of yeast-displayed HLH peptide libraries against human SA (HSA) and mouse SA (MSA) was alternately repeated to give the SA-binding peptide AY-VE, which exhibited cross-binding activities to HSA and MSA with KD of 65 and 20 nM, respectively. As a proof of concept, we site-specifically conjugated peptide AY-VE with insulin to examine its bioactivity in vivo. In mouse bioassay monitoring the blood glucose level, the AY-VE conjugate was found to have a prolonged hypoglycemic effect for 12 h. The HLH peptide tag is a general platform for extending the bioactivity of therapeutic peptides or proteins.


Subject(s)
Peptides , Serum Albumin, Human , Animals , Half-Life , Humans , Mice , Peptides/pharmacokinetics , Saccharomyces cerevisiae/metabolism , Serum Albumin , Serum Albumin, Human/metabolism
10.
Pediatr Diabetes ; 23(6): 641-648, 2022 09.
Article in English | MEDLINE | ID: mdl-35411611

ABSTRACT

OBJECTIVE: The aim of this study was to investigate the pharmacokinetic, pharmacodynamic and safety profile of the glucagon-like peptide-1 receptor agonist, lixisenatide, for the treatment of type 2 diabetes (T2D) in pediatric individuals. MATERIALS AND METHODS: In this Phase 1, multicenter, randomized, double-blind, placebo-controlled, parallel-group, ascending repeated dose study (NCT02803918), participants aged ≥10 and < 18 years were randomized 3:1 to receive once-daily lixisenatide in 2-week increments of 5, 10, and 20 µg (n = 18) or placebo (n = 5) for 6 weeks. RESULTS: Mean lixisenatide concentrations generally increased with increasing doses irrespective of anti-drug antibody (ADA) status; however, mean lixisenatide concentrations and inter-subject variability were higher for participants with positive ADA status. Improvements in fasting plasma glucose, post-prandial glucose, AUC0-4.5 , HbA1c , and body weight were observed with lixisenatide. Overall, the safety profile was consistent with the known profile in adults, with no unexpected side effects and no treatment-emergent adverse events resulting in death or discontinuation. The most common events in the lixisenatide group were vomiting (11.1%) and nausea (11.1%). No symptomatic hypoglycemia was reported in either group. No clinically significant hematologic, biochemical or vital sign abnormalities were observed. CONCLUSIONS: Mean lixisenatide concentrations generally increased with increasing dose, irrespective of ADA status. Lixisenatide was associated with improved glycemic control and a trend in body weight reduction compared with placebo. The safety and tolerability profile of repeated lixisenatide doses of up to 20 µg per day in children and adolescents with T2D was reflective of the established safety profile of lixisenatide in adults.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Peptides , Adolescent , Blood Glucose , Body Weight , Child , Diabetes Mellitus, Type 2/drug therapy , Double-Blind Method , Glycated Hemoglobin/analysis , Humans , Hypoglycemia , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/therapeutic use , Peptides/pharmacokinetics , Peptides/therapeutic use , Treatment Outcome
11.
J Pharm Biomed Anal ; 211: 114518, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35124452

ABSTRACT

The inhalation of peptides comes with the advantage of directly targeting the lung as tissue of interest. However, peptides are often rapidly metabolized in lung tissue through proteolytic cleavage. We have developed an assay workflow to obtain half-life and metabolite ID data for peptides incubated with four proteases abundant in lungs of asthma and COPD patients. The assay system has been validated using 28 structurally diverse linear and cyclic peptides with a molecular weight between 708 and 5808 Da. Experimental conditions for incubation, sample preparation, chromatography, data acquisition and analysis are compatible with the required throughput in early stage peptide projects. Together with co-crystal structures and Ala scans, we are using the described assay workflow to guide the first chemical modifications of peptide hits in early respiratory drug discovery projects.


Subject(s)
Peptide Hydrolases , Peptides , Administration, Inhalation , Asthma/drug therapy , Asthma/enzymology , High-Throughput Screening Assays , Humans , Lung/enzymology , Peptide Hydrolases/metabolism , Peptides/administration & dosage , Peptides/chemistry , Peptides/pharmacokinetics , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/enzymology
12.
Int J Mol Sci ; 23(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35216272

ABSTRACT

Triple-negative breast cancer (TNBC) accounts for approximately 10-15% of all breast cancer cases and is characterized by high invasiveness, high metastatic potential, relapse proneness, and poor prognosis. M2-like tumor-associated macrophages (TAMs) contribute to tumorigenesis and are promising targets for inhibiting breast cancer metastasis. Therefore, we investigated whether melittin-conjugated pro-apoptotic peptide (TAMpepK) exerts therapeutic effects on breast cancer metastasis by targeting M2-like TAMs. TAMpepK is composed of M2-like TAM binding peptide (TAMpep) and pro-apoptotic peptide d(KLAKLAK)2 (dKLA). A metastatic mouse model was constructed by injecting 4T1-luc2 cells either orthotopically or via tail vein injection, and tumor burden was quantified using a bioluminescence in vivo imaging system. We found that TAMpepK suppressed lung and lymph node metastases of breast cancer by eliminating M2-like TAMs without affecting the viability of M1-like macrophages and resident macrophages in the orthotopic model. Furthermore, TAMpepK reduced pulmonary seeding and the colonization of tumor cells in the tail vein injection model. The number of CD8+ T cells in contact with TAMs was significantly decreased in tumor nodules treated with TAMpepK, resulting in the functional activation of cytotoxic CD8+ T cells. Taken together, our findings suggest that TAMpepK could be a novel therapeutic agent for the inhibition of breast cancer metastasis by targeting M2-like TAMs.


Subject(s)
Apoptosis/drug effects , Lymphatic Metastasis/drug therapy , Melitten/pharmacology , Peptides/pharmacokinetics , Triple Negative Breast Neoplasms/drug therapy , Tumor-Associated Macrophages/drug effects , Animals , Apoptosis/physiology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Disease Models, Animal , Female , Lymphatic Metastasis/pathology , Mice , Mice, Inbred BALB C , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Phagocytosis/drug effects , Phagocytosis/physiology , Triple Negative Breast Neoplasms/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/physiology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology
13.
Curr Drug Metab ; 23(1): 82-87, 2022.
Article in English | MEDLINE | ID: mdl-35049428

ABSTRACT

BACKGROUND: HER2 over-expression plays a crucial role in the cancer treatment protocol. This study evaluates the effectiveness of organic anion and cation transport inhibitors and substrate on the tumor uptake of 99mTc- HYNIC-(Ser)3-LTVPWY radiotracer in SKOV-3 tumor-bearing nude mice. METHODS: Before the injection of the radiolabeled peptide, SKOV-3 tumor-bearing nude mice were treated with furosemide, cimetidine, para-amino hippuric acid, and saline. The inhibition effects of the organic anion and cation transport inhibitors were compared with the control group. In both treatment and control groups, the tumor and renal accumulation of radiopeptide in mice bearing SKOV-3 tumors were assessed in biodistribution and SPECT imaging studies. RESULTS: The biodistribution and imaging results suggested that all treated groups showed a higher tumor and higher normal tissue radioactivity compared to the control group. According to the tumor imaging study, the furosemidetreated group had slightly better tumor uptake and a higher tumor to muscle uptake ratio than other treatment groups. CONCLUSION: Administration of furosemide (an OAT inhibitor) increased radioactivity accumulation in the kidneys and blood and improved tumor radioactivity uptake. PAH (an anion transporter substrate) and cimetidine (an OCT inhibitor) have a minor effect on the accumulation of radioactivity in the kidneys and the acquired images.


Subject(s)
Furosemide , Neoplasms , Animals , Cations , Cimetidine/pharmacology , Humans , Ion Transport , Kidney , Mice , Mice, Nude , Peptides/pharmacokinetics , Tissue Distribution
14.
Molecules ; 27(2)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35056735

ABSTRACT

Self-assembly peptide nanotechnology has attracted much attention due to its regular and orderly structure and diverse functions. Most of the existing self-assembly peptides can form aggregates with specific structures only under specific conditions and their assembly time is relatively long. They have good biocompatibility but no immunogenicity. To optimize it, a self-assembly peptide named DRF3 was designed. It contains a hydrophilic and hydrophobic surface, using two N-terminal arginines, leucine, and two c-terminal aspartate and glutamic acid. Meanwhile, the c-terminal of the peptide was amidated, so that peptide segments were interconnected to increase diversity. Its characterization, biocompatibility, controlled release effect on antigen, immune cell recruitment ability, and antitumor properties were examined here. Congo red/aniline blue staining revealed that peptide hydrogel DRF3 could be immediately gelled in PBS. The stable ß-sheet secondary structure of DRF3 was confirmed by circular dichroism spectrum and IR spectra. The observation results of cryo-scanning electron microscopy, transmission electron microscopy, and atomic force microscopy demonstrated that DRF3 formed nanotubule-like and vesicular structures in PBS, and these structures interlaced with each other to form ordered three-dimensional nanofiber structures. Meanwhile, DRF3 showed excellent biocompatibility, could sustainably and slowly release antigens, recruit dendritic cells and promote the maturation of dendritic cells (DCs) in vitro. In addition, DRF3 has a strong inhibitory effect on clear renal cell carcinoma (786-0). These results provide a reliable basis for the application of peptide hydrogels in biomedical and preclinical trials.


Subject(s)
Dendritic Cells/immunology , Hydrogels/chemistry , Peptides/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Biocompatible Materials/chemistry , Cell Culture Techniques/methods , Cell Survival , Congo Red/chemistry , Cryoelectron Microscopy , Delayed-Action Preparations , Fluorescein-5-isothiocyanate/chemistry , Humans , Hydrogels/pharmacokinetics , Mass Spectrometry , Mice , Microscopy, Atomic Force , Nanofibers/chemistry , Peptides/pharmacokinetics , Peptides/pharmacology , Protein Structure, Secondary
15.
Adv Drug Deliv Rev ; 182: 114097, 2022 03.
Article in English | MEDLINE | ID: mdl-34999121

ABSTRACT

The oral administration of therapeutic peptides and proteins is favoured from a patient and commercial point of view. In order to reach the systemic circulation after oral administration, these drugs have to overcome numerous barriers including the enzymatic, sulfhydryl, mucus and epithelial barrier. The development of oral formulations for therapeutic peptides and proteins is therefore necessary. Among the most promising formulation approaches are lipid-based nanocarriers such as oil-in-water nanoemulsions, self-emulsifying drug delivery systems (SEDDS), solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), liposomes and micelles. As the lipophilic character of therapeutic peptides and proteins can be tremendously increased such as by the formation of hydrophobic ion pairs (HIP) with hydrophobic counter ions, they can be incorporated in the lipophilic phase of these carriers. Since gastrointestinal (GI) peptidases as well as sulfhydryl compounds such as glutathione and dietary proteins are too hydrophilic to enter the lipophilic phase of these carriers, the incorporated therapeutic peptide or protein is protected towards enzymatic degradation as well as unintended thiol/disulfide exchange reactions. Stability of lipid-based nanocarriers towards lipases can be provided by the use to excipients that are not or just poorly degraded by these enzymes. Nanocarriers with a size <200 nm and a mucoinert surface such as PEG or zwitterionic surfaces exhibit high mucus permeating properties. Having reached the underlying absorption membrane, lipid-based nanocarriers enable paracellular and lymphatic drug uptake, induce endocytosis and transcytosis or simply fuse with the cell membrane releasing their payload into the systemic circulation. Numerous in vivo studies provide evidence for the potential of these delivery systems. Within this review we provide an overview about the different barriers for oral peptide and protein delivery, highlight the progress made on lipid-based nanocarriers in order to overcome them and discuss strengths and weaknesses of these delivery systems in comparison to other technologies.


Subject(s)
Drug Carriers/chemistry , Peptides/administration & dosage , Proteins/administration & dosage , Administration, Oral , Drug Liberation , Drug Stability , Humans , Hydrophobic and Hydrophilic Interactions , Intestinal Mucosa/metabolism , Liposomes/chemistry , Micelles , Mucus/metabolism , Nanoparticle Drug Delivery System/chemistry , Nanoparticles/chemistry , Peptide Hydrolases/metabolism , Peptides/pharmacokinetics , Proteins/pharmacokinetics
16.
J Nanobiotechnology ; 20(1): 7, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34983556

ABSTRACT

BACKGROUND: Inhibition of tumor angiogenesis through simultaneous targeting of vascular endothelial growth factor receptor (VEGFR)-1 and -2 is highly efficacious. An antagonist peptide of VEGFA/VEGFB, referred to as VGB3, can recognize and neutralize both VEGFR1 and VEGFR2 on the endothelial and tumoral cells, thereby inhibits angiogenesis and tumor growth. However, improved efficacy and extending injection intervals is required for its clinical translation. Given that gold nanoparticles (GNPs) can enhance the efficacy of biotherapeutics, we conjugated VGB3 to GNPs to enhance its efficacy and extends the intervals between treatments without adverse effects. RESULTS: GNP-VGB3 bound to VEGFR1 and VEGFR2 in human umbilical vein endothelial (HUVE) and 4T1 mammary carcinoma cells. GNP-VGB3 induced cell cycle arrest, ROS overproduction and apoptosis and inhibited proliferation and migration of endothelial and tumor cells more effectively than unconjugated VGB3 or GNP. In a murine 4T1 mammary carcinoma tumor model, GNP-VGB3 more strongly than VGB3 and GNP inhibited tumor growth and metastasis, and increased animal survival without causing weight loss. The superior antitumor effects were associated with durable targeting of VEGFR1 and VEGFR2, thereby inhibiting signaling pathways of proliferation, migration, differentiation, epithelial-to-mesenchymal transition, and survival in tumor tissues. MicroCT imaging and inductively coupled plasma mass spectrometry showed that GNP-VGB3 specifically target tumors and exhibit greater accumulation within tumors than the free GNPs. CONCLUSION: Conjugation to GNPs not only improved the efficacy of VGB3 peptide but also extended the intervals between treatments without adverse effects. These results suggest that GNP-VGB3 is a promising candidate for clinical translation.


Subject(s)
Angiogenesis Inhibitors , Gold/chemistry , Metal Nanoparticles/chemistry , Vascular Endothelial Growth Factor Receptor-1 , Vascular Endothelial Growth Factor Receptor-2 , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacokinetics , Angiogenesis Inhibitors/pharmacology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cells, Cultured , Female , Human Umbilical Vein Endothelial Cells/cytology , Humans , Mammary Neoplasms, Experimental/metabolism , Mice , Mice, Inbred BALB C , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacokinetics , Signal Transduction/drug effects , Vascular Endothelial Growth Factor Receptor-1/chemistry , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/chemistry , Vascular Endothelial Growth Factor Receptor-2/metabolism
17.
J Nanobiotechnology ; 19(1): 309, 2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34627291

ABSTRACT

BACKGROUND: Skin wound healing remains a considerable clinical challenge, thus stressing the urgent need for the development of new interventions to promote repair. Recent researches indicate that both peptides and nanoparticles may be potential therapies for the treatment of skin wounds. METHODS: In the current study, the mesoporous polydopamine (MPDA) nanoparticles were prepared and the peptide RL-QN15 that was previously identified from amphibian skin secretions and exhibited significant potential as a novel prohealing agent was successfully loaded onto the MPDA nanoparticles, which was confirmed by results of analysis of scanning electron microscopy and fourier transform infrared spectroscopy. The encapsulation efficiency and sustained release rate of RL-QN15 from the nanocomposites were determined. The prohealing potency of nanocomposites were evaluated by full-thickness injured wounds in both mice and swine and burn wounds in mice. RESULTS: Our results indicated that, compared with RL-QN15 alone, the prohealing potency of nanocomposites of MPDA and RL-QN15 in the full-thickness injured wounds and burn wounds in mice was increased by up to 50 times through the slow release of RL-QN15. Moreover, the load on the MPDA obviously increased the prohealing activities of RL-QN15 in full-thickness injured wounds in swine. In addition, the obvious increase in the prohealing potency of nanocomposites of MPDA and RL-QN15 was also proved by the results from histological analysis. CONCLUSIONS: Based on our knowledge, this is the first research to report that the load of MPDA nanoparticles could significantly increase the prohealing potency of peptide and hence highlighted the promising potential of MPDA nanoparticles-carrying peptide RL-QN15 for skin wound therapy.


Subject(s)
Dermatologic Agents , Indoles , Nanoparticles/chemistry , Peptides , Polymers , Wound Healing/drug effects , Animals , Dermatologic Agents/chemistry , Dermatologic Agents/pharmacokinetics , Dermatologic Agents/pharmacology , Indoles/chemistry , Indoles/pharmacokinetics , Indoles/pharmacology , Male , Mice , Peptides/chemistry , Peptides/pharmacokinetics , Peptides/pharmacology , Polymers/chemistry , Polymers/pharmacokinetics , Polymers/pharmacology , Skin/chemistry , Skin/injuries , Skin/metabolism , Swine
18.
Mol Pharm ; 18(9): 3260-3271, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34482698

ABSTRACT

Hypoparathyroidism (HP) is a rare disease with clinical manifestations of hypocalcemia and hyperphosphatemia, resulting from deficient or absent parathyroid hormone (PTH) secretion. Conventional treatment for patients with HP involves extensive calcium and vitamin D supplementation. In 2015, PTH1-84 was approved by the United States Food and Drug Administration as an adjunct for HP patients who cannot be well-controlled on conventional treatment. However, PTH1-84 therapy requires a daily injection, leading to poor patient compliance. The purpose of this study was to develop a long-acting PTH1-34 analogue by increasing its affinity to albumin. Three PTH1-34 variants were generated by substituting two of the three lysine (Lys) residues with arginine, reserving a single Lys as the modification site in each sequence. A series of side chains, containing fatty acid, deoxycholic acid, or biotin groups, were synthesized to modify these PTH1-34 variants by using a solid-liquid phase synthesis approach. In vitro bioactivity and albumin affinity tests were used to screen these new PTH1-34 analogues. Finally, Lys27-AAPC was selected from 69 synthesized analogues as a candidate therapeutic compound because it retained potency and exhibited a high albumin-binding capacity. In pharmacodynamic experiments, Lys27-AAPC demonstrated enhanced and prolonged efficacy in serum calcium elevating relative to PTH1-84. Moreover, a lyophilized powder for injection containing Lys27-AAPC was developed for further testing and represented a potential long-acting HP treatment.


Subject(s)
Hypoparathyroidism/drug therapy , Parathyroid Hormone/administration & dosage , Peptides/administration & dosage , Amino Acid Sequence , Amino Acid Substitution , Animals , Calcium/blood , Drug Administration Schedule , Half-Life , Humans , Hypoparathyroidism/blood , Injections, Subcutaneous , Male , Medication Adherence , Mice , Models, Animal , Parathyroid Hormone/genetics , Parathyroid Hormone/pharmacokinetics , Peptides/genetics , Peptides/pharmacokinetics , Rats , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/pharmacokinetics , Structure-Activity Relationship
19.
Biomed Res Int ; 2021: 5561129, 2021.
Article in English | MEDLINE | ID: mdl-34589547

ABSTRACT

Diabetes mellitus termed as metabolic disorder is a collection of interlinked diseases and mainly body's inability to manage glucose level which leads to cardiovascular diseases, renal failure, neurological disorders, and many others. The drugs contemporarily used for diabetes have many inevitable side effects, and many of them have become less responsive to this multifactorial disorder. Momordica charantia commonly known as bitter gourd has many bioactive compounds with antidiabetic properties. The current study was designed to use computational methods to discover the best antidiabetic peptides devised from hypoglycemic polypeptide-P of M. charantia. The binding affinity and interaction patterns of peptides were evaluated against four receptor proteins (i.e., as agonists of insulin receptor and inhibitors of sodium-glucose cotransporter 1, dipeptidyl peptidase-IV, and glucose transporter 2) using molecular docking approach. A total of thirty-seven peptides were docked against these receptors. Out of which, top five peptides against each receptor were shortlisted based on their S-scores and binding affinities. Finally, the eight best ligands (i.e., LIVA, TSEP, EKAI, LKHA, EALF, VAEK, DFGAS, and EPGGGG) were selected as these ligands strictly followed Lipinski's rule of five and exhibited good ADMET profiling. One peptide EPGGGG showed activity towards insulin and SGLT1 receptor proteins. The top complex for both these targets was subjected to 50 ns of molecular dynamics simulations and MM-GBSA binding energy test that concluded both complexes as highly stable, and the intermolecular interactions were dominated by van der Waals and electrostatic energies. Overall, the selected ligands strongly fulfilled the drug-like evaluation criterion and proved to have good antidiabetic properties.


Subject(s)
Hypoglycemic Agents/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Momordica charantia/chemistry , Peptides/chemistry , Amino Acid Sequence , Dipeptidyl Peptidase 4/chemistry , Humans , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Peptides/pharmacokinetics , Peptides/pharmacology , Receptor, Insulin/chemistry , Thermodynamics
20.
Nutrients ; 13(9)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34579144

ABSTRACT

There is a renewed interest on the reliance of food-based bioactive compounds as sources of nutritive factors and health-beneficial chemical compounds. Among these food components, several proteins from foods have been shown to promote health and wellness as seen in proteins such as α/γ-conglutins from the seeds of Lupinus species (Lupin), a genus of leguminous plant that are widely used in traditional medicine for treating chronic diseases. Lupin-derived peptides (LDPs) are increasingly being explored and they have been shown to possess multifunctional health improving properties. This paper discusses the intestinal transport, bioavailability and biological activities of LDPs, focusing on molecular mechanisms of action as reported in in vitro, cell culture, animal and human studies. The potentials of several LDPs to demonstrate multitarget mechanism of regulation of glucose and lipid metabolism, chemo- and osteoprotective properties, and antioxidant and anti-inflammatory activities position LDPs as good candidates for nutraceutical development for the prevention and management of medical conditions whose etiology are multifactorial.


Subject(s)
Lupinus/chemistry , Peptides/administration & dosage , Peptides/pharmacokinetics , Phytochemicals/administration & dosage , Plant Proteins/chemistry , Seeds/chemistry , Animals , Anti-Inflammatory Agents , Antioxidants , Biological Availability , Health Promotion , Humans , Intestinal Mucosa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...